用户名: 密码: 验证码:
子北地区延长组油气成藏条件及富集规律研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本论文以鄂尔多斯盆地子北地区延长组长2、长4+5及长6油层组为研究对象,以沉积学、石油地质学、地球化学和测井学理论为指导,在收集大量地质、钻井、测井等资料的基础上,首次将子北地区作为一个整体,对子北地区延长组沉积、构造、储层、油藏类型及特征进行了深入研究,综合利用电性,岩性以及录井资料,古生物资料特征的基础上,以区域标志层为依椐、按照厚度相等及分级控制原则,重点对子北地区延长组长2、长4+5和长6油层组进行划分与对比,建立了全区的地层格架;进一步对长2、长4+5与长6油层组各小层顶面构造进行研究发现:子北地区长2、长6油层组在东西向的单斜构造背景下,受差异压实作用的影响,局部发育近东西向的鼻状隆起。
     根据钻井岩芯观察、岩石类型、粒度分析、沉积构造、沉积旋回、测井及测试资料等,对子北地区沉积微相进行了分析,长2油层组主要为三角洲平原亚相沉积,发育辫状河三角洲;而长4+5、长6油层组为三角洲平原沉积,长4+5下段和长6油层组主要为三角洲平原分流河道沉积。子北地区长2与长6三角洲平原分流河道总体上呈北东-南西方向条带状展布,分流河道之间被分流间湾沉积所分隔。
     综合分析子北地区储层孔渗参数:子北地区储层属于低孔-特低渗、特低孔-超低渗型储层,并将子北地区储层划分为Ⅰ、Ⅱ、Ⅲ、Ⅳ、Ⅴ五类,其中把Ⅲ、Ⅳ类储层又分别划分出a和b两类,在这五大类储层中Ⅲ类、Ⅳ类是子北地区的主要储层,长2油层组以Ⅰ、Ⅱ类储层为主,长4+5和长6油层组以Ⅲb、Ⅳa、Ⅳb类为主。沉积微相和成岩作用是控制和影响子北地区储层发育和展布的主要因素。
     通过对含油气系统的四个要素,即烃源岩、储层、盖层、圈闭及其组合特征的研究与评价,得知本区油气主要来自长7油层组中部的深湖相泥岩、油页岩,子北地区主要发育长6(储集层)-长4+5(盖层)及长2(储集层)-长1(盖层)两套主要的储盖组合,在长4+5及长1油层组内部局部发育有自储自盖型储盖组合。子北油区由于后期剥蚀程度强烈,长2储层保存条件较差,导致该期含油而积分布较为有限。
     根据子北地区油气显示提供的证据及油源对比结果分析提供的证据,子北地区大的系统可划分为上三叠统延长组含油气系统,首次将子北地区油气系统划分为上三叠统延长组含油气系统,子系统划分为长6段子系统、长4+5段子系统、长2段子系统。通过包裹体测温、并结合盆地热史、伊利石测年等多种方法综合分析确定了研究区中生界延长组油藏成藏时期为早白垩世。子北地区的生储盖组合类型确定为:长2油藏-下生上储型,长4+5、长6油藏-下生上储型;以此总结出本区延长组油藏主要有两种成藏模式:区域构造背景下的砂岩透镜体油藏成藏模式和上倾尖灭油藏成藏模式。在此基础上首次系统的分析了子北长2、长4+5、长6油层组平而变化规律及控制因素,认为长61是主力油层,长62、长4+5次之,长63、长2分布范围较小。子北地区延长组油藏的形成和分布受沉积相、优质储层、鼻状隆起构造、区域盖层、运移通道等多重因素控制。其中有利沉积相带及优质储层是三叠系油气藏形成和富集的基本条件,鼻状隆起构造是三叠系油气富集高产的重要因素。
     最终依据子北地区沉积微相、储层物性、构造、油层分布及油层分布规律总结的基础上,对该地区有利勘探区块进行了评价,认为涧浴岔以北区块、南沟岔区理448井区为今后勘探的重点地区。
Chang2, Chang4+5and Chang6members of the Zibei Oil Region in Ordos Basin are taken as the srudy objects in this paer.Under the guidance of theroies of sedimentology、 petroleum geology、geochemistry and well logging gepphysices, on the basisi of abudant data from geology、drilling、logging, etc, the Chang2, Chang4+5and Chang6members of the Zibei Oil Field is deeply studied in strata、structure、sediment、reservoir and characteristic of oil-pool, taking Zibei Region as a whole for the first time. Based on the integrated analysis of electical property, lithology and logging data, according to the regional key bed, on the principle of equal thickness and step control, the division and comparison of reservoir group Chang2, Chang4+5and Chang6of the Zibei Region are deeply studied and the stratigraphic framework of the region is built in this paper; and then the superface structures of Chang2, Chang4+5and Chang6layers are studied; under the east-weat trending monoclinal structure, influenced by the effect of differential compaction, Chang2, Chang4+5and Chang6of reservoir groups developed partly nearly east-weat trending nose-shaped uplift.
     Through the study of core observation, grain size&rock type analysis, sedimentary structure, sedimentary cycle, logging and testing, the sedimentary micro-facies of Zibei region is analyzed. Reservoir group of Chang2mainly displays delta plain subface deposit, and where braided river delta is developed. Reservoir groups of Chang4+5and Chang6are delta plain, lower part of reservoir group Chang4+5and reservor group Chang6mainly are characterized by delta plain distributary channel deposit. The delta plain distributary channels of Chang2and Chang6distributed generally in NorthEast-SouthWest banding, the distributary channels are separated by interdistributary bay facies.
     By analyzing the porosity and permeability parameters, the formations of Zibei region are low porosity, extra-low permeability and extra-low porosity, ultra-low permeability type, and these formations are divided into Ⅰ, Ⅱ, Ⅲ, Ⅳ, Ⅴ classes. For classes Ⅲ and Ⅳ, they are futher divided into a and b semi-classes. The class Ⅲ and Ⅳ are the main reservoir types in Zibei Region, the class Ⅰ, Ⅱ expressed mainly on Chang2formations; the class Ⅲb, Ⅳa and Ⅳb and mainly presented in Chang4+5and Chang6. Sedimentary micro-facies and lithogenesis are the primary factors controlling and influencing the formation development and spreading of Zibei region.
     On the study of petroliferous system elements (hydrocarbon source rock, reservoir rock, cap rock, and trap) and their association characteristics, oil and gas mainly originated from the deep laketone and shales. The two serts of reservoir-cap combination of Zibei region are Chang6(reservoir)-Chang4+5(cap rock) and Chang2(reservoir)-Chang1(cap rock), with self-storage, self-cover assemblage locally developed within Chang4+5and Chang1formations. Due to severe erosion, preservation condition is poor and oil distribution area is limited.
     According to hydrocarbon show evidence and oil-source correlation results in Zibei Region, the system of Zibei Region can be categorized as yan-chang formation of upper-triassic system for the first time, and the semi-systems are Chang6, Chang4+5and Chang2. Through inclusion temperature measurement, basin thermal history, dating of illite and other methods, the reservoir forming period of mesozoic Yanchang formation in the study area is early cretaceous epoch The source-reservoir-cap assemblages of Zibei Region is determined:Chang2reservoir is lower generating-upper reservoir type, Chang4+5and Chang6reservoirs are upper generating-lower reservoir type,which presents the two reservoir-forming patterns of Yanchang formations, that means sandstone lens reservoir forming and updip pinch-out reservoir forming. On that basis, the planar distribution pattern and controlling factors of reservoir groups of Chang2, Chang6and Chang4+5in Zibei Region are systematically studied for the first time, Chang61reservoir are major reservoir, Chang62and Chang4+5reservoirs take second place, Chang63and Chang2reservoirs distributed narrowly. The forming and distribution of Yanchang formations in Zibei Region are controlled by multiple factors such as sedimentary facies, high-quality formations, nose-shaped uplift, regional cap, migration pathway and etc. The favorable sedimentary facies and high-quality formations are the basic conditions for the forming and accumulation of triassic reservoirs; the nose-shaped uplift structure plays akey role in enrichment and high productivity of oil and gas.
     At last, on the basis of the sedimentary microfacies, formation physical properties, structures, formation distribution patterns, the favourable exploration blocks are evaluated. The block to the north of JianYuCha area and block of Well Li448of NanGouCha area are selected as major region for future exploration.
引文
[1]康立明,任战利,唐建云,等.子北油区涧峪岔油区长6油层注水开发方案,延长子北采油厂内部资料,2007
    [2]李文厚,庞军刚,何元方,等.史家畔-清涧地区延组勘探潜力研究,延长子北采油厂内部资料,2009
    [3]李玉宏,曹金舟,卢进才,等.涧峪岔油田理79、理156井区三叠系延长组长4+5、长6油层组新增石油探明储量报告,延长子北采油厂内部资料,2005
    [4]刘丽,需利庆,任战利,等.子北油区理60井区长4+5、长6油层组新增石油探明储量技术经济评价报告,延长子北采油厂内部资料,2004
    [5]罗静兰,赵俊英,李江森,等.子北油区4012井区长6油藏精细描述,延长子北采油厂内部资料,2008
    [6]彭一兵,曹金舟,姜星,等.涧峪岔油田长2油层组油藏描述报告,延长子北采油厂内部资料,2003
    [7]任战利,霍小菊,陈西泮,等.子长、子北、瓦窑堡、子洲、横山油田油气资源储量利用现状调查,延长子北采油厂内部资料,2011
    [8]任战利,梁宇,史政.子长采油厂资源潜力研究报告,延长子长采油厂内部资料,2010
    [9]任战利,霍小菊,唐建云,等.涧峪岔油田理79井区长6油层油藏精细描述附图附表册,延长子北采油厂内部资料,2010
    [10]时保宏,张春林,李广涛,等.涧峪岔油田理871井区延长组长4+5、长6油层组储量参数研究报告,延长子北采油厂内部资料,2007
    [11]王凤琴,李继红,蒋峰华,等.子北玉家湾油田长6油藏描述,延长子北采油厂内部资料,2008
    [12]王起琮,罗然吴,曹金舟,等.子北油区理99井区长4+5、长6油层组新增石油探明储量报告,延长子北采油厂内部资料,2002
    [13]武富礼,张凤奇,时保宏,等.子北油区赵家台区延长组长4+5、长6油层组新增石油探明储量报告,延长子北采油厂内部资料,2009
    [14]武富礼.涧浴岔油区、子北油区石油探明储量套改说明,延长子北采油厂内部资料,2009
    [l]何更生.油层物理[M].北京:石油工业出版社,1994:22-64
    [2]何自新.鄂尔多斯盆地演化与油气[M].北京:石油工业出版社,2003:5-20
    [3]姜在兴.沉积学[M].北京:石油工业出版社,2003:110-129
    [4]兰朝利,吴峻,李继亮,等.靖安油田长6段层序地层分析[J].石油与天然气地质,2001,22(4):362-366
    [5]李道品.低渗透油田开发概论[J].大庆石油地质与开发,1997,16(3):33-37
    [6]李德生.重新认识鄂尔多斯盆地油气地质学[J].石油勘探与开发,2004,31(6):1-7
    [7]李凤杰,王多云,张庆龙,等.鄂尔多斯盆地陇东地区延长组沉积相特征与层序地层分析[J].沉积学报,2006,24(4):549-554
    [8]李明诚,李剑.“动力圈闭”-低渗透致密储层中油气充注成藏的主要作用[J].石油学报,2010,31(5):718-722
    [9]李怒军,吴志宇,张金亮.安塞油田王窑区长6油层储层地质[J].西安石油学院学报(自然科学版),1998,4:33-37
    [10]李胜利,赵舒,付菊,等.利用鄂尔多斯盆地镇泾油田沉积微相展布与演化规律分析油田开发调整方向[J].地学前缘,2008,15(1):85-92
    [11]李文厚,柳益群,冯乔.川口油田长6段油层组储集层特征与油气富集规律[J].岩石学报,1998,14(1):57-61
    [12]李文厚,庞军刚,曹红霞,等.鄂尔多斯盆地晚三叠世延长期沉积体系及岩相古地理演化[J].西北大学学报(自然科学版),2009,39(3):501-506
    [13]蔺景龙,许少华,孙文德.沉积微相测井识别[J].大庆石油地质与开发,1997,16(2):72-74
    [14]刘化清,袁剑英,李相博.鄂尔多斯盆地延长期湖盆演化及其成因分析[J].岩性油气藏,2007,19(1):52-56
    [15]刘勇,孙冬胜,雷天成.陕西子长油田成藏地质特征[J].西北地质科学,1996,17(2):70-74
    [16]刘勇,金晓辉,需天成.鄂尔多斯盆地延长组油气初次运移特征.西安石油学院学报,199712(1):8-11
    [17]柳益群,李文厚.陕甘宁盆地上三叠统含油长石砂岩的成岩特点及孔隙演化[J].沉积学报,1996,14(3):87-96
    [18]罗静兰,Marcelo J Ketzer,李文厚,等.延长油区侏罗系-上三叠统层序地层与生储盖组合[J].石油与天然气地质,2001,22(4):337-341
    [19]罗蛰潭,王允诚.油气储集层的孔隙结构[M].北京:科学出版社,1986:21-43
    [20]马正.应用自然电位测井曲线解释沉积环境[J].石油与天然气地质,1982,1:44-47
    [21]梅志超,林晋炎.湖泊三角洲的地层模式和骨架砂体的特征[J].沉积学报,1991,9(4):1-10
    [22]梅志超,彭荣华,杨华,等.陕北上三叠统延长组含油砂体的沉积环境[J].石油与天然气地质, 1988,9(3):261-267
    [23]梅志超.沉积相与古地理重建[M].西安:西北大学出版社,1994:21-67
    [24]孟元林,王志国,杨俊生,等.成岩过程综合模拟及其应用[J].石油实验地质,2003,25(2):211-220
    [25]倪新锋,陈洪德,韦东晓.鄂尔多斯盆地三叠系延长组层序地层格架与油气勘探[J].中国地质,2007,34(1):73-80
    [26]彭彩珍,李治平,郭彬程.低渗透油藏毛管压力曲线特征分析及应用[J].西南石油学院学报,2002,24(2):21-24
    [27]秦红,王多云,李树同,等.鄂尔多斯盆地镇北地区三叠系延长组长3油层组储油砂体成因及成藏特征研究[J].天然气地球科学,2006,17,(3):391-396
    [28]裘怿楠,薛叔浩.油气储层评价技术[M].北京:石油工业出版社,1997:57-89
    [29]任战利,张盛,高胜利,等.鄂尔多斯盆地构造热演化史及其成藏成矿意义[J].中国科学D辑地球科学,2007,37(增刊):23-32
    [30]任战利,张盛,高胜利,等.鄂尔多斯盆地热演化程度分布区及形成时期[J].地质学报,2006,80(5):674-684
    [31]任战利,赵重远.鄂尔多斯盆地古地温研究[J].沉积学报,1994,12(1):56-64
    [32]任战利.鄂尔多斯盆地热演化史与油气关系的研究[J].石油学报,1996,17(1):17-24
    [33]任战利.利用磷灰石裂变径迹法研究鄂尔多斯盆地地热史[J].地球物理学报,1995,38(37):339-349
    [34]任战利.中国北方沉积盆地构造热演化史研究[M].北京:石油工业出版社,1999:66-79
    [35]孙国凡,谢秋元.鄂尔多斯盆地的演化叠加与含油气性[J].石油与天然气地质,1986,7(4):356-367
    [36]孙少华,刘顺生,汪集喝.鄂尔多斯盆地地温场与烃源岩演化特点[J].大地构造与咸矿学,1996,20(3):255-261
    [37]王道富.鄂尔多斯盆地特低渗透油田开发[M].北京:石油工业出版社,2007:104-127
    [38]王道富,付金华,雷启鸿,等.鄂尔多斯盆地低渗透油气田勘探开发技术与展望[J].岩性油气藏,2007,19(3):126-130
    [39]王道富,朱义吾,李忠兴.鄂尔多斯盆地低渗透油气田开发技术[M].北京:石油工业出版社,1998:47-213
    [40]王宏波,郑希民,冯明.鄂尔多斯盆地三叠系延长组层序地层与生储盖组合特征[J].天然气地球科学,2006,17(5):677-681
    [41]王居峰,郭彦如,张延玲,等.鄂尔多斯盆地三叠系延长组层序地层格架与沉积相构成[J].现代地质,2009,23(5):803-808
    [42]王渝明,姜在兴,许运新,等.陆相沉积地层油层对比方法[M].北京:石油工业出版社,2001:6-78
    [43]吴胜和,熊琦华.油气储层地质学[M].北京:石油工业出版社,1998:56-70
    [44]武富礼,李文厚,李玉宏,等.鄂尔多斯盆地上三叠统延长组三角洲沉积及演化[J].古地理学报,2004,6(3):307-315
    [45]谢庆邦,贺静.陕甘宁盆地南部延长组低渗砂岩储层评价[J].天然气工业,1994,14(3):16-19
    [46]杨华,付金华,喻建.陕北地区大型三角洲油藏富集规律及勘探技术应用[J].石油学报,2003,24(3):6-10
    [47]杨华,张文正.论鄂尔多斯盆地长7段优质油源岩在低渗透油气成藏富集中的主导作用:地质地球化学特征[J].地球化学,2005,34(2):147-154
    [48]杨华,刘显阳.鄂尔多斯盆地三叠系延长组低渗透岩性油藏主控因素及其分布规律[J].岩性油气藏,2007,19(3):1-6
    [49]杨俊杰.鄂尔多斯盆地构造演化与油气分布规律[M].北京:石油工业出版社,2002:6-36
    [50]杨雷,梅志超,熊伟.陕北地区延长组层序地层划分与含油气性[J].古地理学报,2001,3(3):83-88
    [51]杨晓萍,赵文智,邹才能,等.低渗透储层成因机理及优质储层形成与分布[J].石油学报,2007,28(4):57-61
    [52]杨友运.鄂尔多斯盆地南部延长组沉积体系和层序特征[J].地质通报,2005,4(2):32-36
    [53]尹寿鹏,王贵文.测井沉积学研究综述[J].地球科学进展,1999,14(5):440-445
    [54]喻建,韩永林,凌升阶.鄂尔多斯盆地三叠系延长组油田成藏地质特征及油藏类型[J].中国石油勘探,2001,6(4):13-19
    [55]曾大乾,李淑珍.中国低渗透砂岩储层类型及地质特征[J].石油学报,1994,15(1):38-46
    [56]曾溅辉,孔旭,程世伟,等.低渗透砂岩油气成藏特征及其勘探启示[J].现代地质,2009,23(4):755-760
    [57]曾溅辉.正韵律砂层中渗透率级差对石油运移和聚集影响的模拟实验研究[J].石油勘探与开发,2000,37,(4):102-105
    [58]曾少华.陕北三叠系延长统湖盆三角洲沉积模式的建立[J].石油与天然气地质,1992,13(2):229-235
    [59]张金亮,司学强,梁杰,等.陕甘宁盆地庆阳地区长8油层砂岩成岩作用及其对储层性质的影响[J].沉积学报,2004,22(2):225-233
    [60]张润合,郑兴平,徐献高等.鄂尔多斯盆地上三叠统延长组四、五段泥岩生烃潜力评价[J].西安石油学院学报(自然科学版),2003,18(2):9-13
    [61]张文正,杨华,杨奕华,等.鄂尔多斯盆地长7优质烃源岩的岩石学、元素地球化学特征及发育环境[J].地球化学,2008,37(1):59-64
    [62]赵澄林.沉积岩石学[M].北京:石油工业出版社,2001:109-130
    [63]赵靖舟,武富礼,等.陕北斜坡东部三叠系油气富集规律研究[J].石油学报,2006,27(5):24-27
    [64]赵文智,胡素云.鄂尔多斯盆地基底断裂在上三叠统延长组石油聚集中的控制作用[J].石油勘探与开发,2003,30(5):1-5
    [65]赵文智.中国含油气系统基本特征与评价方法[M].北京:石油工业出版社,2003:46-78
    [66]赵盂为,Behr H J鄂尔多斯盆地三叠系镜质体反射率与地热史[J].石油学报,1996,179(2):15-23
    [67]赵重远.华北克拉通沉积盆地形成与演化及其油气赋存[M].西安:西北大学出版社,1990:34-47
    [68]郑浚茂,应风祥.煤系地层(酸性水介质)的砂岩储层特征及成岩模式[J].石油学报,1997,18(4):19-24
    [69]郑荣才,彭军.陕北志丹三角洲长6油层组高分辨率层序分析与等时对比[J].沉积学报,2002,20(1):92-00
    [70]SY/T5477-92,中华人民共和国石油天然气行业标准-碎屑岩成岩阶段划分规范[S].北京:石油工业出版社,1993
    [71]钟大康,朱筱敏.早期碳酸盐胶结作用对砂岩孔隙演化的影响-以塔里木盆地满加尔凹陷志留系砂岩为例[J].沉积学报,2007,25(6):885-890
    [72]周东升,刘光祥.深部砂岩异常孔隙的保存机制研究[J].石油实验地质,2004,26(1):40-45
    [73]周江羽,吴冲龙,韩志军.鄂尔多斯盆地的地热场特征与有机质成熟史[J].石油实验地质,1998,20(1):2-24
    [74]周守信,徐严波,李士伦,等.致密泥质砂岩储层的物性预测方法及应用[J].天然气工业,2004,24(1):39-42
    [75]朱国华.碎屑岩储集层孔隙的形成、演化和预测[J].沉积学报,1992,10(3):114-124
    [76]朱国华.陕甘宁盆地西南部上三盛系延长统低渗透砂体和次生孔隙砂体的形成[J].沉积学报,1985,3(2):1-20
    [77]朱筱敏,王英国.济阳坳陷古近系储层孔隙类型与次生孔隙成因[J].地质学报,2007,81(2):198-203
    [78]邹才能,陶士振,薛叔浩.“相控论”的内涵及其勘探意义[J].石油勘探与开发,2005,32(6):7-12
    [79]Ajdukiewicz J M, Nicholson P H, Esch W L. Prediction of deep reservoir quality using early diagenetic process models in the Jurassic Norphlet Formation,Gulf of Mexico[J]. AAPG Bulletin, 2010,94(8):1189-1227
    [80]Allen P A, Allen J R. Basin analysis principles and application[M]. Oxford London:Blackwell scientific publication,1990:66-88
    [81]Berger A, Gier S. Porosity-preserving chlorite cements in shallow-marine volcaniclastic sandstones: Evidence from Cretaceous sandstones of the Sawan gas field, Pakistan[J].AAPG Bulletin, 2009,93(5):595-615
    [82]Bloch S, Franks S G. Preservation of shallow plagioclase dissolution porosity during burial: implications for porosity prediction and aluminum mass balance[J]. AAPG Bulletin,1993, 77(9):1488-1501
    [83]Catalan L, Xiao W F, Chatzis I, et al. An experimental study of secondary oil migration[J]. AAPG Bulletin,1992,76(5):638-650
    [84]Chen D X, Pang X Q, Jiang Z X, et al. Reservoir characteristics and their effects on hydrocarbon accumulation in lacustrine turbidites in the Jiyang Super-depression,Bohai Bay Basin,China[J]. Marine and Petroleum Geology,2009,26:149-162
    [85]Chi G, Gilesb P S, Williamson M A,et al. Diagenetic history and porosity evolution of Upper Carboniferous sandstones from the Spring Valley #1 well, Maritimes Basin, Canada-implications for reservoir development[J]. Journal of Geochemical Exploration,2003,80:171-191
    [86]Dembicki H J, Anderson M J. Secondary migration of oil:Experiments supporting efficient movement of separate, buoyant oil phase along limited conduits[J]. AAPG Bulletin,1989,73(8):1018-1021
    [87]Dow W G. Kerogen studies and geological interpretation[J]. Journal of Geochemical Exploration. 1977,7(2):79-99
    [88]Dutton S P. Calcite cement in Permian deep-water sandstones,Delaware Basin,west Texas: Origin distribution, and effect on reservoir properties[J].AAPG Bulletin,2009,93(5):765-787
    [89]Ehrenberg S N. Preservation of anomalously high porosity in deeply buried sandstones by grain-coating chlorite:Examples from the Nor wegian continental shelf[J].AAPG Bulletin, 1993,77(7):1260-1286.
    [90]Ehrenberg S N. Relationship between diagenesis and reservoir quality in sandstones of the Gam Formation, Haltenbanken, mid-Norwegian continental shelf[J] AAPG Bulletin,1990,74(10):1538-1558
    [91]Ehrenberg, Nadeau P H, Aqrawi A A M. A comparison of Khuff and Arab reservoir potential throughout the Middle East[J]. AAPG Bulletin,2007,91(3):275-286
    [92]Eichhubl P, Davatzes N C. Structural and diagenetic control of fluid migration and cementation along the Moab fault, Utah[J]. AAPG Bulletin,2009,93(5):653-681
    [93]England D A. The movement entrapment of petroleum fluid in the subsurface[J]. Journal of Geological Society, Landon,1987,114:327-347
    [94]France A B, Araujo L M, Maynard J B, et al. Secondary porosity formed by deep meteoric leaching: Botucatu eolicanite, southern South America[J]. AAPG Bulletin,2003,87(7):1073-1082
    [95]Gao C, Wang Z L, Deng J, et al. Physical property and origin of lowly permeable sandstone reservoirin Chang 2 division, Zhang-Han oilfield, Ordos Basin[J]. Energy Exploration & Exploitation, 2009,27(5):367-389
    [96]Gvirtzman H,Stanislavsky E. Palaeohydrology of hydrocarbon maturation, migration and accumulation in the Dead Sea Rift[J]. Basin Research,2000,12:79-93
    [97]J L Luo, S Morad, A Salem, et al. Impact of diagenesis on reservoir-quality evolution in fluvial and lacustrine-deltaic sandstones:evidence from Jurassic and Triassic sandstones from the ordos basin, China[J]. Journal of Petroleum Geology,2009,32(1):79-102
    [98]J M Ajdukiewicz, P H Nicholson, W L Esch. Prediction of deep reservoir quality using early diagenetic process models in the Jurassic Norphlet Formation, Gulf of Mexico[J]. AAPG Bulletin, 2010,94,(8):1189-1227
    [99]J M Ajdukiewicz, Lander R H. Sandstone reservoir quality prediction:The state of the art[J]. AAPG Bulletin,2010,9(8):1083-1091
    [100]Johnson R A, David A B. The utility of continual reservoir description:an example from Bindley Field,western Kansas[J]. AAPG Bulletin,1994,35(3):143-154
    [101]Laubach S E, Gale J F. Obtaining fracture information for low-permeability (tight) gas sandstones from sidewall cores[J]. Journal of Petroleum Geology,2006,29(2):147-158
    [102]Luo J L, Morad S, Salem A, et al. Impact of diagenesis on reservoir-quality evolution in fluvial and lacustrine-deltaic sandstones:evidence from Jurassic and Triassic sandstones from the ordos basin,China[J]. Journal of Petroleum Geology,2009,32(1):79-102
    [103]Magara K. Compaction and fluid migration, practical petroleum geology[M]. Amesterdam:Elsevier Scientific Publishing Company,1978:1-319
    [104]Marchand A M E, Haszeldine R S. Quartz cementation inhibited by crestal oil charge:Miller deep water sandstone, UK North Sea[J]. ClayMinerals,2000,35(6):201-210
    [105]Martin B, John P, Darren M, et al. Evolution of hydrocarbon migration-style in a fractured reservoir deduced from fluid inclusion data, Clair Field, west of Shetland, UK[J]. Marine and Petroleum Geology,2008,25:153-172
    [106]Monreal F R, Villar H J, Baudino R, et al. Modeling an atypical petroleum system:A case study of hydrocarbongeneration, migration and accumulation related to igneous intrusionsin the Neuquen Basin, Argentina[J]. Marine and Petroleum Geology,2009,26:590-605
    [107]Morad S, Khalid A R, Ketzer J M, et al. The impact of diagenesis on the heterogeneity of sandstone reservoirs:A review of the role of depositional facies and sequence stratigraphy [J]. AAPG Bulletin, 2010,94(8):1267-1309
    [108]Nabawy B S. Pore-throat characterization in highly porous and permeable sandstones[J]. AAPG Bulletin,2009,93(3):719-739
    [109]Neal R P. Hydrodynamic entrapment of oil and gas in Bisti field, San Juan County, New Mexico[J]. AAPG Bulletin,1961,45:315-329
    [110]Nelson P H. Pore-throat sizes in sandstones, tight sandstones, and shales[J]. AAPG Bulletin, 2009,93(3):329-34

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700