用户名: 密码: 验证码:
水芹生态浮床净化功能影响因素与生态化学计量研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
为了研究探讨浮床植物水芹根系在水箱模拟和实际应用条件下的根系发育差异特点,研究探讨水芹浮床水质净化机理和水质净化过程中的影响因素,研究探讨浮床水芹菜的生态化学计量学特征及内稳性特征,为水芹生态浮床的实际应用及研究提供理论支持和参考,本文针对水芹浮床在富营养化河道应用研究中的实际问题进行实验研究,对得到的数据综合运用方差分析、因子分析、灰色关联分析、回归分析等多种方法进行处理,得到以下结论:
     (1)通过对水芹根系指标和根系发育特点的比较研究,我们发现:河道和水箱中的水芹菜主要根系指标均以指数方式增长,随着水芹的生长发育,须根越来越多,导致平均根直径变小,平均根直径在一定程度上反映了水芹须根数量的变化。水箱浮床中水芹在根系表面积、根系总体积、根尖数、分叉数、交叠数及其增长速度方面大于河道中水芹,但在植物总长度、茎长、根直径、总重量、茎重、根重方面小于河道中水芹菜;通过对异速生长指数的研究发现,水箱中的水芹菜根部得到较好的发育,而地上部分生长则相对缓慢。由于水箱浮床实验中水芹根系要比实际河道中发达,因此我们用浮床模拟实验来研究浮床植物根系部位的净化作用时,可能会高估了浮床植物根系部位实际的净化作用,而低估了浮床植物地上部分的实际净化作用。
     (2)通过对百达工业园河道和浮床水箱富营养化影响因素指标的连续监测研究,我们发现:在百达工业园河道连续监测试验中,河道中浮床生物量相对于河道水体总量很小,河道中氧化还原电位呈现出上升的趋势,通过因子分析发现,在我们监测的水体环境指标中,水体富营养化状况主要受到温度这一环境因子的影响;在我们的试验中,通过线性模拟发现叶绿素a含量与温度的相关性最强。在浮床水箱连续监测实验中,浮床生物量相对于水箱水体比较大,水箱中水体pH值受到浮床作用的影响比较大,基本维持不变,而溶解氧和氧化还原电位则随着温度、光照和水芹浮床的综合作用而变化;对水箱中水体富营养化状态影响最大的可能是浮床水芹。
     (3)通过对水箱浮床水质净化实验的研究,我们发现:在我们的试验中,与空白对照相比,浮床系统能够提高水体的氧化还原电位,降低水体温度、浊度、叶绿素a的含量和水体电导率,加速去除水体中氮、磷等营养元素,但在去除COD方面,浮床与空白对照系统差异不大。试验中,不同留茬处理对水芹生物量、根系指标没有明显影响,不同留茬处理的浮床之间,在水体环境的改善和营养物质的去除方面,差异不显著。浮床系统水中,pH值、溶解氧含量与水温关系密切;浮床系统中氮、磷元素的去除率不仅受到浮床的影响,同时还受到温度、pH值、溶解氧等的影响。对磷元素的去除主要依靠植物的吸收作用,对氮元素的去除主要依靠硝化、反硝化作用及植物的吸收作用。水芹浮床系统对铵态氮和磷的去除主要发生在前中期,对硝态氮的去除需要比较长的时间,因此在水芹浮床实际应用过程中,为了提高水芹浮床的运行效率,需要根据富营养化水质的不同设定不同的运行时间。
     (4)通过对水芹在在不同氮磷浓度条件下的生态化学计量特点及其内稳性的研究,我们发现:水芹根、茎、叶部位的氮元素、磷元素含量随着外界环境中磷元素浓度增大而增大,碳元素含量与外界环境中磷元素浓度关系不大;水芹根、茎、叶部位的氮磷比、碳磷比随着磷元素浓度增大而减小,主要是因为氮磷元素与碳元素的吸收途径不同,氮磷元素主要通过吸收外界环境中的氮磷元素获得,其过程受到外界环境营养元素含量的影响,而碳元素的固定则几乎不受外界碳氮磷元素含量的影响。试验中,水芹吸收的氮磷元素更多的分配到茎和叶部位,用于其生殖生长。其磷元素内稳性、氮磷比内稳性大小排序为根部最大,茎部次之,叶部最小。水芹吸收的氮磷元素优先分配到叶片部位用于生殖生长,导致水芹叶片部位氮磷元素含量变化比较大,其内稳性小;而根部营养元素含量变化相对较小,其内稳性就大;磷元素对氮元素的影响指数以叶部最大,茎部次之,根部最小,可能是由于叶片部位合成大量生长所需的蛋白质、氨基酸等氮磷比率比较恒定的物质。不论是水箱还是河道中,温度显著影响水芹的冠根比。水芹冠根比随着温度的变化呈现出先下降后上升趋势,但是水箱中水芹的变化速率要慢一些,主要是由于河道和水箱中水芹菜生物量分配策略不同造成的。
     本论文从浮床植物的生态化学及内稳性特性、浮床净化过程中的影响因素出发进行研究,为实际应用过程中浮床植物的筛选、浮床系统运行时间的调控及正确评估浮床系统的作用提供了科学依据。
In order to study the root characteristics of cress in river and tanks, the purification effect of cress floating-beds on eutrophicated water with different stubble height treatments, as well as the stoichiometry and homeostasis of cress, so as to provide theoretical support and reference for the research and application of cress floating-beds, we did some experimental research with focuses on different research questions. We analyzed the data using one way and two ways ANOVA analysis, Factor Analysis (FA), Grey Relational Analysis (GRA) and linear regression analysis. Based on our results, the following results were obtained:
     (1) With the comparative study of the cress root indicators and root characteristics, we found:the cress roots had exponential growth in the water tanks. More and more fibrous root were found which led to the smaller average root diameter with the growth of cress, and the average root diameter indicated the change of the number of cress fibrous roots. The total root length, root surface area, root volume, number of root tips and number of bifurcations in cress floating-bed in water tanks were greater than those in the river because the lower nutrient content in tanks resulted in better root growth. Average root diameter of cress in river is smaller than that in water tanks with floating-beds. The root length of cress in water tanks was greater than that in river, while total length, stem length, root diameter, total weight, stem weight and root weight in river were higher than those in water tanks. We found that the root grew better than the above water part of the cress in water tanks. Due to the greater root mass of cress in water tanks than that in river, we may overestimate the contribution of root in the purification and underestimated the performance of the aboveground part when studying the purification of floating-beds with controlled experiments in water tanks.
     (2) By continuously monitoring the influencing factors of eutrophication in river and water tanks, we found that:the biomass of cress floating-beds was small because of the river water. The temperature had the most important t impact on chlorophyll a according to Factor Analysis among all the impact factors we monitored; the redox potential decreased and the strong correlation between chlorophyll a content and temperature were found in our experiment. The pH remained unchanged because of the great cress biomass in water tanks. Redox potential fluctuated cyclically and dissolved oxygen content changed with temperature and light condition.
     (3) Based on the cress floating-bed purification experiments, we found that:In our experiments, compared with the zero control, the cress floating-beds could improve the oxidation reduction potential of water, reduce the water temperature, turbidity, chlorophyll a content and the conductivity of the water, and could accelerate the removal of nitrogen and phosphorus. But no difference was found in removing COD. No significant differences were found among different stubble heights of cress floating-beds not only in biomass but also the root. No significant difference was found in water quality improvement through nutrient removal among different stubble height treatments. Temperature had a good relationship with pH and dissolved oxygen. The removal rate of nitrogen and phosphorus was affected not only by initial concentration of nitrogen and phosphorus, but also affected by the temperature, pH and dissolved oxygen. Plant absorption played the most important role in phosphorus removal. Denitrification, nitrification and absorption of the plants played the most important role in the removal of ammonium nitrogen. The removal of ammonium nitrogen in ecological floating bed occurred mainly in the early and mid-term. It will need longer time in nitrate nitrogen removal. It is necessary to arrange different detention time for different target nutrient species in order to improve the operating efficiency of cress floating-bed system.
     (4) Based on the research of ecological stoichiometry and homeostasis in cress, we found that:The nitrogen, phosphorus contents in roots, stems and leaves of cress showed the same trend as the phosphorus concentration in water, nitrogen-phosphorus ratio and carbon-phosphorus ratio showed negative trend with nitrogen and phosphorus contents, while carbon content stayed stabile. The main reason could be the different pathways of absorption of nitrogen, phosphorus and carbon. Nitrogen and phosphorus were obtained from the environment, and the process was affected by nutrient contents in the water, while carbon was obtained from photosynthesis. In our experiment, nitrogen and phosphorus obtained from water were allocated to stems and leaves of cress for reproduction. The homeostasis index for phosphorus and for nitrogen phosphorus ratio in cress was small, and the homeostasis order was roots> stems> leaves. The small homeostasis index of phosphorus and nitrogen-phosphorus ratio in leaves of cress was due to the prior allocation of nitrogen and phosphorus in cress. On the contrary, the homeostasis index of phosphorus and nitrogen-phosphorus ratio in root of cress was greater than that in leaf of cress. The top-root ratio of cress in river and water tanks had a significant positive correlation with temperature. In our experiment, the top-root ratio of cress both in river and tanks decreased firstly and then increased, but the change rate of cress in river was larger than that in tanks because of the different biomass allocation strategy.
     The results from the studies on the ecological chemistry, homeostasis and influencing factors for the purification function of cress floating bed system will provide scientific basis for the chosen of floating bed plants, system detention time and purification function assessment in real application of floating bed systems.
引文
[1]Anubis.水芹.http://baike.baidu.com/view/110974.htm.2012-07-23.
    [2]Bagherzadeh A, Brumme R, Beese F. Biomass and nutrients allocation in pot cultured beech seedlings:influence of nitrogen fertilizer[J]. Journal of Forestry Research.2008,19(4): 263-270.
    [3]Belovsky G E. Diet optimization in a generalist herbivore:the moose[J]. Theoretical Population Biology.1978,14(1):105-134.
    [4]Billore S K, Prashant, Sharma J K. Treatment performance of artificial floating reed beds in an experimental mesocosm to improve the water quality of river Kshipra[J]. Water Sci Technol.2009,60(11):2851-2859.
    [5]Bloom R G, Mallik A U. Indirect effects of black spruce (Picea mariana) cover on community structure and function in sheep laurel (Kalmia angustifolia) dominated heath of eastern Canada[J]. Plant and soil.2004,265(1):279-293.
    [6]Cheng S, Wu Z, Xia Y. STUDIES ON THE PURIFYING SPACE IN ARTIFICIAL WETLANDS WITH CATTAIL AND RUSH[J]. Resources and Environment in the Yangtze Basin.1999,8(3):270-275.
    [7]De Stefani G, Tocchetto D, Salvato M, Borin M. Performance of a floating treatment wetland for in-stream water amelioration in NE Italy[J]. Hydrobiologia.2011,674(1): 157-167.
    [8]Elser J J. Ecological stoichiometry:From sea to lake to land[J]. Trends in Ecology and Evolution.2000,15(10):393-394.
    [9]Elser J J, Sterner R W, Gorokhova E, Fagan W F, Markow T A, Corner J B, Harrison J F, Hobbie S E, Odell G M, Weider L W. Biological stoichiometry from genes to ecosystems[J]. Ecology Letters.2000,3(6):540-550.
    [10]Garbett R. An investigation into the application of floating reed bed and barley straw techniques for the remediation of eutrophic waters[J]. Water and Environment Journal. 2005,19(3):174-180.
    [11]Gusewell S. N:P ratios in terrestrial plants:variation and functional significance [J]. New Phytologist.2004,164(2):243-266.
    [12]Gusewell S, Bollens U. Composition of plant species mixtures grown at various N:P ratios and levels of nutrient supply[J]. Basic and Applied Ecology.2003,4(5):453-466.
    [13]Han W, Fang J, Guo D, Zhang Y. Leaf nitrogen and phosphorus stoichiometry across 753 terrestrial plant species in China[J]. New Phytologist.2005,168(2):377-385.
    [14]Hedin L O. Global organization of terrestrial plant-nutrient interactions[J]. Proceedings of the National Academy of Sciences of the United States of America.2004,101(30): 10849-10850.
    [15]Hoeger S. Schwimmkampen Germany's artificial floating islands[J]. Journal of Soil and Water conservation.1988,43(4):304-306.
    [16]Hubbard R K, Gascho G J, Newton G L. Use of floating vegetation to remove nutrients from swine lagoon wastewater[J].2004,47:1963-1972.
    [17]Huett D O, Morris S G, Smith G, Hunt N. Nitrogen and phosphorus removal from plant nursery runoff in vegetated and unvegetated subsurface flow wetlands[J]. Water Res.2005, 39(14):3259-3272.
    [18]Jensen K, Revsbech N P, Nielsen L P. Microscale distribution of nitrification activity in sediment determined with a shielded microsensor for nitrate[J]. Applied and Environmental Microbiology.1993,59(10):3287-3296.
    [19]Kang H, Xin Z, Berg B, Burgess P J, Liu Q, Liu Z, Li Z, Liu C. Global pattern of leaf litter nitrogen and phosphorus in woody plants[J]. Annals of forest science.2010,67(8):811.
    [20]Kansiime F, Oryem-Origa H, Rukwago S. Comparative assessment of the value of papyrus and cocoyams for the restoration of the Nakivubo wetland in Kampala, Uganda[J]. Physics and Chemistry of the Earth.2005,30(11-16):698-705.
    [21]Karimi R, Folt C L. Beyond macronutrients:element variability and multielement stoichiometry in freshwater invertebrates[J]. Ecology letters.2006,9(12):1273-1283.
    [22]Koojiman S. The stoichiometry of animal energetics [J]. Journal of Theoretical Biology. 1995,177(2):139-149.
    [23]Lahav O, Artzi E, Tarre S, Green M. Ammonium removal using a novel unsaturated flow biological filter with passive aeration[J]. Water research.2001,35(2):397-404.
    [24]Limpens J, Berendse F. Growth reduction of Sphagnum magellanicum subjected to high nitrogen deposition:the role of amino acid nitrogen concentration[J]. Oecologia.2003, 135(3):339-345.
    [25]Maltais-Landry G, Maranger R, Brisson J, Chazarenc F. Nitrogen transformations and retention in planted and artificially aerated constructed wetlands[J]. Water research.2009, 43(2):535-545.
    [26]Mcconnaughay K, Coleman J S. Biomass allocation in plants:ontogeny or optimality? A test along three resource gradients[J]. Ecology.1999,80(8):2581-2593.
    [27]Mcgroddy M E, Daufresne T, Hedin L O. SCALING OF C:N:P STOICHIOMETRY IN FORESTS WORLDWIDE:IMPLICATIONS OF TERRESTRIAL REDFIELD-TYPE RATIOS[J]. Ecology.2004,85(9):2390-2401.
    [28]Muller I, Schmid B, Weiner J. The effect of nutrient availability on biomass allocation patterns in 27 species of herbaceous plants[J]. Perspectives in Plant Ecology, Evolution and Systematics.2000,3(2):115-127.
    [29]Nakai S, Zou G, Okuda T, Tsai T Y, Song X, Nishijima W, Okada M. Anti-cyanobacterial allelopathic effects of plants used for artificial floating islands[J]. Allelopathy Journal.2010, 26(1):113-121.
    [30]Nakai S, Zou G, Song X, Pan Q, Zhou S, Hosomi M. Release of anti-cyanobacterial allelochemicals from aquatic and terrestrial plants applicable for artificial floating islands[J]. Journal of Water and Environment Technology.2008,6(1):55-63.
    [31]Nakamura K, Shimatani Y. Water purification and environmental enhancement by artificial floating island[C].1997.
    [32]Redfield A C. The biological control of chemical factors in the environment[J]. American Scientist.1958,46(3).
    [33]Reich P B. Global biogeography of plant chemistry:filling in the blanks[J]. New Phytologist. 2005,168(2):263-266.
    [34]Reich P B, Oleksyn J. Global patterns of plant leaf N and P in relation to temperature and latitude[J]. Proceedings of the National Academy of Sciences of the United States of America.2004,101(30):11001-11006.
    [35]Reiners W A. Complementary models for ecosystems[J]. American Naturalist.1986:59-73.
    [36]Ryser P, Lambers H. Root and leaf attributes accounting for the performance of fast-and slow-growing grasses at different nutrient supply[J]. Plant and Soil.1995,170(2):251-265.
    [37]Shaver G R, Melillo J M. Nutrient budgets of marsh plants:efficiency concepts and relation to availability [J]. Ecology.1984:1491-1510.
    [38]Smith M P, Kalin M. Floating Wetland Vegetation Covers for Suspended Solids Removal[Z]. CH2MHILL,Canada:2000.
    [39]Sooknah R D, Wilkie A C. Nutrient removal by floating aquatic macrophytes cultured in anaerobically digested flushed dairy manure wastewater[J]. Ecological Engineering.2004, 22(1):27-42.
    [40]Stefan K, Furst A, Hacker R, Bartels U. Forest foliar condition in Europe-results of large-scale foliar chemistry surveys[M].1997.
    [41]Sterner R W, Elser J J. Ecological stoichiometry:the biology of elements from molecules to the biosphere[M]. Princeton Univ Pr,2002.
    [42]Tanner C C, Headley T R. Components of floating emergent macrophyte treatment wetlands influencing removal of stormwater pollutants[J]. Ecological Engineering.2011,37(3): 474-486.
    [43]Vaillant N, Monnet F, Sallanon H, Coudret A, Hitmi A. Treatment of domestic wastewater by an hydroponic NFT system [J].2003,50(1):121-129.
    [44]Van de Moortel A M K, Du Laing G, De Pauw N, Tack F M G. Distribution and Mobilization of Pollutants in the Sediment of a Constructed Floating Wetland Used for Treatment of Combined Sewer Overflow Events[J]. Water Environment Research.2011, 83(5):427-439.
    [45]Vitousek P. Nutrient cycling and nutrient use efficiency [J]. American Naturalist.1982: 553-572.
    [46]Wcing水芹http://www.hudong.com/wiki/%E6%B0%B4%E8%8A%B9.2011-09-29.
    [47]Wen L, Recknagel F. In situ removal of dissolved phosphorus in irrigation drainage water by planted floats:preliminary results from growth chamber experiment[J]. Agriculture Ecosystems & Environment.2002,90(1):9-15.
    [48]Westoby M. A leaf-height-seed (LHS) plant ecology strategy scheme[J]. Plant and soil. 1998,199(2):213-227.
    [49]Westoby M, Falster D S, Moles A T, Vesk P A, Wright I J. Plant ecological strategies:some leading dimensions of variation between species[J]. Annual Review of Ecology and Systematics.2002:125-159.
    [50]Yu Q, Chen Q, Elser J J, He N, Wu H, Zhang G, Wu J, Bai Y, Han X. Linking stoichiometric homoeostasis with ecosystem structure, functioning and stability[J]. Ecology letters.2010,13(11):1390-1399.
    [51]Yuan Z, Chen H Y H. Global trends in senesced-leaf nitrogen and phosphorus[J]. Global Ecology and Biogeography.2009,18(5):532-542.
    [52]邴旭文,陈家长.浮床无土栽培植物控制池塘富营养化水质[J].湛江海洋大学学报.2001,21(3):29-33.
    [53]曾德慧,陈广生.生态化学计量学:复杂生命系统奥秘的探索[J].植物生态学报.2005,29(06):1007-1019.
    [54]陈风琴,耿福源,赵莹,史秀娟.城市河流生态系统修复[J].中国人口·资源与环境.2010,20(3):365-367.
    [55]陈明霞,黄艳芳,崔卫东,冯帆,刘秦华,张建国.水稻茎、叶的营养含量及留茬高度对稻草营养品质的影响[J].草业学报.2012,21(1):285-290.
    [56]陈平,韦余广,罗静.河道人工湿地的构建及其对河道水流的影响[J].河海大学学报(自然科学版).2007,35(4):374-378.
    [57]戴波,胡小兵.水生经济植物净化水质研究[J].安徽工业大学学报(自然科学版).2006,23(1):47-49.
    [58]戴军,何斌,肖继谋,覃祚玉,罗柳娟,刘莉,刘红英.灰木莲人工林营养元素分配及其积累特征[J].林业科技开发.2012,26(4):39-42.
    [59]邓泓,叶志鸿,黄铭洪.湿地植物根系泌氧的特征[J].华东师范大学学报(自然科学版).2007(6):69-76.
    [60]丁浩,凌云,徐亚同,米文秀.梦清园芦苇湿地根际微生物特性研究[J].四川环境.2007,26(2):6-10.
    [61]范国兰,李伟.穗花狐尾藻(Myriophyllum spicatum L.)在不同程度富营养化水体中的营养积累特点及营养分配对策[J].武汉植物学研究.2005,23(3):267-271.
    [62]范洁群,邹国燕,宋祥甫,吴淑杭,付子轼,潘琦,刘福兴.不同类型生态浮床对富营养河水脱氮效果及微生物菌群的影响[J].环境科学研究.2011,24(8):850-856.
    [63]付春平,唐运平,李江华.水葱湿地对泰达景观河道水质净化特性研究[J].环境科学与技术.2006,29(7):6-8.
    [64]付融冰,朱宜平,杨海真,顾国维.连续流湿地中DO、ORP状况及与植物根系分布的关系[J].环境科学学报.2008,28(10):2036-2041.
    [65]高甲荣,张东升,肖斌,牛健植.黄土区油松人工林生态系统营养元素分配格局和积累的研究[J].北京林业大学学报.2002,24(1):26-30.
    [66]顾梦鹤,王涛,杜国桢.刈割留茬高度和不同播种组合对人工草地初级生产力和物种丰富度的影响[J].西北植物学报.2011,31(8):1672-1676.
    [67]国家林业局.介绍日本的湿地净化技术—人工浮岛(AFI). http://www.forestry.gov.cn/portal/main/s/144/content82683.html.
    [68]贺锋,吴振斌.水生植物在污水处理和水质改善中的应用①[J].植物学通报.2003,20(6):641-647.
    [69]胡绵好,袁菊红,杨肖娥.温度对植物浮床净化富营养化水体能力的影响[J].环境科学学报.2011,31(2):283-291.
    [70]黄彩变,曾凡江,雷加强.留茬高度对骆驼刺生长发育和产草量的影响[J].草地学报.2011(6):948-953.
    [71]黄秋雨,李秀艳,李素娜,张岩,陶寅,徐亚同.不同水力负荷生态浮床对水体中氮磷的净化效果[J].上海化工.2012(05):1-4.
    [72]霍成君,韩建国,洪绂曾,武宝成,李显瑞.刈割期和留茬高度对新麦草产草量及品质的影响[J].草地学报.2000,8(4):319-327.
    [73]加户正治,张东峰.日本的人工浮岛[J].世界科学.1998(1):40.
    [74]贾悦,李秀珍,唐莹莹,辛在军,郭文永,孙永光,何彦龙.不同采收方式对富养化 河道浮床空心菜生物产出的影响[J].生态学杂志.2011,30(6):1091-1099.
    [75]江福英,陈昕,罗安程.几种植物在模拟污水处理湿地中根际微生物功能群特征的研究[J].农业环境科学学报.2010,29(4):764-768.
    [76]蒋永荣,莫德清,段钧元,彭竟康.潜流人工湿地植物根区氮转化细菌及脱氮效果[J].桂林工学院学报.2008,28(2):222-225.
    [77]金相灿.中国湖泊环境:[M].海洋出版社,1995.
    [78]金相灿,稻森悠平,朴俊大.湖泊和湿地水环境生态修复技术和管理指南[M].北京:科学出版社,2007.
    [79]李华,周扬,张秋卓,徐亚同,秦蓉.生态浮床与人工湿地净水效果比较小试研究[J].环境科学与技术.2011,34(3):58-61.
    [80]李文祥,李为,林明利,王英雄,刘家寿,李钟杰.浮床水蕹菜对养殖水体中营养物的去除效果研究[J].环境科学学报.2011,31(8):1670-1675.
    [81]李雪梅,杨中艺,简曙光,黄增贤,梁近光.有效微生物群控制富营养化湖泊蓝藻的效应[J].中山大学学报(自然科学版).2000,39(1):81-85.
    [82]李欲如.植物浮床技术对苏州古城区河水净化效果及规律研究[D].河海大学,2006.
    [83]李欲如,操家顺.冬季低温条件下浮床植物对富营养化水体的净化效果[J].环境污染与防治.2005,27(7):505-508.
    [84]李欲如,陈娟.浮床植物对不同污染程度水体中氮、磷的去除效果[J].水资源保护.2011,27(1):58-62.
    [85]李兆华.生物浮岛技术与实践(内部教材)[G].武汉:2009.
    [86]李志丹,王文强,陈志权,白昌军.不同刈割周期、留茬高度对4种柱花草属牧草产量的影响[J].热带农业工程.2009,33(3):10-13.
    [87]李志鸿,王明玉.复合介质人工浮岛对含铜废水净化效果试验研究[J].环境科学与技术.2011,34(2):129-135.
    [88]梁威,吴振斌,詹发萃,邓家齐.人工湿地植物根区微生物与净化效果的季节变化[J].湖泊科学.2005,16(4):312-317.
    [89]林洁荣,刘建昌,苏水金.留茬高度对闽牧42牧草的影响[J].草业科学.2002,19(8):25-28.
    [90]凌云,丁浩,徐亚同.芦苇人工湿地根际微生物效应研究[J].农业系统科学与综合研究.2008,24(2):214-216.
    [91]刘朝巍,张恩和,王琦,刘青林,王田涛,俞华林,尹辉.留茬对小麦/玉米间作氮素吸收和硝态氮分布、淋失的影响[J].水土保持学报.2012,26(1):72-76.
    [92]刘海洪,汪祥静,吴磊,李先宁.生物组合对浮床污染物净化效能的影响[J].东南大学学报(自然科学版).2011,41(04):784-787.
    [93]刘杰淋,唐凤兰,张月学,韩微波,尚晨,刘凤岐,陈极山.刈割高度对一年生牧草再生性能及产量的影响[J].草原与草坪.2009(6):47-49.
    [94]刘景辉,赵宝平,焦立新,扈学文,闫立伟,郭冬梅.刈割次数与留茬高度对内农1号苏丹草产草量和品质的影响[J].草地学报.2005(2):93-96.
    [95]刘青林,张恩和,王琦,王田涛,刘朝巍,尹辉,俞华林.灌溉与施氮对留茬免耕春小麦氮素吸收和氮肥损失的影响[J].水土保持学报.2011(4):104-109.
    [96]刘增文,陈凯,米彩虹,李茜.陕西关中地区常见树种落叶前N、P、K养分回流现象的研究[J].西北农林科技大学学报(自然科学版).2009,37(12):98-104.
    [97]刘志宽,马青兰,牛快快.湿地植物根系泌氧及其在湿地处理中的应用[J].海南师范大学学报(自然科学版).2010,23(1):84-86.
    [98]刘志宽,牛快快,马青兰,白晓华,苏刘选.8种湿地植物根部泌氧速率的研究[J].贵州农业科学.2010,38(4):47-50.
    [99]卢进登,赵丽娅,康群,帅方敏,李兆华.人工生物浮床技术治理富营养化水体研究现状[J].湖南环境生物职业技术学院学报.2005,11(3):214-218.
    [100]卢少勇,金相灿,余刚.人工湿地的氮去除机理[J].生态学报.2006,26(8):2670-2677.
    [101]罗固源,韩金奎,肖华,吴松,许晓毅.美人蕉和风车草人工浮床治理临江河[J].水处理技术.2008,34(8):46-48.
    [102]吕永鹏,徐启新,杨凯,车越,赵军.城市河流生态修复的环境价值及实现机制[J].水利学报.2010,41(3):278-285.
    [103]马牧源,王兰,孙红文.黄花鸢尾对富营养化水体净化的试验研究[J].农业环境科学学报.2006,25(2):448-452.
    [104]茅孝仁,周金波.几种生态浮床常用水生植物的水质净化能力研究[J].浙江农业科学.2011(1):157-159.
    [105]彭江燕,刘忠翰.不同水生植物影响污水处理效果的主要参数比较[J].云南环境科学.1998,17(2):47-51.
    [106]任万军,刘代银,吴锦秀,伍菊仙,陈德春,杨文钰.免耕高留茬抛秧对稻田土壤肥力和微生物群落的影响[J].应用生态学报.2009(4):817-822.
    [107]孙连鹏,刘阳,冯晨,王卓超,金辉.不同季节浮床美人蕉对水体氮素等污染物的去除[J].中山大学学报(自然科学版).2008,47(2):127-130.
    [108]谭洪新,罗国芝,朱学宝,瞿玉玑,郁志明.水栽培蔬菜对养鱼废水的水质净化效果[J].上海水产大学学报.2001,10(4):293-297.
    [109]唐丹,罗固源,冉青松.生态浮床系统溶解氧的平衡方程[J].三峡环境与生态.2011,33(1):10-13.
    [110]唐利,杨奇,邱江平,李旭东.芦苇,香蒲根际分泌物及其根际效应比较分析[J].哈尔 滨商业大学学报:自然科学版.2010,26(4):425-429.
    [111]唐启义,冯明光.DPS数据处理系统[M].科学出版社,2007.
    [112]唐莹莹,李秀珍,周元清,贾悦,辛在军,孙永光.浮床空心菜对氮循环细菌数量与分布和氮素净化效果的影响[J].生态学报.2012,32(09):2837-2846.
    [113]瓦庆荣,代志进,卢琪.留茬高度对人工草地牧草产量及质量的影响[J].草业学报.2000,9(1):65-68.
    [114]王君芳,赵明清.不同施氮肥量、留茬高度、对割时期对无芒雀麦产草量及品质的影响[J].吉林农业科学.2008,33(5):36-38.
    [115]王敏,黄宇驰,吴建强.植被缓冲带径流渗流水量分配及氮磷污染物去除定量化研究[J].环境科学.2010,31(11):2607-2612.
    [116]王宁,张雪花.湖泊富营养化治理的新技术—人工浮岛[C].无锡:2003.
    [117]王绍强,于贵瑞.生态系统碳氮磷元素的生态化学计量学特征[J].生态学报.2008,28(8):3937-3947.
    [118]王维奇,曾从盛,钟春棋,仝川.人类干扰对闽江河口湿地土壤碳、氮、磷生态化学计量学特征的影响[J].环境科学.2010,31(10):2411-2416.
    [119]王霞,徐荣,陈君,刘友刚,刘同宁.肉苁蓉营养元素分配特征研究[J].中国药学杂志.2011,46(12):906-909.
    [120]魏成,刘平.人工湿地污水净化效率与根际微生物群落多样性的相关性研究[J].农业环境科学学报.2008,27(6):2401-2406.
    [121]吴家森,吴夏华,叶飞.雷竹林营养元素分配与积累[J].竹子研究汇刊.2005,24(1):29-31.
    [122]吴黎明.可持续利用生物浮床水质改善技术的开发研究[D].扬州大学,2010.
    [123]吴松.风车草泡板型浮岛技术在临江河治理中的应用研究[D].重庆大学,2008.
    [124]吴统贵,陈步峰,肖以华,潘勇军,陈勇,萧江华.珠江三角洲3种典型森林类型乔木叶片生态化学计量学[J].植物生态学报.2010,34(1):58-63.
    [125]吴统贵,吴明,刘丽,萧江华.杭州湾滨海湿地3种草本植物叶片N,P化学计量学的季节变化[J].植物生态学报.2010,34(1):23-28.
    [126]吴振斌,梁威.复合垂直流构建湿地净化污水机制研究——Ⅰ微生物类群和基质酶[J].长江流域资源与环境.2002,11(2):179-183.
    [127]吴振斌,梁威,成水平,贺锋,傅贵萍,陈辉蓉,邓家齐,詹发萃.人工湿地植物根区土壤酶活性与污水净化效果及其相关分析[J].环境科学学报.2001,21(5):622-624.
    [128]肖瑾,成水平,吴振斌,朱邦科.植物修复技术及其在污水处理中的应用[J].Freshwater Fisheries.2006,36(5):59-62.
    [129]辛在军,李秀珍,闫中正,周元清,贾悦,唐莹莹,郭文永,孙永光.冬季不同刈割 水芹浮床连续净化过程及效果[J].生态学杂志.2011,30(12):2745-2752.
    [130]徐功娣,张增胜,韩丽媛,陈季华.强化生态浮床与普通浮床对污染物净化效果对比研究[J].水处理技术.2010,36(4):93-96.
    [131]徐欢,张勇,黄民生,罗锦洪,何岩.梯级生态浮床系统处理黑臭河水除磷性能研究[J].华东师范大学学报(自然科学版).2011(1):119-125.
    [132]徐乐中.pH值碱度对脱氮除磷效果的影响及其控制方法[J].给水排水.1996,22(1):10-13.
    [133]徐续,操家顺.河道曝气技术在苏州地区河流污染治理中的应用[J].水资源保护.2006,22(001):30-33.
    [134]许声毓.海水生态浮床技术:书水域生态修复新华章[J].中国科技财富.2011(001):40-41.
    [135]严以新,操家顺,李欲如.冬-春季节浮床技术净化重污染河水的动态试验研究[J].河海大学学报(自然科学版).2006,34(2):119-122.
    [136]阎恩荣,王希华,郭明,仲强,周武.浙江天童常绿阔叶林、常绿针叶林与落叶阔叶林的C:N:P化学计量特征[J].植物生态学报.2010,34(1):48-57.
    [137]杨飞,王国祥,周晓红.水芹浮床对重污染河道净化作用研究[J].人民黄河.2009,31(8):57-58.
    [138]杨凤娟,杨扬,潘鸿,阿丹,李丽,乔永民,钟铮.强化生态浮床原位修复技术对污染河流浮游动物群落结构的影响[J].湖泊科学.2011,23(4):498-504.
    [139]杨利平,周晓峰.细叶百合的生物量和营养分配[J].植物生态学报.2004,28(1):138-142.
    [140]尹辉,张恩和,王琦,刘青林,刘朝巍,王田涛,俞华林.春小麦留茬处理对复种油菜产量和水分利用效率的影响[J].农业工程学报.2011(2):83-88.
    [141]余俊,黄芃芃,梁秋琴,苏崇禧,宁寻安.美人蕉生态浮床处理含铜废水[J].安徽农业科学.2012,40(12):7331-7333.
    [142]虞开森,张书农.厌氧水质模型初探[J].上海环境科学.1990,9(1):10-14.
    [143]庾强.内蒙古草原植物化学计量生态学研究[D].中国科学院植物研究所,2009.
    [144]张捷鑫,吴纯德,陈维平,陈利军,贺明和.污染河道治理技术研究进展[J].生态科学.2005,24(2):178-181.
    [145]张立强,汪有科,员学锋,湛景武,汪勇.小麦高留茬田间水分效应研究[J].中国农学通报.2006(11):461-466.
    [146]张新军,高玉葆.中间锦鸡儿的生长及生态化学计量学特征与基质稳定性关系初探[J].植物研究.2011,31(2):180-187.
    [147]张志勇,冯明雷,杨林章.浮床植物净化生活污水中N,P的效果及N20的排放[J]. 生态学报.2007,27(10):4333-4341.
    [148]赵安娜,冯慕华,郭萧,柯凡,潘继征,李文朝.沉水植物氧化塘对污水厂尾水深度净化效果与机制的小试研究[J].湖泊科学.2010,22(4):538-544.
    [149]赵建刚,杨琼,陈章和,黄正光.几种湿地植物根系生物量研究[J].中国环境科学.2003,23(3):290-294.
    [150]赵沛义,妥德宝,郑大玮,段玉,闫伟,李焕春,弓钦.带状留茬间作减轻旱作农田土壤风蚀的生态效应研究[J].中国农学通报.2007(10):171-174.
    [151]赵庆节,梁丹涛,沈根祥,胡双庆,郭春霞,顾海蓉,周海花.五种人工湿地植物根际细菌多样性的研究[J].三峡环境与生态.2008,1(3):11-13.
    [152]郑翀,孙梅,郑少奎,杨志峰.低温下水芹浮床对氨氮类富营养水体的连续小试净化[J].环境污染治理技术与设备.2006,7(8):23-26.
    [153]郑飞翔,王效科,侯培强,张巍巍,逯非,欧阳志云.臭氧胁迫对水稻生长以及C、N、S元素分配的影响[J].生态学报.2011,31(6):1479-1486.
    [154]郑天柱,周建仁,王超.污染河道的生态修复机理研究[J].环境科学.2009(S1):115-117.
    [155]周婷,彭少麟,任文韬.东江河岸缓冲带景观格局变化对水体恢复的影响[J].生态学报.2009,29(1):231-239.
    [156]周炜,黄民生,年跃刚.植物配置对构造湿地根际区硝化菌群及脱氮影响[J].环境工程.2006,24(3):18-20.
    [157]周小平,王建国,薛利红,徐晓峰,杨林章.浮床植物系统对富营养化水体中氮、磷净化特征的初步研究[J].应用生态学报.2005,16(11):2199-2203.
    [158]周晓红.城市污染河道修复的生态浮床技术及机理[D].南京师范大学,2009.
    [159]周晓红,王国祥,杨飞,陈秋敏,汪丽.刈割对生态浮床植物黑麦草光合作用及其对氮磷等净化效果的影响[J].环境科学.2008,29(12):3393-3399.
    [160]周元清,李秀珍,唐莹莹,辛在军,贾悦,李淑英.不同处理水芹浮床对城市河道黑臭污水的脱氮效果及其机理研究[J].环境科学学报.2011,31(10):2192-2198.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700