用户名: 密码: 验证码:
DFB激光器的调谐动态特性及测量方法研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
分布反馈(Distributed-Feedback Diode Lasers,DFB)二极管激光器是性能优异的窄线宽、动态单模、波长可调谐激光器,被广泛应用于光通信、光传感和光测量等技术领域。作为系统核心器件,DFB激光器调谐的动态特性,包括动态边模抑制比、动态波长、动态线宽等特性,影响系统的整体性能,对其进行实时监测十分必要。然而,由于调谐的动态特性瞬息万变,要求测量仪器必须具备高分辨率和极快响应速度等性能,常规方法均难以达到测量要求。此外,由于DFB激光器电流调谐的非线性,加之调谐动态特性测量的困难,导致激光器调谐的波长特性描述尚缺少数学模型。
     论文提出了激光器调谐动态特性的光纤延时自外差测量方案,理论分析了测量动态波长及线宽的可行性,搭建了测量系统,实验研究了DFB激光器调谐的动态波长和线宽特性。此外,从二极管激光器调谐机理出发,提出了激光器调谐的波长解析模型,利用光谱仪测量四个不同厂家DFB激光器稳态模谱特性,辨识出解析模型的六个参数。利用可调谐激光吸收光谱技术测量CO2气体在1582nm附近的8吸收线,与HITRAN谱库中CO2气体标准吸收线位置比对,验证了波长解析模型的有效性。主要的工作内容和创新点包括以下三个方面:
     1、调谐动态特性的测量方法:研究了二极管激光器在快速调谐过程中的动态波长及线宽特性,提出一种基于Mach-Zehnder干涉仪的光纤延时自外差法(fiber delayed self-heterodyne interferometer,FDSHI)测量方案,测量了DFB激光器在锯齿波电流调谐下的动态波长及线宽特性。同时,利用CO2气体的2条吸收谱线与HITRAN谱库中吸收线位置比对,辨识出激光器的动态波长,该吸收线确定的波长值具有绝对可靠性,将FDSHI系统得到的动态波长测量值与之比较,二者误差仅为0.001nm,验证了调谐动态特性FDSHI测量方法的有效性。
     2、得到了DFB激光器调谐动态线宽的最佳范围:应用FDSHI实验系统,测量了DFB激光器的动态线宽特性,实验结果表明,在整个调谐电流范围内,激光器动态线宽随注入电流先变窄后又增宽,工作电流为最大电流的0.6倍左右时,激光器的动态线宽最窄,激光器动态线宽最佳工作电流为最大电流的0.5~0.8倍之间。
     3、激光器调谐的波长解析模型:从DFB激光器的工作原理及调谐机理出发,提出了激光器调谐的波长解析模型,该解析模型精确给出了激光器输出波长与注入电流及工作温度的定量函数关系,通过实验测量结果辨识出模型参数。将模型应用于四个不同厂家的商用DFB激光器,波长的模型预测值与实验测量值比较,相关系数均在0.9999以上。此外,利用热传导模型得到激光腔内温度,代入解析模型得到波长模型预测值,与利用激光吸收光谱技术测量CO2气体HITRAN谱库中的8条吸收谱线位置波长值比对,二者误差在3pm内,验证了解析模型的有效性。该解析模型能够精确预测激光器在给定电流及温度下的稳态波长值,其精度能够满足光谱分析、光学相干测量等实用要求。
     论文的研究工作,展示了一种有效的二极管激光器调谐动态特性的测量方法。论文中所得到的实验研究结果,为二极管激光器调谐动态特性的实时监测与控制优化提供了理论和实验依据。
Distributed-Feedback Diode Laser (DFB) is a kind of high quality narrowlinewidth, dynamic single mode and wavelength tunable laser, which is widelyutilized in optical communications,sensing and measurement. To be the corecomponent in the system, the dynamic characteristics of the tuning of DFB laser,including dynamic SMSR,transient wavelength,and dynamic linewidth,effect theentire properties of the system. So the real-time online measurement is very necessary.However, the quickly change of the dynamic characteristics requires the highresolution and fast response of the measure equipments, which cannot be achieved byconventional methods. In addition, due to the nonlinear phenomena in the currenttuning process and difficulty in the measurement of dynamic properties, there are fewmathematical models for the depicting of laser’s wavelength in tuning.
     This paper represents a novel delayed self-heterodyne interferometer measuremethod for dynamic tuning characteristic of lasers, then analyses the feasibility of themeasurement of dynamic wavelength and linewidth, and forms a measure system. Inaddition, based on the tunable mechanism of DFB laser, this paper comes up ananalytical model of static wavelength in tuning. Using the spectrometer to measurefour different manufacturers’ DFB laser’s static mode spectral, it obtains the6parameters of the analytical model. Working under the temperature tuning, by usingthe TDLAS to measure the8absorption lines of CO2near1582nm, and comparingwith HITRAN database, the reliability of this model was confirmed. The main contentof the work and innovation, include the following three aspects:
     1.Measurement methods of DFB laser’s dynamic tuning characteristic: In thispaper, the dynamic tuning characteristics of diode lasers are studied. Based on theMach-Zehnder interferometer, a measurement method of fiber delayedself-heterodyne interferometer (FDSHI) is proposed. We measured the dynamicwavelength and linewidth characteristics of DFB lasers in the saw-tooth currenttuning. Comparing the2absorption lines of CO2around1600nm with the ones inHITRAN database, the dynamic wavelength is identified and also reliable. The errorbetween database true value and dynamic wavelength calculated by the beat signal is only0.001nm, which verified the reliability of the dynamic tuning characteristics ofFDSHI measurement methods.
     2.The best range of dynamic tuning linewidth of DFB lasers: Using the FDSHIof experimental systems, the dynamic linewidth of DFB lasers was measured.Experimental results show that the dynamic linewidth with the injection current isnarrowed initially and then widened. When the injection current is about0.6times ofthe maximum current in the entire tuning range, the dynamic linewidth gets thenarrowest. The best operating current is around0.5to0.8times of the maximum.
     3.The analytical model of the static wavelength characteristic: According to thetuning mechanism of the diode lasers, an analytical model of the wavelengthcharacteristics is established. The parameters of the model were identified byexperimental results. The model was applied to analyze four DFB diode lasers. Weobtained the transient characteristics of the lasers. We also received the staticcharacteristic of these lasers from the spectrometer. The correlation coefficients aremore than0.9999. At the same time, based on the absorption spectrum of CO2gas, wealso measured the emission wavelength of lasers. We compared it with the HITRANdatabase, the difference is within3pm. The analytical model can accurately predictthe transient output wavelength of lasers in tuning; the accuracy can meet thespectrum, optical coherence measurements and other practical requirements.
     The experimental results, obtained in the paper provide a theoretical andexperimental basis for the real-time monitoring and control optimization tuningcharacteristics of the diode lasers.
引文
[1]江剑平,半导体激光器,北京:清华大学出版社,2000,1~8
    [2] Jens Buus, Markus C. A., Daniel J. B., Tunable Laser Diodes and RelatedOptical Sources, New Jersey: John Wiley&Sons, Hoboken,2005,4~151
    [3] Larry A. Coldren, G. A. Fish, Y. Akulova,et al,Tunable semiconductorlasers: a tutorial, J. Lightwave Technol.,2004,22(1):193~202
    [4] Strategies Unlimited, The Worldwide Market for Lasers: Market Review andForecast, Daytona: Strategies Unlimited,2010,1~30
    [5] Jens Buus, Edmond J. Murphy, Tunable lasers in optical networks, J.Lightwave Technol.,2006,24(1):5~11
    [6] Krzempek K, Lewicki R, N hle L, Continuous wave distributed feedbackdiode laser based sensor for trace-gas detection of ethane Appl. Phys. B:Lasers and Optics,2012,106(1):251~255
    [7] Vincent Weldon, David MchInerney, Richard Phelan, et al, Characteristics ofseveral NIR tunable diode lasers for spectroscopic based gas sensing: Acomparison, Spectrochimica Acta Part A,2006,63(5):1013~1020
    [8] Raimund Brunner, Maurus Tacke, Tunable diode laser line width and tuningmeasurements for gas analysis monitoring, Infrared Phys.&Technol.2002,43(2):61~67
    [9] P. Oberson, B. Huttner, O. Guinnard, et al, Optical frequency domainreflectometry with a narrow linewidth fiber laser, IEEE Photon. Technol.Lett.,2000,12(7):867~869
    [10] Xingwen Yi, William Shieh, Yiran Ma, Phase noise effects on high spectralefficiency coherent optical OFDM transmission, J. Lightwave Technol.,2008,26(10):1309~1316
    [11] Michael G. Taylor, Phase estimation methods for optical coherent detectionusing digital signal processing, J. Lightwave Technol.,2009,27(7):901~914
    [12] R. N. Hall, G. E. Fenner, J. D. Kingsley, et al, Coherent light emission fromGaAs junctions, Phys. Rev. Lett.,1962,9(9):366~368
    [13] Larry A. Coldren, Scott W. Corzine, Diode Lasers and Photonic IntegratedCircuits, New Jersey: John Wiley&Sons, Hoboken,1995,66~75
    [14] Shimoda K., Fifty years of the laser, Rev. Laser Eng.,2010,38(1):10~12
    [15]蔡伯荣,半导体激光器,北京:电子工业出版社,1995,1~11
    [16] H. Kroemer, A proposed class of heterojunction injection lasers, Proc. IEEE,1963,51:1782-1783
    [17] Z. l. Alferov, R. F. Kazarinov, Semiconductor laser with electrical pumping,USSR Patent,8173,1963
    [18] H. Rupprecht, J. M. Woodal, G. D. Pettit, Efficient visibleelectroluminescence at300K from Ga1-xAlxAs p-n junctions grown byLiquid-Phase-Epitaxy, Appl. Phys. Lett.,1967,11(3):81~83
    [19] Z. I. Alferov, V. M. Andreev, E. L. Portnoy, et al, AlAs-GaAs heterojunctioninjection lasers with a low room-temperature threshold, Sov. Phys.Semicond.,1970,3:1107~1110
    [20] Jeff Hecht, Short history of laser development, Optical Engineering,2010,49(9):091002
    [21]王启明,中国半导体激光器的历次突破与发展(邀请论文),中国激光器,2010,37(9):2190~2197
    [22] M. Nakamura, A. Yariv, H. W. Yen, et al, Optically pumped GaAs surfacelaser with corrugation feedback, Appl. Phys. Lett.,1973,22(1):515~516
    [23] D. R. Scifres, R. D. Burnham, W. Streifer, Distributed-feedback singleheterojunction GaAs diode laser, Appl. Phys. Lett.,1974,25(4):203~206
    [24] M. Nakamural, K. Aiki, J. Umeda, et al, CW operation ofdistributed-feedback GaAs-GaAlAs diode lasers at temperatures up to300K,Appl. Phys. Lett.,1975,27(7):403~405
    [25] W. Streifer, D. R. Scifres, R. D. Burnham, et al, Longitudinal modes indistributed feedback lasers with external reflectors, J. Appl. Phys.,1975,46(1):247~249
    [26] Sekartedjo K., Eda N., Furuya K., et al,1.5μm phase-shifted DFB lasers forsingle-mode operation, Electron. Lett.,1984,20(2):80~81
    [27] Yoshikuni Y., Motosugi G., Oe K, et al, Broad wavelength tuning undersingle-mode oscillation with a multi-electrode distributed feedback laser,Electon. Lett.,1986,22(22):1153~1154
    [28] Yoshikuni Y., Motosugi G., Multi-electrode distributed feedback laser forpure frequency modulation and chirping suppressed amplitude modulation, J.Lightwave Technol.,1987,5(4):516~522
    [29] K. Kobayashi, I. Mito, Single frequency and tunable laser diodes, J.Lightwave Technol.,1988,6(1):1623~2633
    [30] T. L. Koch, U. Koren, Semiconductor lasers for coherent optical fibercommunications, J. Lightwave Technol.,1990,8(3)
    [31] M. Tohyama, M. Onomura, M. Funemizu, et al, Wavelength tuningmechanism in three-electrode DFB lasers, IEEE Photon. Technol. Lett.,1993,5(6):616~618
    [32] H. Hillmer, A. Grabmaier, S. Hansmann, et al, Tailored DFB laser propertiesby individually chirped gratings using bent waveguides, IEEE J. SelectedTopics in Quantum Electron.,1995,1(2):356~362
    [33] H. Ishii, F. Kano, Y. Tohmori, et al, Narrow spectral linewidth underwavelength tuning in thermally tunable super-structure-grating(SSG) DBRlasers, IEEE J. Selec. Topics in Quantum Electron.,1995,1(2):401~407
    [34] G. Alibert, F. Delorme, S. Grosmaire, et al, New tunable laser using a singleelectro-absorption tuning super structure grating for sub-nanosecondswitching applications, IEEE J. Selec. Topics in Quantum Electron.,1997,3(2):598~606
    [35] F. Delorme, G. Alibert, P. Boulet, et al, High reliability of high-power andwidely tunable1.55-μm distributed Bragg reflector lasers for WDMapplications, IEEE J. Selec. Topics in Quantum Electron.,1997,3(2):607~614
    [36] L. Coldren, Monolithic tunable diode lasers, IEEE J. Topics in QuantumElectron.,2000,6(6):988~999
    [37] V. Jayaraman, Z. M. Chuang, and L. A. Coldren, Theory, design andperformance of extended tuning range semiconductor lasers with sampledgratings, IEEE J. Quantum Electron.,1993,29(6):1824~1834
    [38] H. Ishii, H. Tanobe, F. Kano, et al., Quasicontinuous wavelength tuning insuper-structure-grating (SSG) DBR lasers, IEEE J. Quantum Electron.,1996,32(3):433~440
    [39] H. Ishii, K. Kasaya, H. Oohashi, Spectral linewidth reduction in widelywavelength tunable DFB laser array, IEEE J. Selected Topics in QuantumElectron.,2009,15(10):714~715
    [40] H. Ishii, K. Kasaya, H. Oohashi, Narrow spectral linewidth operation (<160KHz) in widely tunable distributed feedback laser array, Electron. Lett.,2010,16(10):714~715
    [41] Stefan SpieBberger, Max Schiemangk, Andreas Wicht, et al, Narrowlinewidth DFB lasers emitting near a wavelength of1064nm, J. LightwaveTechnol.,2010,28(17):2611~2616
    [42] S.S.Sané,S.Bennetts,J.E.Debs,et al.,11W narrow linewidth laser source at780nm for laser cooling and manipulation of Rubidium, Opt. Express,2012,20(8):8915~8919
    [43] Wolfgang Zeller, Lars Naehle, Peter Fuchs, et al, DFB lasers between760nmand16μm for sensing applications, Sensors,2010,10(3):2492~2510
    [44] M.Razeghi,Y.Bai,N.Bandyopadhyay,et al.,Recent advances in IRsemiconductor laser diodes and future trends, IEEE Proceedings2011International Conference on Photonics Society Summer Topical MeetingSeries,2011:55~56
    [45]郝秀晴,陈根祥,可调谐半导体激光器的发展及应用,光通信技术,2010,34(11):4~7
    [46] Wyatt R., Devlin W. J.,10kHz linewidth1.5μm InGaAsP external cavitylaser with55nm tuning range, Electron. Lett.,1983,19(3):110~112
    [47] Kenichi Iga, Vertical-cavity surface-emitting laser: its conception andevolution, J. Appl. Phys.,2008,47(1):1~10
    [48] H. Ishii, K. Kasaya, H. Oohashi, Spectral linewidth reduction in widelywavelength tunable DFB laser array, IEEE J. Sel. Topics Quantum Electron.,2009,15(3):514~520
    [49] Chang S. H., Hwang I, K., Kim B. Y., et al, Widely tunable single-frequencyEr-doped fiber laser with long linear cavity, IEEE Photon. Technol. Lett.,2001,13(4):287~289
    [50] G. Genty, M. Lehtonen, H. Ludvigsen, Effect of cross-phase modulation onsupercontinuum generated in microstructured fibers with sub-30fs pulses,Opt. Express,2004,12(19):4614~4624
    [51]娄秀涛,气体监测的可调谐多模二极管激光关联光谱技术研究:[博士学位论文],哈尔滨,哈尔滨工业大学,2009
    [52] P. Werle, R. Mucke, F. D`Amato, et al, Near-infrared trace-gas sensors basedon room-temperature diode lasers, Appl. Phys. B.,1998,67(3):307~315
    [53] Peter Werle, A review of recent advances in semiconductor laser based gasmonitors, Spectrochimica Acta Part A,1998,54(2):197~236
    [54]董凤忠,阚瑞峰,刘文清等,可调谐二极管激光吸收光谱技术及其在大气质量检测中的应用,量子电子学报,2005,22(3):315~327
    [55] Xing Pan,Henning Olesen, Bjarne Tromborg, Modulation characteristics oftunable DFB/DBR lasers with one or two passive tuning sections, IEEE J.Quantum Electron.,1989,25(6):1257~1260
    [56] Chawki M. J., Auffret R., Coauil E. L., et al., Two-electrode DFB laser filterused as a wide tunable narrow-band FM receiver: Tuning analysis,characteristics and experimental FSK-WDM system, J. Lightwave Technol.,1992,10(10):1388~1397
    [57] Rigole P.-J.,Nilsson S.,Backbom L.,et al., Wavelength coverage over67nmwith a GCSR laser: tuning characteristics and switching speed, IEEEProceedings:15th International Conference on Semiconductor LaserConference,1996,125~126
    [58] Jeonq S., Kanq J. K.,Oh K.S., Effect of wavelength detuning on spectral andtemperature characteristics of1.3μm DFB lasers, Proceedings of theSPIE-The International Society for Optical Engineering,1997,5725615:394~399
    [59] Lavrova O. A., Blumenthal D. J., Detailed transfer matrix method-baseddynamic model for multisection widely tunable GCSR lasers, J. LightwaveTechnol.,2000,18(9):1274~1283
    [60] Hao Wang, Yonglin Yu, New theoretical model to analyze temperaturedistribution and influence of thermal transients of an SG-DBR laser, IEEEJ. Quantum Electron.,2012,48(2):107~113
    [61] Iiyama K., Hayashi K., Ida Y., et al, Delayed self-homodyne method usingsolitary monomode fibre for laser linewidth measurements, Electron Lett.,1989,25(23):1589~1590
    [62] Iiyama K., Hayashi K., Ida Y., et al, Reflection-type delayedself-homodyne/heterodyne method for optical linewidth measurements, J.Lightwave Technol.,1991,9(5):635~640
    [63] Adnan H. Ali. Simultaneous measurements for tunable laser source linewidthwith homodyne detection, Computer and Information Science,2011,4(4):138~144
    [64] T. Okoshi, K. Kikuchi, and A. Nakayama, Novel method for high resolutionmeasurement of laser output spectrum, Electron Lett.,1980,16(16):630~631
    [65] L. E. Richter, H. I. Mandelberg, M. S. Kruger, et al, Linewidth determinationfrom self-heterodyne measurements with subcoherence delay times, IEEE J.Quantum Electron.1986, QE-22(11):2070~2074
    [66] Jay W. Daeson, Namkyoo Park, Kerry J.Vahala, An improved delayedself-heterodyne interferometer for linewidth measurements, IEEE Photon.Technol.,1992,4(9):1063~1066.
    [67] Peter Horak, Wei H. Loh, On the delayed self-heterodyne interferometrictechnique for determining the linewidth of fiber lasers, Opt. Express,2006,14(9):3926~3928
    [68]鞠有伦,王振国,王磊等,2um单纵模激光频率短期不稳定度的测量,光学学报,2008,28(11):2164~2168
    [69]贾豫东,欧攀,张春熹等,延时自外差法线宽测量误差分析仿真及修正,中国激光,2008,35(3):65~68
    [70] Wu Zhou, Kin Man Chong, Hong Guo, Linewidth measurement of Littrowstructure semiconductor laser with improved methods, Phys. Lett. A,2008,372(23):4327~4332
    [71]王睿,苗昂,王松等,光外差法测量光探测器频率响应的系统校准,光电子·激光,2008,19(9):1220~1222
    [72]马明祥,徐攀,胡正良等,基于光纤M-Z干涉仪相干度变化的超窄线宽激光器跳模检测研究,半导体光电,2011,32(1):123~127
    [73] Adnan H. Ali., Simultaneous Measurements for Tunable Laser SourceLinewidth with Homodyne Detection, Computer and Information Science,2011,4(4):138~144
    [74]彭雪峰,马秀荣,张双根等,两台独立激光器拍频线型对线宽测量的影响,中国激光,2011,38(4):0408002
    [75]吕辉,单片集成可调谐半导体激光器的控制研究:[博士学位论文],湖北,华中科技大学,2010
    [76] Bernard M. G. A., Duraffourg G., Laser conditions in semiconductors,Physica Status Solidi,1961,1(7):699~703
    [77] Wood S. A., Plumb R. G. S., Robbins D. J., Time domain modeling ofsample grating tunable lasers, IEEE Proc. Optoelectron,2000,147(1):43~48
    [78] Lintao Z., Cartledge J. C., Fast wavelength switching of three-section DBRlasers, IEEE J. Quantum Electron.,1995,31(1):75~81
    [79]江山,单片光子集成关键技术与宽带可调谐半导体激光器研究:[博士学位论文],北京,清华大学,2009
    [80] H. Ishii, K. Kasaya, H. Oohashi, Narrow spectral linewidth operation(<160kHz) in widely tunable distributed feedback laser array, Electron. Lett.,2010,46(10):714~715
    [81]何晓颖,新型Bragg光栅及其在可调谐半导体激光器中的应用:[博士学位论文],湖北,华中科技大学,2009
    [82] V. Jayaraman, A. Mathur, L. Coldren, et al, Extended tuning range insampled grating DBR lasers, IEEEE Photon. Technol. Lett.,1993,5(5):489~491
    [83] Y. Tohori, Y. Yonshikuni, H. Ishii, et al, Broad-range wavelength-tunablesuperstructure grating (SSG) DBR laser, IEEE J. Quantum Electron.,1993,29(6):1817~1823
    [84] M. Oberg, S. Nilsson, K. Streubel, et al,74nm wavelength tuning range ofan InGaAsP vertical grating assisted co-directional coupler laser with a rearsampled grating reflector, IEEE Photon. Technol. Lett.,1993,5(7):735~738
    [85] P. Zorabedian, Tunable external cavity semiconductor lasers, Tunable LasersHandbook, F. J. Duarte(Ed.), New York: Academic,1995,349~442
    [86]董雷,宽可调谐SGDBR半导体激光器理论和实验研究:[博士学位论文],山东,山东大学,2010
    [87] R. A. Soref, J. P. Lorenzo, All-silicon active and passive guided-wavecomponents for λ=1.3and1.6μm, IEEE J. Quantum Electron.,1986,QE22(6):873~879
    [88] H. Yamamoto, M. Asada, Y. Suematsu, Electric-field induced refractiveindex variation in quantum-well structure, Electron. Lett.,1985,21(13):579~580
    [89] S. L. Chuang, Physics of Optoelectronic Devices, Chichester: U. K. Wiley,1995,1~78
    [90] K. Chinen, K. Gen-Ei, H. Suhara, et al, Low-threshold1.55μm InGaAsP/InPburied heterostructure distributed feedback lasers, Appl. Phys. Lett.,1987,51(4):273~275
    [91] P. Tayebati, P. Wang, D. Vakhshoori, et al, Half-symmetric cavity tunablemicromechanical VCSEL with single spatial mode, IEEE Photon. Technol.Lett.,1998,10(12):1679~1681
    [92] Jens Buus, The effective index method and its application to semiconductorlasers, IEEE J. Quantum Electron.,1982,18(7):1083~1089
    [93] H. Ghafouri-Shiraz, Distributed Feedback Laser Diode and Optical TunableFilters, New Jersey: John Wiley&Sons, Hoboken,2003,101~192
    [94] Jae-Ho Han. Sung-Woong Park., Effect of temperature an injection currenton characteristice of TO-CAN packaged Fabry-Perot laser diode, CurrentAppl. Phys.,2007,(7):6~9
    [95] Kuznetsov M. Theory of wavelength tuning in two-segment distributedfeedback laser, IEEE J.Quant.Electron.,1988,24(9):1837~1844
    [96] Schmidt B.,Hakimi R.,Illek S.,et.al.Tunable twin-guide (DFB)laser withburied facets for reduced spectral line width broadening, Electron. Lett.1997,30(16):1389~1390
    [97] Joanne Manning, Robert Olshansky, The carrier-induced index change inAlGaAs and1.3um InGaAsP diode lasers, IEEE J. Quantum Electron.,1983,19(10):1525~1530
    [98] N. K. Dutta, W. S. Hobson, J. Lopata, et al, Tunable InGaAs/GaAs/InGaPlaser, Appl. Phys. Lett.,1997,70(10):1219~1220
    [99] Casey H. C., Panish M. B., Heterostructure laser, New York: Academic Press,1978,50~58
    [100] J. Seufert, M. Fischer, M. Legge, et al, DFB laser diodes in the wavelengthrange from760nm to2.5μm, Spectrochimica Acta Part A.2004,60(8):3243~3247
    [101] A. Vicet, D. A. Yarekha, A. Ouvrard, et al, Tunability of antimonite-basedsemiconductor lasers diodes and experimental evaluation of the thermalresistance, IEE Proc. Optoelectron.,2003,150(4):310~313
    [102] Andrei A. P., Albert N. I., Yury P. Y., Tunable lasing from1.8um diodelasers: conditions and characteristics, Spectrochimica Acta Part A.1996,52(2):871~875
    [103] M. Fukuda, Optical Semiconductor Devices, New York: John Wiley&Sons,1999:28~60
    [104] W. T. Tsang, Semiconductor Injection Laser, New York: John Wiley&Son,1990:208~273
    [105] Bennet B., Soref R., DelAlamo J., et al, Carrier-induced change in refractiveindex of InP,GaAs and InGaAsP, IEEE J. Quantum Electron.,1990,26(1):113~122
    [106] Miller D. A. B., Chemla D. S., Damen T. C., et al, Band edgeelectroabsorption in quantum well structures: The quantum confined Starkeffect, Phys. Rev. Lett.,1984,53(22):2173~2176
    [107] Susa N., Nakahara T., Enhancement of change in the refractive index in anasymmetric quantum well, Appl. Phys. Lett.,1992,60(20):2457~2459
    [108] Woodward S. L., Koren U., Meller B. I., A DBR laser tunable by resistiveheating, IEEE Photon. Technol. Lett.,1992,4(12):1330~1332
    [109] M. Bagley, R. Wyatt, D. J. Elton, et al,242nm continuous tuning from aGRIN-SC-MQW-BH InGaAsP laser in an extended cavity, Electron. Lett.,1990,26(4):267~269
    [110] F. Favre, D. Le Guen,82nm of continuous tenability for an external cavitysemiconductor laser, Electron. Lett.,1991,27(1):183~184
    [111]段慧,基于速率方程的半导体激光器响应特性研究:[硕士学位论文],河北,燕山大学,2010
    [112] Xiaopei Chen, Ultra-narrow laser linewidth measurement:[DocotorDissertaion], Blachsburg, Virginia, The Virginia Polytechnic Institute andState University,2006
    [113]肖华菊,窄线宽激光器线宽虚拟测试系统设计:[硕士学位论文],四川,西南交通大学,2011
    [114] A. L. Schawlow, C. H. Townes, Infared and optical masers, Phys. Rev.,1958,112(6):1940~1949
    [115] Philip Goldberg, Perter W. Milonni, Bala Sundaram, Theory of thefundamental laser linewidth, Phys. Rev. A,1991,44(3):1969~1985
    [116] J. Arnaud, Classical theory of laser linewidth, Optical and Quantum Electron.,1996,28(11):1589~1615
    [117] C. H. Henry, Theory of the linewidth of semiconductor lasers, IEEE J. Quant.Electron.,1982,QE-18(2):259~264
    [118] C. H. Henry, Phase noise in semiconductor lasers, IEEE J. LightwaveTechnol.,1986,4(3):298~311
    [119]高楠,调谐二极管激光吸收光谱中的若干关键技术研究:[博士学位论文],天津,天津大学,2011
    [120] R. Brunner, Maurus Tacke, Tunable diode laser line width and tuningmeasurements for gas analysis monitoring, Infrared Phys. Technol.,2002,43(2):61~67
    [121] Park Y. Ahn TJ, Kieffer JC, et al, Optical frequency domain reflectometrybased on real-time Fourier transformation, Opt. Express,2007,15(8):4597~4616
    [122] P. Oberson, B. Huttner, O. Guinnard, et al, Optical frequency domainreflectometry with a narrow linewidth fiber laser, IEEE Photon. Technol.Lett.,2000,12(7):867~869
    [123] Hezi Joseph, Dan Sadot, A novel self-heterodyne method for combinedtemporal and spectral high-resolution measurement of wavelength transientsin tunable lasers, IEEE Photon. Technol. Lett.,2004,16(8):1921-1923
    [124]安颖,杜振辉,刘景旺等,激光自外差相干测量中分布反馈半导体激光器电流调谐非线性的补偿方法,物理学报,2012,61(3):034207
    [125] Philippe B. Gallion, Guy Debarge, Quantum phase noise and field correlationin single frequency semiconductor laser systems, IEEE J. Quantum Electron.,1984,QE-20(4):343~349
    [126] M. Han, A. Wang, Analysis of los-compensated recirculating delayedself-heterodyne interferometer for laser linewidth measurement, Appl. Phys.B,2005,81(23):53~58
    [127]高东宇,准连续调谐激光吸收光谱技术的研究与仪器开发:[硕士学位论文],天津,天津大学,2011
    [128]刘景旺,杜振辉,高东宇等,半导体激光器调谐的动态特性研究,激光杂志,2012,32(6):6~10
    [129] Zhenhui Du, Jinyi Li, Rubin Qi, et al, High-resolution absorptionspectroscopy of carbon dioxide by NIR diode laser spectroscopy between6320and6335cm-1, Proceedings of the14th International Conference ofNear Infrared Spectroscopy,2009:1047~1052
    [130]李金义,半导体激光器的宽谱快速调谐及其在气体检测中的应用:[硕士学位论文],天津,天津大学,2010
    [131]刘景旺,杜振辉,齐汝宾等,DFB激光器调谐过程的动态线宽特性,纳米技术与精密工程,2012,10(4):62-66
    [132]刘景旺,杜振辉,李金义等,DFB激光二极管电流-温度调谐特性的解析模型,物理学报,2011,60(7):074213
    [133]李金义,杜振辉,齐汝宾等,温度调谐技术测量CO2在6320~6336cm-1波段的吸收光谱,光学学报,2012,32(1):0130004
    [134]李金义,杜振辉,齐汝宾等,利用热敏电阻精确测量DFB激光器动态结温度,仪器仪表学报,2012,33(12):2726~2730
    [135] L.S. Rothman, D. Jacquemart, A. Barbe, et al. The HITRAN2004molecularspectroscopic database, Journal of Quantitative Spectroscopy and RadiativeTransfer,2005,96:139~204

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700