用户名: 密码: 验证码:
东昆仑中段五龙沟矿集区金矿成矿作用及成矿预测研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
构造成矿学认为,成矿作用主要发生于地质历史时期的某些特殊构造体制的演化阶段。青海省东昆仑造山带中段的五龙沟地区,古生代—中生代构造—岩浆作用与金矿成矿作用发育,但区内以往对构造—岩浆作用与金矿成矿关系的精细研究仍不够。鉴于此,本次研究以金矿成矿作用及预测为核心,通过对构造的时空分布、岩石组合、岩石学、岩石化学,以及典型矿床的深入研究,取得如下主要成果:
     (1)五龙沟矿集区位于格尔木-五龙沟巨型变质核杂岩的东北翼,变质核杂岩的伸展剥离形成了原始北东倾斜的伸展剥离韧性剪切带,形成独特的剪切带褶皱变形的变质核杂岩聚矿构造,导致五龙沟集中区金矿的形成。
     (2)确立了区内剪切带变形的运动序列和力学性质演化过程。即早印支期韧性变形阶段左行正滑;晚印支-燕山期韧-脆性变形阶段,左行正滑→左行逆冲→右行正滑;晚燕山期-喜马拉雅期脆性变形阶段,右行正滑→左行逆冲→右行正滑。
     (3)五龙沟地区脆-韧性变形及早期成矿热液蚀变发生于晚印支-早燕山期(235~197Ma);脆性变形和晚期成矿发生于晚燕山-喜马拉雅期(91.9~21.0Ma),早-中喜马拉雅(51~21Ma)期对成矿的贡献意义重大。
     (4)区内金矿成矿作用受变质核杂岩构造及其演化控制,发生于核杂岩形成后的陆内造山脆性变形过程中;成矿环境为相对封闭、弱还原的脆性变形域,成矿物质为以深源为主的壳幔混源,壳源成矿物质和变质水、天水等非深源流体矿质淀积过程中逐渐混入。
     (5)晚三叠世-早白垩世五龙沟地区形成多条可容配矿的韧性-脆性含矿剪切带,晚白垩世-古近纪形成金矿容矿构造,晚印支期-喜马拉雅期形成金矿的“源、集、运、储、蔽”五要素。
     (6)红旗沟-深水潭金矿床的黄龙沟、水闸东沟矿段深部预测找矿潜力较大,应加大深部勘查力度。区域上各级预测靶区概算金资源量为278t,其中Ⅰ级预测靶区Au金资源量167t,展示出巨大的找矿潜力。
Structure metallogeny holds the view that mineralization mainly takes place inthe evolutionary phase of some special structure system in the long geological history.Wulonggou ore concentration areas, located in East Kunlun Middle Part of QinghaiProvince, are full-fledged in its Paleozoic-Mesozoic structure, magmatism and goldmineralization, but fail to conduct thorough and intensive research on the relationshipbetween its geological structure, magmatism and gold mineralization. Therefore, thisstudy takes gold mineralization and Metallogenic Prognosis as the core topic, does arefined and painstaking research on space and time distribution in geological structure,rock association, petrology, geochemistry and typical ore deposit, and drawsconclusions as follows:
     (1) Wulonggou is located in the Northeast wing of Golmud-Wulonggoumetamorphic core complex, whose extension and disjunction have formed the originaleastnorth-oriented ductile shear zone and formed a unique core concentrationstructure of metamorphic core complex with fold deformation, resulting in the goldmineralization in this area.
     (2) The motion sequence and mechanical properties evolution in ductile shearzone deformation in Wulonggou ore concentration areas have been established, that is,the left-lateral normal slip ductile shear zone in Early Indo-Sinian; a shift from theleft-lateral normal slip to the left-slip thrusting and to the right-lateral normal slip inLate Indo-Sinian to Yanshanian ductile-brittle deformation phases; a shift from theright-lateral normal slip to the left-slip thrusting and back to the right-lateral normalslip in the Late Yanshanian to Himalayan brittle deformation phases.
     (3) Brittle-ductile deformation and early metallogenic hydrothermal alteration inWulonggou ore concentration areas take place in Late Indo-Sinian to EarlyYanshanian (235~197Ma). Brittle deformation and late mineralization take place inLate Yanshanian to Himalayan (91.9~21.0Ma), whose Early-Middle phases (51~21Ma) play a significant role in the process of mineralization.
     (4) Influenced by the structure of metamorphic core complex and its evolution,gold mineralization in Wulonggou ore concentration areas takes place in the processof intracontinental orogenic brittle deformation after the formation of metamorphiccore complex. Its metallogenic environment is relatively closed brittle deformationzone with weak deoxidation atmosphere; metallogenic materials include crust-mantle mixtures characterized by deep sources, shell source metallogenic materials andmixtures of non-deep sources such as metamorphic water and natural water.
     (5) Multi ductile-brittle ore-bearing shear zones of compatible ore blending inWulonggou areas are formed in Late Triassic to Early Cretaceous. The goldore-bearing structure there takes shape in Late Cretaceous to Early Tertiary, while thefive elements of gold deposits like “source, collection, transportation, storage andshelter” are established in Late Indo-Sinian to Himalayan.
     (6) Metallogenic Prognosis shows great deposit potentials in Huanglonggou andShuizhadonggou, with a278-ton estimate of gold resources and a167-ton of Au, anddeep exploration concerned should be consequently intensified.
引文
Bonnemaison M.“Filon de aurifere” an cas particulier de shear aurifere[J]. Chron Bech Min,1986.
    Bucher, K. and Frey, M. Petrogenesis of Metamorphic Rocks[M]. Springer Verlag,318pages,1994.
    Burg, J. P., and Chen, G. M. Tectonics and structural zonation of southern Tibet, China[J].Nature,1984,v.311, p.219-223.
    Coney, P. J., Jones, D. L., and Monger, J. W. H. Cordilleran suspect terranes[J]. Nature,1980, v.299, p.329-333.
    Corfield, R. I., Searle, M. P., and Green, O. R. Photang thrust sheet: An accretionarycomplex structurally below the Spontang ophiolite constraining timing and tectonic environmentof ophiolite obduction, Ladakh Himalaya, NW India[J]. Geological Society (London) Journal,1999,v.156, p.1031-1044.
    Coulon, C., Maluski, H., Bollinger, C., and Wang, S. Mesozoic and Cenozoic volcanicrocks from central and southern Tibet:39Ar/40Ar dating, petrological characteristics andgeodynamical significance[J]. Earth and Planetary Science Letters,1986, v.79, p.281-302.
    Debon, F., Le Fort, P., Sheppard, S. M. F., and Sonet, J. The four plutonic belts of theTranshimalaya-Himalaya: A chemical, mineralogical, isotopic and chronological synthesis along aTibet-Nepal section[J]. Journal of Petrology,1986, v.27, p.219-250.
    Dewey, J. F., Shackleton, R. M., Chang, C., and Sun, Y. The tectonic development of theTibetan Plateau[R]. In: Chang, C., Shackleton, R.M., Dewey, J. F., and Yin, J., editors, Thegeological evolution of Tibet: Royal Society of London Philosophical Transactions,1988, p.379-413.
    Dilles, J. H. and Einaudi, M. T. Wall-rock alteration and hydrothermal flow paths about theAnn-Mason Porphyry Copper Deposit, Nevada-A-6km vertical reconstruction[J]. EconomicGeology,1992, volume87, p.1963-2001.
    Durr, S. B. Provenance of Xigaze fore-arc basin clastic rocks (Cretaceous, south Tibet)[R].Geological Society of America Bulletin,1996, v.108, p.669-684.
    F. Nimmo, P. Schenk F. Normal faulting on Europa: implications for ice shell properties.Journal of Structural Geology.2006,(28):2259-2269.
    Fournier, R. O. Hydrothermal processes related to movement of fluid from plastic into brittlerock in the Magmatic-Epithermal environment[J]. Economic Geology,1999,v.94, p.1193-1213.[91] Gleadow A J W, Duddy I R, Green P F. Confined fission track lengths in apatite: A diagnostictool for thermal history analysis. Contrib. Mineral. Petrol.,1986,94:405-415.
    Gansser, A. Geology of the Himalayas[M]. London:Wiley Interscience,1964, p.289.
    Groves D I,Goldfarb R J,Gebre-Mariam M,et al.Orogenic gold deposits:A proposedclassification in the context of their crustal distribution and relationship to other gold deposittypes[J].Ore Geol.Rev.,1998,13(1-5):7-27.
    Gustafson, L. B. and Hunt. J. P. The porphyry copper deposit at El Salvador, Chile[J].Economic Geology,1975, v.70, p.857-912.
    Harrison, T. M., Yin, A., Grove, M., Lovera, O. M., and Ryerson, F. J. Displacementhistory of the Gangdese thrust, southeastern Tibet[J]. Journal of Geophysical Research,2000, v.107, p.19211-19230.
    Hodges, K.V. Tectonics of the Himalaya and southern Tibet from two perspectives[R].Geological Society of America Bulletin,2000, v.112, p.324-350.
    Holliday, J. R., Wilson, A. J., Blevin, P. L., Tedder, I. J. Dunham, P. D. and Pfitzner, M.Porphyry gold-copper mineralization in the Cadia district, eastern Lachlan fold belt, New SouthWales, and its relationship to shoshonitic magmatism [J]. Mineralium Deposita,2002, v.37, p.100-116.
    Hurford A J, Green P F. The Zeta age calibration of fission track dating. Isotope Geosci.,1983,1:285~317.
    Jan, Q. M. High-P metamorphic rocks from the Himalaya and their tectonic implication–Areview[J]. Physics and Chemistry of the Earth,1990, v.18, p.329-343.
    Kirkham R. and Margolis, J. Overview of the Sulphurets Area, northwestern BritishColumbia[J]. Canadian Institute of Mining, Metallurgy and Petroleum Special,1995, v.46, p.473-483.
    Kirkham, R.V. Giant Cu and Au Porphyry Deposits: Geological Parameters and EconomicImportance[D]. Paper presented at technical session at the Annual Convention and Trade show ofthe Prospectors and Developers Association of Canada, Sunday,1997,March9.
    Lang, J. and Rebagliati. C. M. Xietongmen Copper-Gold Porphyry Project, TibetAutonomousRegion, Peoples Republic of China[R]. Continental Minerals Corporation Internal TechnicalReport,2006, p.135.
    Lang, J. R. Reconnaissance petrographic descriptions of30polished thin sections from theXietongmen prospect, Tibet, China[R]. Private report to Continental Minerals Corp,67p,2004b.
    Lang, J. R. The Xietongmen Au-Ag-Cu system, Tibet, China: A preliminary, field-basedassessment of geology, controls on alteration and mineralization, and exploration potential[R].Private report to Continental Minerals Corp,72p,2004a..
    Liou, J., Maruyama, S. and Moonsup, Cho. Very low-grade metamorphosis of volcanic andvolcaniclastic rocks-mineral assemblages and mineral facies[J], in M. Frey (ed.): LowTemperature Metamorphism. Blakie Scientific,1987, p.59-113.
    Miller, C., Schuster, R., Klotzli, U., Frank, W., and Purtscheller, F. Post-collisional potassicand ultra-potassic magmatism in SW Tibet: Geochemical and Sr-Nd-Pb-O isotopic constraints formantle source characteristics and petrogenesis[J]. Journal of Petrology,1999, v.40, p.1399-1424.
    Muntean, J. L. and Einaudi, M. T. Porphyry-epithermal transition: Maricunga Belt, NorthernChile[J]. Economic Geology,2001, v.96, p.743-772.
    Nichols, A., and Hall, R. Conceptual study, Xietongmen deposit, Tibet, People’s Republic ofChina[R]. Private report to Continental Minerals Corp,2005, p.100.
    Oliver, J. Geological mapping of the Xietongmen property and continguous areas, Tibet,People’s Republic of China[R]. Private report to Continental Minerals Corp,25p,2005.
    Pan, Y. Unroofing history and structural evolution of the southern Lhasa terrane, TibetanPlateau: Implications for the continental collision between India and Asia[D]. Unpublished Ph.Ddissertation, State University of New York Albany,1993.
    Payne, J. Xietongmen, Au-Cu-(Zn) Deposit, Tibet[R]. Vancouver Petrographics Ltd, Report040004for Mark Rebagliati, Hunter Dickinson Inc., unpublished company report,2004.
    Pearce, J. A., and Mei, H. Volcanic rocks of the1985Tibet Geotraverse: Lhasa toGolmud[R]. In: Chang, C., Shackleton, R. M., Dewey, J. F., and Yin, J., editors, The geologicalevolution of Tibet: Royal Society of London Philosophical Transactions, p.169-201,1988.
    Ramsay.A.L.,Shear zone geometry:a review.J.Struct.Geol.,1980,2,83-99
    Reza Tafti, James K. Mortensen, James R. Lang. Preliminary Geochronology Report for theXietongmen Deposit Area, Tibet, China.15p,2006.
    Sibson R H,Francois R K. High-angle reverse faults fluld-pressure cycling, and mesothermalgold-quartz deposit[J].Geology,1988.
    Sihson R H. Structural and mechanics of fault zone in relation to faulthosted mineralization[M].Glenside: TheAustralian Mineral Foundation,1989.
    Spear. F. S. Metamorphic Phase Equilibria and Pressure–Temperature-Time Paths [M].Mineralogical Society of America Monograph,1993, p.799.
    Western Australia[J].Ore Geol.Rev.,2000,17(1-2):1-38.
    Yamada R, Tagami T, Nishimura S etc. Annealing kinetics of fission tracks in zircon: anexperimental study. Chemical Ge-ology (Isotope Geoscience Section),1995,122:249-258.
    包相臣.矿相学教程[M].成都:成都科技大学出版社,1993.
    蔡长金.中国金矿物志[M].北京:冶金工业出版社,1994.
    陈柏林,陈宣华,王小凤.阿尔金北缘地区韧性剪切带型金矿床构造控矿解析[J].地质学报,2002,76(2):235-243.
    陈柏林.构造形变类型与金矿化类型的关系[J].世界地质,2000,19(3):217-239.
    陈柏林.韧性剪切带型脉状金矿床成矿深度研究的思考[J].矿物岩石地球化学通报,2000,19(4):373-374.
    陈柏林.与韧性剪切带有关的不同金矿化类型地质地球化学特征对比研究[J].地质地球化学,2000,28(3):24-30.
    陈骏,王鹤年.地球化学[M].科学出版社,2004.
    陈新跃,王岳军,范蔚茗,等.云南崇山剪切断裂带系显微构造特征及其40Ar-39Ar年代学约束[J].大地构造与成矿学,2006,30(1):41-51.
    董树义,钟康惠等.内蒙小伊诺盖沟金矿:后韧性剪切型金矿[J].矿物岩石,2004,24(2):46-52.
    董英君,张德全,徐文艺,等.东昆仑地质地球物理特征与矿产资源分布[J].矿床地质,2005,24(2):179-184.
    丰成友,张德全,李大新,等.青海东昆仑造山型金矿硫、铅同位素地球化学[J].地球学报,2003,24(6):593-598.
    丰成友,张德全,佘宏全.韧性剪切构造演化及其对金成矿的制约-以青海野骆驼泉金矿为例[J].矿床地质,2002,21(增刊):582-585.
    丰成友,张德全,王富春,等.青海东昆仑造山型金(锑)矿床成矿流体地球化学研究[J].岩石学报,2004,20(4):949-960.
    丰成友,张德全等.青海东昆仑复合造山过程及典型造山型金矿地质[J].地球学报,2004,25(4):415-422.
    古凤宝.东昆仑地质特征及晚古生代-中生代构造演化[J].青海地质,1994,9(3):4-14.
    何绍勋,段嘉瑞,刘继顺等.韧性剪切带与成矿[M].地质出版社,1996.
    贺同兴,卢良兆,李树勋等.变质岩石学[M].地质出版社,1980.
    姜春发,王宗起,李锦轶,等.中央造山带开合构造[M].北京:地质出版社,2000.
    姜春发,杨经绥,冯秉贵,等.昆仑开合构造[M].北京:地质出版社,1992.
    姜春发.中央造山带主要地质构造特征[J].地学研究,1993,(27):103-108.
    解玉月.昆中断裂东段不同时代蛇绿岩特征及形成环境[J].青海地质,1998,1(2):27-33.
    李厚民,胡正国,钱壮志,等.对东昆仑金及多金属主要成矿系列的初步认识[J].西安工程学院学报,1999,21(4):51-56.
    李厚民,沈远超,胡正国,等.青海东昆仑五龙沟金矿床成矿条件及成矿机理[J].地质与勘探,2001,37(1):65-69.
    李厚民,沈远超,胡正国,等.青海五龙沟金矿矿石、矿物含金性及金的赋存状态[J].矿物学报,2001,21(1):89-94.
    李荣社,计文化、赵振明等.昆仑早古生代造山带研究进展[J].地质通报,2007,26(4):373-382.
    李兴振,尹福光.东昆仑与西昆仑地质构造对比研究之刍议[J].地质通报,2002,21(11):777-783.
    李智明,薛春纪,王晓虎.东昆仑区域成矿特征及有关找矿突破问题分析[J].地质论评,2007,53(5):708-718.
    梁斌.东昆仑造山带东段昆中构造混杂岩带左旋斜冲韧性变形特征[J].矿物岩石,2001,21(2):89-93.
    刘继庆,胡正国,钱壮志.东昆仑NW向线性构造带地质特征及找矿意义[J].西安工程学院学报,2000,22(2):18-21.
    刘燕君.遥感找矿的原理和方法[M].北京:冶金工业出版社,1991.
    刘英俊,曹励明,李兆麟等.元素地球化学[M].科学出版社,1984.
    刘永成,叶占福.对东昆仑金水口地区高级变质岩的新认识[J].青海地质,1998,3(4):18-26.
    刘增铁,任佳琪,杨永征.青海金矿[M].北京:地质版社,2005.
    刘肇昌.成矿构造研究新进展-第二讲韧性剪切带的基本特征及其成矿意义[J].矿山地质,1991,12(2):147-158.
    刘肇昌.韧性剪切带对金矿床的控制及其成矿作用.西南矿产地质[J],1991,5(2):7-15.
    龙晓平,金魏,葛文春,等.东昆仑金水口花岗岩体锆石U-Pb年代学及其地质意义[J].地球化学,2006,35(4):367-376.
    倪培兵.断裂活动对金矿形成的作用机理[J].地质找矿论丛,2005,22(增刊):7-9.
    潘桂棠,李兴振,王立全等.青藏高原及邻区大地构造单元初步划分[J].地质通报,2002,(11).
    潘裕生,周伟明,许荣华,等.昆仑山早古生代地质特征与演化[J].中国科学(D辑),1996,26(4):302-307.
    钱壮志,胡正国,李厚民,等.东昆仑中带金矿成矿特征及成矿模式[J].矿床地质,2000,19(4):315-321.
    钱壮志,胡正国,刘继庆.东昆仑北西向韧性剪切带发育的区域构造背景—以石灰沟韧性剪切带为例[J].成都理工学院报,1998,25(2):201-205.
    钱壮志,李厚民,胡正国,等.东昆仑中带闪长玢岩脉与金矿成矿关系-以石灰沟金矿床为例[J].西安工程学报学报,1999,21(1):1-4.
    青海地质矿产局.青海省区域地质志[M].北京:地质出版社,1991.
    青海地质矿产局.青海省岩石地层[M].北京:地质出版社,1997.
    青海省地质矿产勘查开发局.青海省矿产图[M].北京:地质出版社,2003.
    石金友.青海省都兰县五龙沟金矿成矿地质特征及找矿标志[J].前寒武纪研究进展1997,20(2):29-36.
    舒斌.含金韧-脆性断裂中界面转换成矿机制探讨[J].地质与资源,2004,21(2):89-93.
    孙延贵,张国伟,郭安林,等.秦-昆三向联结构造及其构造过程的同位素年代学证据[J].中国地质,2004,3l(4):372-378.
    孙延贵,张国伟,王瑾,等.秦、昆结合区两期基性岩墙群40Ar/39Ar定年及其构造意义[J].地质学报,2004,78(1):65-71.
    滕吉文,张中杰,杨顶辉,等.青藏高原地体划分的地球物理标志研究[J].地球物理学报,1996,39(5):629-645.
    田军,张克信,龚一鸣.东昆仑造山带东段下中三叠统研究进展[J].地球科学-中国地质大学学报2000,25(3):290-294.
    王成善,朱利东,刘志飞,等.青藏高原北部盆地构造沉积演化与高原向北生长过程[J].地球科学进展,2004,19(3):373-381.
    王国灿,向树元, GARVER J I,等.东昆仑东段哈拉郭勒-哈图一带中生代的岩石隆升剥露--锆石和磷灰石裂变径迹年代学证据[J].地球科学,2003,28(6):645-652.
    王国灿,杨巍然,马华东.东、西昆仑山晚新生代以来构造隆升作用对比[J].地学前缘,2005,12(3):157-166.
    王力.山东招远金岭金矿矿化富集规律及成矿预测:[硕士学位论文].吉林:吉林大学,2003.
    王义天,毛景文,李晓峰,等.与剪切带相关的金成矿作用[J].地学前缘,2004,11(2):393-400.
    王义天,毛景文.碰撞造山作用期后伸展体制下的成矿作用—以小秦岭金矿集中区为列[J].地质通报,2004,11(2):393-400.
    吴香尧,骆耀南.四川石棉田湾磨西剪切带的变形分析及其运动学分析[J].成都理工学院报,1998,25(4):511-516.
    徐开礼,朱志澄.构造地质学[M].地质出版社,2003.
    许志琴,李海兵,杨经绥,等.东昆仑山南缘大型持续挤压构造带和斜向俯冲作用[J].地质学报,200l,75(20):156-164.
    许志琴,张建新,徐惠芬,等.中国主要大陆山链韧性剪切带及动力学[M].北京:地质出版社,1997.
    袁万明,莫宣学,王世成.东昆仑金成矿作用与区域构造演化的关系[J].地质与勘探,2003,39(3):5-8.
    袁万明,莫宣学,喻学惠,等.东昆仑热液金成矿带及其找矿方向[J].地质与勘探,2000,36(5):20-23.
    袁万明,莫宣学,喻学惠,等.东昆仑印支期区域构造背景的花岗岩记录[J].地质论评,2000,,46(2):203-211.
    袁万明,莫宣学,喻学惠,等.东昆仑早石炭世火山岩地球化学特征及其构造背景[J].岩石矿物学杂志,1998,17(4):289-295.
    袁万明,王世成,王兰芬.东昆仑五龙沟金矿床成矿热历史的裂变径迹热年代学证据[J].地球学报,2000,21(4):289-395.
    曾联波,金之钩,张明利,等.柴达木侏罗纪盆地性质及其演化特征[J].沉积学报,2002,20(2):288-292.
    张德全,党兴彦,佘宏全,等.柴北缘-东昆仑地区造山型金矿床的Ar-Ar测年及其地质意义[J].矿床地质,2005,24(2):87-98.
    张德全,丰成友,李大新,等.柴北缘-东昆仑地区的造山型金矿床[J].矿床地质,2001,20(2):137-146.
    张德全,王富春,佘宏全,等.柴北缘一东昆仑地区造山型金矿床的三级控矿构造系统[J].中国地质,2007,34(1):92-99.
    张克信,林启祥,朱云海,等.东昆仑东段混杂岩建造时代厘定的古生物新证据及其大地构造意义[J].中国科学D辑:地球科学,2004,34(3):210-218.
    张文秦,汪彩芳,刘成东,等.依据化探成果对东昆仑地质背景的讨论[J].现代地质,2002,16(3):257-262.
    张雪亭,杨生德,杨站君,等.青海省板块构造研究—1:100万青海省大地构造图说明书[M].北京:地质出版社,2007.
    张雪亭,杨生德,杨站君,等.青海省区域地质概论—1:100万青海省地质图说明书[M].北京:地质出版社,2007.
    赵俊伟.青海东昆仑造山带造山型金矿床成矿系列研究:[博士学位论文].吉林:吉林大学,2006.
    赵伦山,张本仁.地球化学[M].地质出版社,1988.
    朱炳泉.壳幔化学不均一性与块体地球化学边界研究[J].地学前缘,1998,5(1-2):72-82.
    朱永峰.克拉通和古生代造山带中的韧性剪切带型金矿:金矿成矿条件与成矿环境分析[J].矿床地质,2004,23(4):409-519.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700