用户名: 密码: 验证码:
基于空间大地测量反演理论的汾渭盆地地壳形变及地裂缝群发机理研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
地质灾害的孕育和发生本质上都是地壳内部应力、应变能逐渐积累并突然或是缓慢释放的必然结果,其间岩石圈表层均会表现出某种形式和量级的形变信息。因此,获取灾害形变信息是认知地质灾害最直接的途径,而大地测量就是一种获取地壳形变信息的有效手段,特别是近些年迅速发展起来的以GPS、InSAR技术为代表的空间大地测量技术,可以更便捷有效的获取到大范围、高精度、准实时的地壳形变信息,已成为监测研究地壳形变、地质灾害及地球动力学现象的强有力手段。
     然而由地表形变信息只能达到对地壳形变、地质灾害的初步认识,只有通过利用形变信息结合其它相关学科知识,对发生地表现象的内因进行研究,才能真正全面、深入的认知到问题的本质,这也是大地测量反演研究的本质。但是目前在利用空间大地测量数据进行反演研究的工作,还有诸多关键问题有待进一步细化和解决,其中包括:(1)在某些特殊地质灾害(如,地裂缝)的大地测量反演工作上几乎是空白;(2)在形变反演理论模型和算法上,仍存在着有待改善的地方;(3)在地质灾害成因机理综合解释上的研究工作仍然很少。
     基于此本论文以我国地壳形变较剧烈、地质灾害频发、特别是地裂缝灾害最为频发且典型的汾渭盆地为研究背景区域,分别开展了基于空间监测技术的区域现今地壳形变、构造活动反演理论模型算法及其与地质灾害内在关系、特别是地裂缝现今构造活动机制反演、地裂缝灾害成因机理综合解释等方面的理论和试验深入研究,主要研究内容包括:
     基于“中国地壳运动观测网络”、“数字地震观测网络”及“陕西GPS网”的GPS观测资料,获取了汾渭盆地及其重点区域的现今地壳运动速度场,并基于此重点研究了建立地表形变量与地壳内应力应变参数的图形单元应变、有限元动力学及弹性板块运动模型的方法,通过对模型的无偏性、有效性、适用性、参数的显著性、以及假设条件的可信度等一系列检验,构建了分别适合于反映汾河盆地、渭河盆地、整个汾渭盆地及其周边块体的形变分析模型,据此分别反演获取了区域地壳应力应变特征参数,分析了其与地质灾害发生的内在关系。
     此外,基于InSAR监测成果,依据弹性半空间位错理论,利用“两步反演算法”即,分别利用粒子群结合蒙特卡洛单纯形非线性和基于拉普拉斯平滑约束的线性反演算法,给出了发震断层的均匀滑动和最优分布式滑动模型,对反演参数、分布式滑动模型的不确定性作了精度评定,以新西兰Fiordland7.8级强震为例,运用此同震位错理论反演获取了该地震精确的震源参数信息,并将此“同震位错”分析理论,及基于遗传搜索算法建立的“双位错”理论模型,用于地裂缝活动参数的反演研究中,反演获取了西安、清徐地裂缝现今活动参数及其与断裂带的活动关系。
     最后,结合本文大地测量反演成果与构造、地震活动、地下水抽取等因素,综合解释了西安、大同、清徐典型地裂缝的内外耦合动力成因机理。
     通过以上理论分析和大量实例验证,本文取得了以下主要结论及创新成果:
     1、通过建立地表GPS形变量与地壳内应力应变参数的图形单元应变、有限元动力学及弹性块体应变模型,反演获取了汾渭盆地现今地壳应力应变特征参数,该区域的应力应变参数主要以北西—南东向拉张为主,且主应力、主应变参数量级分别在10-4~10-3kPa/y、10-8~10-6/y之间,并以定量的形式证实了汾渭盆地现今整体处于拉张伸展的模式。
     2、首次根据空间大地测量反演成果,揭示出了区域地壳应力应变特征参数与地裂灾害的内在关系。汾渭盆地内各地裂缝多发区域均存在显著的以拉张为主的应力应变量,且主拉张应力应变方向与地裂缝的发育方向呈近似垂直关系,从而揭示出了区域NW-SE向拉张构造应力场是汾渭盆地地裂缝发育的动力源。
     3、由本文建立的反映汾渭盆地与周边区域各个地块运动状况的形变分析模型,反演获得了鄂尔多斯、华南、河套、阴山地块具有刚性变形的特性,而渭河地块、太原-忻州地块、大同地块、华北地块等块体内部具有非线性变形的特性,由此反演成果定量证明了汾渭盆地及其周边块体具有不同的构造活动特性。
     4、首次将“同震位错”分析理论用到了地裂缝构造活动参数的反演研究中,获得了地裂缝的精细分段、分层、横向不均匀性的活动特征及与构造断裂带活动的内在关系,由此,基于大地测量反演成果获得了对地裂缝活动的一些新的认识。
     5、系统全面的结合大地测量反演成果与地裂缝内外耦合动力影响因素,从地裂缝孕育、形成的地质构造背景和构造环境,以及引起地裂缝开裂及超常活动的外在诱发因素,综合解释分析了汾渭盆地典型地裂缝发育及活动的成因机理。
The preparation and occurrence of geological disasters's are essentially the inevitable results of the sudden or slow released by crustal stress-strain that accumulate gradually. In this process, the surface of lithosphere will show deform information with certain form and magnitude. Therefore, access to deform information is the direct way to recognize the geological disasters, while the geodetic is the effective means to obtain the crustal deform information. Especially the rapid development of the space geodetic technologies that the representatives of the GPS, InSAR technology, can be more convenient and effective access to obtain high-precision and real-time accurate crustal deform information in wide range, which have become a powerful means to monitoring crustal deformation, geological disasters and geodynamic phenomena.
     However, from the surface deform information we can only recognize the initial understanding of the crustal deformation and geological disasters, only by means of surface deformation phenomenon combine with other knowledge to research the internal factors, can we truly recgonize the nature of problems, which is also the essence of geodetic inversion research. But now there are still many critical issues remain to be further refined or resolved in using space geodetic data to do inversion research, including(1) The geodetic inversion research in some particular geological hazards (eg, cracks) is almost empty (2) There are still exist where remains to be improved in inversion theory model and algorithms of deformation (3) There are still more researches need to done in the integrated interpretion on formation mechanism of geological disasters.
     Therefore, the author selected the Fen-Wei basin which have intense crustal deformation, frequent geological disasters, especially the most frequent and typical ground fissures disaster in China, to in-depth carry out the theory and experiment research on regional crustal deformation, the inversion theroy model and algorithms of deformation, the inherent relationship between tectonic activities and geological hazards, especially the inversion of present tectonic activities feature of cracks and the formation mechanism explanation for geological disasters. The main contents and conclusions of this paper are shown as follows:
     The present crustal movement velocity fields of Fen-Wei basin and its key areas were obtained based on the GPS observations of "China Crustal Movement Observation Network","Digital Earthquake Observation Network" and "Shaanxi GPS network". Based on those high-precision observations results, the methods of establishing the function relation between surface deformation and crustal stress-strain parameters were mainly studied, such as the graphic element strain, finite element dynamic and elastic plate motion model. The deformation analysis models were constructed which respectively were fit for reflecting the Fenhe basin, Weihe basin and the whole Fen-Wei basin and its surrounding blocks by series of hypothesis test of unbiasedness, effectiveness, applicability, the credibility of the assumptions of models and the significant of parameters. According to the solution results of those models, the characteristic parameters of regional crustal stress-strain were obtained, and the internal relationship between those characteristic parameters and geological disaster was also analyzed.
     In addition, the author has also utilized the "two-step inversion algorithm" based on InSAR observations, that is, the author utilized Particle Swarm Optimization combined with Monte Carlo simplex nonlinear and Laplace smoothing line inversion algorithm respectively to establish uniform and optimal distributed slip model of seismogenic fault based on elastic half-space dislocation theory. The accuracy assessment were also done to the inversion parameters and the uncertainty of the distributed slip model. Then take the New Zealand Fiordland7.8Mw earthquake for example, the author used the "two-step inversion algorithm" mentioned above to obtain the precise source parameters information of the earthquake. And the "co-seismic dislocation" theory,"double dislocation" theory model which is established based on genetic search algorithm were used to the inversion study of ground fissures activities parameters, obtaining the activities parameters of Xi'an, Qingxu crakes and their relationship with the fault activities.
     Finally, the internal and external coupling dynamic formation mechanism of Xi'an, Datong. Qingxu typical cracks were comprehensive explained combined with the geodetic inversion results of this paper, tectonic, earthquake activity, groundwater extraction factors and so on.
     Through the above theory analysis and plenty of examples, the main conclusions and innovation results were obtained as follows:
     1. The present crustal stress-strain characteristic parameters of Fen-Wei basin were obtained by establishing the function relation model between GPS deformation and the crustal stress-strain parameters, such as the graphic element strain, finite element dynamic and elastic plate motion model. The results show that the stress-strain parameters of Fen-Wei basin mainly present tension stress-strain with NW-SE direction, the magnitude of principal stress-strain parameters are between10-4~10-3kPa/y and10-8~10-6/y respectively. And those results quantitatively confirmed that the whole Fen-Wei basin presents extensional mode.
     2. The internal relations between regional crustal stress characteristics parameters and cracks disaster was proclaimed for the first time according to the results of space geodesy inversion. All of the cracks-prone areas within Fen-Wei baisn present notable tension stress-strain volumes, and the direction of which is approximately vertical to the development direction of ground fissures, thus revealing the regional tectonic tension stress field of NW-SE direction is the power source of cracks development in Fen-Wei basin.
     3. By solving the deformation analysis models which respectively suitable for reflecting the whole Fen-Wei basin and its surrounding blocks, the results show that the Ordos, south China, Hetao, Yinshan blocks have the characteristics of rigid deformation, while the Weihe basin, Taiyuan-Xinzhou basin, Datong basin, North China and other blocks have the characteristics of non-linear deformation. Hence, those inversion results can quantitatively prove that the whole Fen-Wei basin and its surrounding blocks have different characteristics of tectonic activity.
     4. The "co-seismic dislocation" analysis theory was used to the inversion study of ground fissures activities parameters for the first time. And the fine segmentation, stratification, lateral uneven activity characteristic of cracks and its internal relationship with tectonic fault activities were obtained. So some new understanding for ground fissures activities are obtained based on the above geodetic inversion results.
     5. Combined with the internal and external coupling dynamic influencing factors of the ground fissures and the geodetic inversion results systematically and comprehensively, the author integrated analyzes the formation mechanism of the development and activities of typical ground fissures within Fen-Wei basin based on the tectonic backgrounds of cracks formation, the geology tectonic conditions of cracks development and the external precipitating factors that affected the cracking and unnormal activities of ground fissures.
引文
[1]安美健,李方全.山西地堑系现今构造应力场[J].地震学报,1998,20(5):461-465
    [2]陈光保,陈永奇,伍吉仓,等.一种地应变显著性检验方法[J].大地测量与地球动力学,2010,30(1):1-4
    [3]陈志新,刘玉海,倪万魁,等.大同地裂缝场地破坏程度分带与建筑物安全距离的确定[J].中国地质灾害与防治学报,1994,5(增刊):339-344
    [4]戴王强,任隽,赵小茂,等.GPS初步揭示的渭河盆地及边邻地区地壳水平运动特征[J].地震学报,2004,26(3):256-260
    [5]单新建,马谨,王长林,等.利用星载D-InSAR技术获取的地表形变场提取玛尼地震震源参数[J].中国科学,2002,32(10):837-844
    [6]党亚明.基于反演理论的大地测量形变分析与解释的理论和方法[D].博士学位论文.中国测绘科学研究院,1999
    [7]邓起东,张培震,冉勇康,等.中国活动构造基本特征[J],中国科学D辑,2002,12:1020-1030
    [8]独知行.基于力学模式的大地测量反演理论与应用[D].中国科学院测量与地球物理研究所博士论文,2001
    [9]范俊喜,马瑾,甘为军.鄂尔多斯地块运动的整体性与不同方向边界活动的交替性[J].中国科学(D辑),2003,33(增刊).
    [10]冯希杰,王平.立交构造与渭河盆地地震活动[J].西北地震学报,2001,23(2):160-163
    [11]甘卫军,沈正康,张培震,等.青藏高原地壳水平差异运动的GPS观测研究[J].大地测量与地球动力学,2004,24(1):29-35
    [12]高维明.苏鲁皖地裂缝[J].地震战线,1979,(1):39-41
    [13]顾国华,孙汉荣,等.利用GPS地形变资料在大地坐标系中计算应变[J].地壳形变与地震,1998,8(3):26-31
    [14]顾国华,王丽凤.GPS观测得到的1998-2003年中国大陆地壳应变[J].地震,2006,26(3):2-8
    [15]黄立人,王敏.构造块体的相对运动和应变[J].地壳形变与地震,1999,19(2):10-15
    [16]黄立人,马青,郭良迁等.华北部分地区水平变形的力学机制—二维有限元和GPS复测结果的分析[J].地震学报,1999,21(1):50-56
    [17]嵇少丞,王茜,孙圣思,等.亚洲大陆逃逸构造与现今中国地震活动[J].地质学报,2008,82(12):1644-1667
    [18]江在森,马宗晋,张希,等.GPS初步结果揭示的中国大陆水平应变与构造变形[J].地球物理学报,2003,46(1):352-358
    [19]江在森,张希,陈文胜.地形变资料求解应变值的尺度相对性问题研究[J].地震学报,2000,22(4):52-359
    [20]江在森,张希,王双绪,等.利用地形变观测量求解地壳水平应变场的方法[J].地震.1999,19(1):41-48
    [21]姜枚,吕庆田,史大年,等.用天然地震探测青藏高原中部地壳、上地幔结构[J].地球物理学报,1996,39(4):470-482
    [22]瞿伟,张勤,王庆良,等.基于GPS速度场采用RELSM模型分析关中地区现今地壳形变特征[J].测绘科学,2010,29(5):1009-2307
    [23]瞿伟,张勤,王庆良,等.渭河盆地现今地壳水平运动及应变特征[J],大地测量与地球动力学,2009,29(4):34-37
    [24]库尔特.拉姆贝尔著.黄立人等译.地球物理大地测量学[M].北京:测绘出版社,1995,135-136
    [25]李齐,孟淑德,王钧.地热特征[M].见:马杏垣主编,中国岩石圈动力学地图集.北京:中国地图出版社,1989
    [26]李树德.中国东部山西地堑系的形成机制及构造地貌、地震探讨[J].北京大学学报(自然科学版),1997,33(4):467-474
    [27]李新生.对西安地裂缝形成机制的几点新看法[J].西安地质学院学报,1994,16(2):75-80
    [28]李延兴,李智,张静华等.中国大陆及周边地区的水平应变场[J].地球物理学报,2004,47(2):222-231
    [29]李延兴,张静华,何建坤,等.由空间大地测量得到的太平洋板块现今构造运动与板内形变应变场[J].2007,50(2)::437-447
    [30]李永善,等编著.西安地裂缝及渭河盆地活断层研究[M].北京:地震出版社,1992:1-95
    [31]廖明生,林珲.雷达干涉测量—原理与信号处理基础[M].北京:测绘出版社,2003
    [32]刘国祥.利用雷达干涉技术监测区域地表形变[M].北京:测绘出版社,2006
    [33]刘经南,施闯,许才军,等.利用局域复测GPS网研究中国大陆块体现今地壳运动速度场[J].武汉大学学报·信息科学版,2001,26(3):189-19
    [34]刘经南,施闯,姚宜斌等.多面函数拟合法及其在建立中国地壳平面运动速度场模型中的应用研究[J].武汉大学学报(信息科学版),2001,26(6):500-503
    [35]刘勉.造山带的重力滑塌[M].见:张有学,尹安编.地球科学进展与论评(第一卷):地球的结构、演化和动力学.北京:高等教育出版社,2002:177-205
    [36]刘巍,梦雁英,王赵丽.大同盆地现今构造活动及地壳应力场特征[J].山西地震,1995,1(80):7-13
    [37]马宗晋,傅征祥,张郢珍,等著.1966-1976年中国九大地震[M].北京:地震出版社,1982:133-138
    [38]马宗晋.板块构造与地震板块构造基本问题[M].北京:地震出版社,1986
    [39]门玉明,彭建兵,李寻昌.山西清徐县地裂缝灾害现状及类型分析[J].工程地质学报,2007,15(4):453-457
    [40]彭建兵,陈立伟,黄强兵等.地裂缝破裂扩展的大型物理模拟试验研究[J].地球物理学报,2008,51(6):1826-1834
    [41]彭建兵,邓亚虹.汾渭盆地地裂缝成因与构造活动研究工作项目报告[R].陕西:长安大学地测学院,2009
    [42]彭建兵,张俊,苏生瑞,等.渭河盆地活动断裂与地质灾害[M].西安:西北大学出版社,1992:89-101
    [43]乔学军,王琪,杜瑞林.川滇地区活动地块现今地壳形变特征[J].地球物理学报,2004,47(5):805-811
    [44]邱卫宁,陶本藻,姚宜斌,等.测量数据处理理论与方法[M].武汉大学出版社,2008
    [45]权新昌.渭河盆地断裂构造研究[J].中国煤田地质,2005,17(3):1-4
    [46]任建国,龚卫国,焦向菊.山西大同市地裂缝的分布特征及其发展趋势[J].山西地震,2004,118(3):39-42
    [47]阮爱国,李清河.地壳介质各向异性弹性本构关系讨论[J].华南地震,2000,20(3):14-23
    [48]阮爱国,李清河.地壳介质各向异性研究状况、存在问题及进一步研究思路[J].地震地磁观测与研究,1999,20(3):1-12
    [49]山西省地质环境监测中心.大同市四二八机车厂地裂缝监测站改造及检测报告[R].山西省地质环境监测中心大同分站,2006
    [50]绍辉成,苏刚.鄂尔多斯地块周缘近期地震活动趋势分析[J].西北地震学报,1999,21(4):395-398
    [51]申重阳,王琪,吴云等.川滇菱形块体主要边界运动模型GPS数据反演分析[J].地球物理学报,2002,45(3):352-361
    [52]沈正康,王敏,甘卫军,等.中国大陆现今构造应变率场及其动力学成因研究[J].地学前沿(中国地质大学,北京),2003,10:特刊
    [53]师亚芹,冯希杰,戴王强,等.临潼—长安断裂带的几何结构及形成机理[J].地震学报,2008,30(2):152-164
    [54]石耀霖,朱守彪.用GPS位移资料计算应变方法的讨论[J].大地测量与地球动力学,2006,26(1):2-8
    [55]石耀霖.巴西构造应力场的遗传有限单元法反演[J].地球物理学报,2000.43(43):166-174
    [56]苏刚.以运动地块为单元的区域地震活动研究[J].西北地震学报,1984,6(2):1-9
    [57]苏宗正,王汝雕,安卫平,等.临汾盆地的近代地壳运动[J].山西地震,1995,3(4):60-67
    [58]孙建宝,石耀霖,沈正康,等.基于线弹性模型反演1997年西藏玛尼Mw7.5级地震的干涉雷达同震形变场-I均匀滑动反演.地球物理学报[J].2007,50(4):1097-111O
    [59]唐有彩,冯永革,陈永顺,等.山西断陷带地壳结构的接收函数研究[J].地球物理学报,2010,53(9):2102-2109
    [60]陶本藻.自由网平差与变形分析[M].武汉测绘科技大学出版社,2001
    [61]陶本藻.测量数据处理的统计理论和方法[M].测绘出版社,2007
    [62]滕吉文.固体地球物理学概论[M].北京:地震出版社,2003:568-591.
    [63]王超,刘智,张红.张北—尚义地震同震形变场雷达差分干涉测量[J].科学通报,2000,45(23):2500-2553
    [64]王超,张红,刘智.合成孔径雷达干涉测量[M].北京:科学出版社,2002
    [65]王家映.地球物理反演理论(第二版)[M].高等教育出版社,北京,2002
    [66]王景明,王春梅,刘科.地裂缝及其灾害研究的新进展[J].地球科学进展,2001,16(3):303-313
    [67]王景明.华北区地裂缝与地震活动周期性分析[J].地震研究,1992,15(1):53-62
    [68]王兰生,李天斌,赵其华.浅生时效构造与人类工程[M].北京:地质出版社,1994
    [69]王敏,沈正康,牛之浚,等.现今中国大陆地壳运动与活动地块模型[J].中国科学(D辑),2003,33(增刊):21-32
    [70]王琪.用GPS监测中国大陆现今地壳运动:变形速度场与构造解释[D].博士学位论文.武汉大学,2004
    [71]王庆良,刘玉海,陈志新.抽水引起的含水层水平应变地裂缝活动新机理[J].工程地质学报,2002,10(01):46-50
    [72]王庆良,王文萍,崔笃信,等.青藏块体东北缘现今地壳运动[J].大地测量与地球动力学,2002,22(4):12-16
    [73]王庆良,王文萍,梁伟锋,等.大同机车厂地裂缝强活动深度段位错模型反演[J].地壳形变与地震,1998,18(3):80-84
    [74]王庆良.汾渭盆地强震动力学背景与近期异常分析[R].中国地震局第二形变中心,2007
    [75]王润福.山西省清徐地裂缝勘查报告[R].山西省地质环境监测中心,2006
    [76]王双绪,江在森,张希,陈文胜.青藏块体东北缘现今构造形变与蕴震特征[J].地壳形变与地震,2002,24(1):27-34
    [77]王秀文,赵文星,杨国华.山西地堑系的最新水平运动[J].山西地震,2004,1(116):20-24
    [78]温扬茂.利用InSAR资料研究若干强震的同震和震后形变[D].武汉大学,博士论文,2009
    [79]伍吉仓,邓康伟,陈永奇.三角形形状因子对地壳形变计算精度的影响[J].大地测量与地球动力学,2003,23(3):26-30
    [80]伍吉仓,许才军.利用GPS资料反演华北块体运动的负位错模型参数[J].武汉大学学报(信息科学版),2002,27(4):352-357
    [81]向宏发,虢顺民,张晚霞,等.中国大陆区断层蠕动的若干地质行迹[J]地震学报,1997,19(1):93-98
    [82]熊熊,刘孙君,许厚泽.青藏高原地壳东—西向拉张及力学机制[J].武汉大学学报(信息科学版),2003,28(特刊):150-154
    [83]熊熊.青藏高原岩石层强度的弱化[M],见:现代地壳运动与地球动力学研究(3):青藏高原岩石圈现今变动与动力学(马宗晋等编),地震出版社,2001,172-176
    [84]徐锡伟,程国良,马杏垣,等.华北及其邻区地体转动模式和动力来源[J].地球科学——中国地质大学学报,1994,19(2):130-138
    [85]许才军,董立祥,李志才.华北地区地壳形变的GPS及地震矩张量反演分析[J].武汉测绘科技大学学报,2000,25(6):471-476
    [86]许才军.青藏高原地壳运动模型与构造应力场[D].博士学位论文.武汉:武汉测绘科技大学,1994
    [87]许志琴,姜枚,杨经绥.青藏高原北部隆升的深部构造物理作用[J].地质学报,1996,70(3):196-206
    [88]杨国华,李延兴,韩月萍,等.由GPS观测结果推导中国大陆现今水平应变场[J].地震学报,2002,24(4):337-346
    [89]杨国华,王敏,韩月萍.山西断裂带活动趋势与动态特征[J].中国地震,2002,18(2):148-152
    [90]杨国华,赵承坤,韩月萍.应用GPS技术监测山西断裂带的水平运动[J].地震学报,2000,22(5):465-471
    [91]叶叔华,黄城.天文地球动力学[M].山东科技出版社,2000
    [92]叶叔华,黄珹.现代地壳运动和地球动力学研究[J].科技导报,第一期,1995
    [93]昝雅玲.大同市区地下水开采与地裂缝形成的关系[J].中国煤田地质,2006,18(6):26-37
    [94]张登科,李惠玲.大同盆地3次4级地震前兆异常特征分析[J].山西地震,1995,2(4):24-27
    [95]张冬菊.青藏东北缘地壳形变应力应变场分析与构造活动性研究[D].西安:长安大学,2006
    [96]张红,王超,刘智.获取张北地震同震形变场的差分干涉测量技术[J].中国图像图形学报,2002,5(A6):497-500
    [97]张家明,主编.西安地裂缝研究[M].西安:西北大学出版社,1990:1-96
    [98]张景发,刘钊InSAR技术在西藏玛尼强震区的应用[J].清华大学学报(自然科学版),2002,42(8):847-950
    [99]张培震,邓起东,张国民,等.中国大陆的强震活动与活动地块[J].中国科学:D辑,2003,33(B04):12-20
    [100]张培震,王琪,马宗晋.中国大陆现今构造运动的GPS速度场与活动地块[J].地学前缘,2002,9(2):430-441
    [101]张培震.陕西地震局报告[R].中国地震局地质研究所,2008
    [102]张勤,黄观文,丁晓光,等.顾及板块运动、稳定性和系统偏差的高精度GPS监测基准研究与实现[J].地球物理学报,2009,52(12):3158-3169
    [103]张勤,黄观文,王利,等.附有系统参数和附加约束条件的GPS城市沉降监测网数据处理方法研究[J].武汉大学学报(信息科学版),2009,34(3):269-272
    [104]张勤,李家权.GPS测量原理及应用[M].北京:科学出版社,2005
    [105]张勤,赵超英,丁晓利,等.利用GPS与InSAR研究西安现今地面沉降与地裂缝时空演化特征[J].地球物理学报,2009,52(5):1214-1222
    [106]张希,江在森,王琪等.1999-2001年青藏块体东北缘地壳水平运动的非震反位错模型及变形分析[J].地震学报,2003,25(4):374-381
    [107]张永志,等.渭河盆地断裂活动速率的粒子群算法反演[J].西北地震学报,2011,待刊
    [108]张永志,王卫东,魏玉明,等.利用GPS资料反演祁连山断层的三维滑动速率[J].大地测量与地球动力学,2006,26(1):31-35
    [109]赵超英,张勤,丁晓利,等.基于INSAR技术的西安活动地裂缝定位试验研究[J].武汉大学学报(信息科学版),2009,34(7):809-813
    [110]赵均海,汪梦甫.弹性力学及有限元[M].武汉理工大学出版社,2003
    [111]赵少荣.动态大地测量反演及物理解释的理论与应用[D].武汉测绘科技大学博士论文,1991
    [112]赵小茂,李永辉,戴王强.2001-2004年陕西关中地区地壳运动及应变分析[J].地震地磁观测与研究,2005,26(3):41-45
    [113]中国地震局地球物理勘探中心.西安市活断层探测与地震危险性评价深地震探测工作报告[R].,2005
    [114]周忠谟,易杰军,周琪.GPS卫星测量原理与应用[M].北京:测绘出版杜,1995
    [115]朱守彪,石耀霖.基于MonteCarlo方法的由GPS观测计算地应变率的误差分析[J].地球物理学报,2007,50(3):806-811
    [116]Berardino, P, Fornaro, G, Lanar,i R, et al. A new algorithm for surface deformation monitoring based on small baseline differential SAR interferograms[J]. IEEE Trans-Geosci·Remote Sensing,2002,40 (11):237-238
    [117]Biggs J, Burgmann R, Freymueller J T, et al. The postseismic reponse to the 2002 M7.9 Denali Fault earthquake:constraints from InSAR 2003-2005[J]. Geophys. J. Int., 2009,176:353-367
    [118]Brocher, T. M, J. McCarthy, and P. E. Hart, et al. Seismic evidence for a lower-crustal detachment beneath San Francisco Bay[J]. California, Science,1994,265(5177):1 436-1439
    [119]Burbidge D R. Thin plate neotectonic models of the Australian plate [J]. J. Geophys. Res.,2004,109,B1,0405
    [120]Buekenhout, F. and Parker, M. The Number of Nets of the Regular Convex Polytopes in Dimension <=4[J]. Disc. Math,1998,186:69-94
    [121]Chen, C. W., and H. A. Zebker. Network approaches to two-dimensional phase unwrapping:intractability and two new algorithms [J]. Journal of the Optical Society of America A-Optics Image Science and Vision,2000,17,401-414
    [122]Denghai Bail, Martyn J. Unsworth, Max A. Meju. Crustal deformation of the eastern Tibetan plateau revealed by magnetotelluric imaging[J]. Nature Geoscience,2010, PUBLISHED ONLINE:11 APRIL
    [123]Dixon T H. An introduction to the Global Positioning System and some geological application[J]. Rev. Geophys.,1991,29:249-276
    [124]Dong, D., P. Fang, and Y. Bock, et al. Anatomy of apparent seasonal variations from GPS-derived site position time series[J]. J. geophys. Res,2002,107,B4,10.1029
    [125]England P C, Houseman G.A. Finite strain calculations of continental deformation,2, comparison with the India-Asia collision[J]. J Geophys Res,1986,91:3664-3676
    [126]England, P.C, Houseman, G.A. Extension during continental convergence with special reference to the Tibetan plateau[J]. J. Geophys. Res,1989,94(17):561-597
    [127]Feng W P, Li Z H. A novel hybrid PSO/simplex algorithm for determining earthquake source parameters using InSAR data[J]. Progress in Geophys,2010,25(4):1189-1196
    [128]Freymueller J T, Bilham R, Burgmann R. Global Positioning measurements of Indian Plate Motion and Convergence across the Lesser Himalaya[J]. Geophysical research Letters,1996,23(22):3107-3110
    [129]Funning G J, Parsons B, Wright T J. Surface displacements and source parameters of the 2003 Bam(Iran) earthquake from Envisat advanced synthetic aperture radar imagery[J]. Geophys. Res.2005,110,B09406
    [130]Funning, G, Parsons B, and Wright T J. Fault slip in the 1997 Manyi, Tibet Earthquake from linear elastic modeling of InSAR displacement[J]. Geophys. J. Int., 2007,169:988-1008
    [131]Hanssen R. Radar Interferometry:Data Interpretation and Error Analysis[M].. Netherlands:Kluwer Acad.,2001
    [132]Herring T A, King R W, McClusky S C. GPS Analysis at MIT, Release 10.3. Massachusetts [J]. Institute of Technology,2006
    [133]Holt W E, Pichon X L, Haines A J, et al. Velocity Field in Asia Inferred from Quaternary Fault Slip Rates and GPS Observations[J]. J. Geophys. Res.,2000,105(19): 185-209
    [134]Hoollan d J. Genetic algorithms [J]. Scientific American,1992,267:44-50
    [135]Huang Jinli, Zhao Dapeng. High-resolution mantle tomography of China and surrounding regions[J]. Journal of Geophysical Research,2006,111, B09305
    [136]Jachens R C, Holzer T L. Differential compaction mechanism for earth fissures near Casa Grand Arizona[J]. Geological Society of American Bulletin,1982,93:998-1012
    [137]Johnson K. M. and Segall P. Viscoelastic earthquake cycle models with deep stress-driven creep along the San Andreas fault system[J]. J. Geophys. Res.,2003,108, B6,2289
    [138]Jonsson S, Zebker H, Segall P, et al. Fault slip distribution of the 1999 Mw7.1 Hector Mine, California, earthquake, estimated from satellite radar and GPS measurements [J]. Bulletin of the Seismological Society of America,2002,92(4):1377-1389
    [139]Jonsson, S., P. Segall, R. Pedersen, et al. Post-earthquake ground movements correlated to pore-pressure transients [J]. Nature,2003,424:179-183
    [140]Kennedy, J. Eberhart, R. Particle Swarm Optimization[A]. IEEE Int. Conf. on Neural Networks,1995. IV(1942-1948)
    [141]KOCH K R. Parameterschatzung und Hypothesentests in linearen Molellen[M]. DuMMLER Bonn,1980
    [142]Kogan, M. G., G. M. Steblov, and R. W. King, et al. Geodetic constraints on the rigidity and relative motion of Eurasia and North America[J]. Geophys Res Lett,2000, 27(14):2041-2044
    [143]Li Z, Fielding E J, Cross P, et al. Interferometric synthetic apertyre radar atmospheric correlation:Medium Resolution Imaging Spectrometer and Advanced Synthetic Aperture Radar Integration.[J]. Geophys. Res. Lett.,2006,33,L06816
    [144]Li Zhenhong, Eric J. Fielding, Paul Cross,et al. Interferometric synthetic aperture radar atmospheric correction:GPS topography-dependent turbulence model [J]. JOURNAL OF GEOPHYSICAL RESEARCH,2006,111, B02404
    [145]Li Zhenhong. Correction of atmospheric water effects on repeated-pass SAR Interferometry using GPS, MODIS and MERIS data [D]. University College London, London,2005
    [146]Li Zhonghong, Feng Wanpeng and Xu Zhonghuai,et al. The 1998 Mw5.7 Zhangbei-Shangyi(China) earthquake revisited:A burid thrust fault revealed with interferometric synthetic aperture radar [J]. Geochemistry, Geoghysics, Geosystems, 2008,9(4):Q04026
    [147]Li, Z., W. Qu, K. Young,, et al. Earthquake source parameters of the 2009 Mw 7.8 Fiordland (New Zealand) earthquake from L-band Interferometric SAR observations [J]. Earthquake Science,2011 in press
    [148]Liu M, Yang Y. Extensional collapse of the Tibetan Plateau:Results of three-dimensional finite element modeling[J]. Journal of Geophysical Research, 2003,108,B8,2361
    [149]Liu, Guoxiang. Mapping of Earth Deformations with Satellite Radar Interferometry:A Study of Its Accuracy and Reliability Performances[D]. Hong Kong:Publication of the Hong Kong Polytechnic University,2003
    [150]Lohman R B, Simons M. Some thoughts on the use of InSAR data to constrain models of surface deformation:noise structure and data downsampling[J]. Geochem. Geopgys. Geosyst.,2005,6:12,Q01007
    [151]LU Zhong. InSAR Imaging of Volcanic Deformation over Cloud-prone Areas-Aleutian Islands. Photogrammetric[J]. Engineering &Remote Sensing,2007, 73(3):245-257
    [152]Massonnet D, Rossi.M, Carmona C, et al. The displacement field of the Landers earthquake mapped by radar interferometry[J]. Nature,1993,364:138-142
    [153]Massonnet., D., and K. L. Feigl. Radar interferometry and its application to changes in the earth's surface[J]. Reviews of Geophysics,1998,36(4):441-500
    [154]Meyer B, Arm ijo R, Massonnet D, et al. The 1995 Grevena (Northern Greece) earthquake:fault model constrained with tectonic observation and SAR interferometry[J]. Geophy Res Lett,1996,23(19):2677-2680
    [155]Miyazaki S, Heki K.Crustal velocity field of southwest Japan:Subduction and arc-arc collision[J]. J. Geophys. Res.,2001,106(43(05-26)
    [156]Muarry, Makr H., Grant A.Marshall, et al. The 1992 M=7 Cape Mendocino, California, earthquake:coseismic deofmration at the south end of the Cascadia megathrust[J]. J. Gepohys.Res,1996,(101):17707-17725
    [157]Nanjo K Z, Turcotte D L, Shcherbakov R.A model of damage mechanics for t he deformation of t he continental crust[J]. J.Geophys. Res.,2005,110,B07403
    [158]Okada, Y. Internal deformation due to shear and tensile faults in a half-space [J]. Bulletin of the Seismological Society of America,1992,82(2):1018-1040
    [159]Okada, Y. Surface deformation due to shear and tensile faults in a half-space[J]. Bulletin of the Seismological Society of America,1985,75(4):1135-1154
    [160]Parsons B, Wright T, Powe P, et al. The 1994 Sefidabeh (eastern Iran) earthquakes revisited:new evidence from satellite radar interferometry and carbonate dating about the growth of an active fold above a blind thrust fault[J]. Geophys. J. Int, 2006,164:202-217
    [161]Peltzer G, Rosen P, Rogez F, et al. Postseismic rebound in fault step-overs caused by pore fluid flow[J]. Science,1996,273:1202-1204
    [162]Reynolds S D, Coblentz D D, Hillis R R. Tectonic forces controlling the regional intraplate stress field in continental Australia:Results from new finite element modeling [J]. J.Geophys. Res.,2002,107,B7
    [163]Segall P, Davis J L. GPS Applications for geodyanamics and earthquakes studies[J]. Annu. Rev. Earth Planet. Sci.,,1997,25(3)01-36
    [164]Sella G F, Dixon T H, Mao A. REVEL:A model for recent plate velocities from space geodesy[J].J G R,2002,107(B4):ETG11-1-32
    [165]Shimada S, Fujinawa Y, Sekiguchi S.Detection of a volcanic fracture opening in Japan using Global Positioning System measurements [J]. Nature,1990,343(63):31-33
    [166]Shimazaki K, Nakata T. Time-predictable recurrence model for large earthquake [J]. Geophys Res Lett,1980,7(4):279-282
    [167]Sibson, R. H. Fault zone models heat flow and the depth distribution of earthquakes in the continental crust of the United States [J]. B Seismol Soc Am,1982,72(1):151-163
    [168]Sliver P G, Chan W W. Share-wave splitting and subcontinental mantle deformation [J]. J Geophys Res,1991,96(16):429-454
    [169]Stark, P. B., and R. L. Parker, Bounded variable least squares:An algorithm and application[J]. J. Comp. Stat.,1995,10:129-141
    [170]Steketee,J.A. On volterra's dislocations in a semi-infinite elastic medium[J]. Can.J.Phys.1958,36:192-205
    [171]Straub C, Kahle H G. Active Crustal Deformation in the Marmara Sea Region, N. W. Anatolia, Inferred from GPS Measurements [J]. Inst. of Geod. and Photogramm. ETHZ Mitt.1996,58
    [172]Tarvainen, M., Timo Tiira and Eystein S. Husebye. Locating regional seismic events with global optimization based on interval arithmetic [J]. Geophys. J. Int,1999,138: 879-885
    [173]Tim J. Wright, Zhong Lu, and Chuck Wicks. Source model for the Mw 6.7,23 October 2002, Nenana Mountain Earthquake (Alaska) from InSAR[J]. GEOPHYSICAL RESEARCH LETTERS,2003,30(18):1974
    [174]Wang Min. Analysis of GPS Data with High Precision and Study on Present-day Crustal·deformation in China [D]. Institute of Geology, China Earthquake Administration, PhD thesis,2009
    [175]Wang, H., C. Xu, and L. Ge, Coseismic deformation and slip distribution of the 1997 Mw 7.5 Manyi, Tibet, earthquake from InSAR measurements[J], J. Geodyn.,2007, 44:200-212
    [176]Xu Peiliang. A hybrid global optimization method:The mufti-dimensional case[J]. Journal of Computational and Applied Mathematics,2003,(155):423-446
    [177]Xu Xiwei, CHENG G L, Ma XY. Rotation model and dynamics of blocks in north China andits adjacent areas[J]. Earth Science-Journal of China University of Geosciences,1994,19(2):129-138
    [178]Xu, C. J., Ding K. H., Cai J. Q., et al. Methods of determining weight scaling factors for geodetic-geophysical joint inversion[J]. journal of Geodynamics,2009,47:39-46
    [179]Xu Caijun, Wang Jianjun, Li Zhenhong, et al. Applying the Coulomb failure function with an optimally oriented plane to the 2008 Mw 7.9 Wenchuan earthquake triggering [J]. Tectonophysics,2009,09.019
    [180]Yosuke Aoki and C.H.Scholz. Interseismic deformation at the Nankai subduction zone and the Median Tectonic Line, southwest Japan[J]. J. Geophys. Res.,2003,108, BI0, 2470
    [181]Yuri Fialko, Mark Simons. The complete (3-D) surface displacement field in the epicentral area of the 1999 Mw7.1 Hector Mine earthquake, California, from space geodetic observations[J]. GEOPHYSICAL RESEARCH LETTERS,2001,28(16):3063-3066
    [182]Zhang Q, Zhu W G, Xiong Y Q. Global Plate Motion Model s,Incorporating t he Velocity Field of ITRF96 [J]. Giophys kes. Lett,1999,26 (18):2813-2816
    [183]Zhu W, Wang X, Duan W, et al. Present-day crustal deformation in china relative to ITRF97 Kinematic plate model [J]. Journal of Geodesy,2002,76:216-225
    [184]Zhu, S. Y., F. H. Massmann, and Y. Yu, et al. Satellite antenna phase center offsets and scale errors in GPS solutions[J]. J. Geodesy,2003,76(11-12):668-672

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700