用户名: 密码: 验证码:
非磁性元素掺杂氧化物基稀磁半导体的第一性原理研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
具有半金属特性的稀磁半导体是实现半导体自旋电子器件的关键材料。以前在稀磁半导体领域,人们的研究兴趣主要投向了3d或4f性阳离子掺杂传统的半导体和宽禁带氧化物材料带来的铁磁性效应,而阴离子掺杂导致的效应更多是在光催化和光电子领域受到关注。因此,在氧化物稀磁半导体领域,很有必要去探讨以宽禁带氧化物半导体为基质,通过掺杂非磁性元素将非磁性半导体转变成铁磁性半导体的可能性。本文利用第一性原理计算,分析了非磁性元素掺杂氧化物体系的电子结构和磁性,并从理论上对其磁性交换机制和起源问题进行探讨。全文安排如下:
     第一章,介绍了自旋电子学和稀磁半导体相关概念;叙述了稀磁半导体的发展历程和稀磁半导体的基本性质。阐述了稀磁半导体中磁性起源的各种交换相互作用机制。综述了以SnO2、CeO2、Ga2O3为基的氧化物稀磁半导体的最新研究进展。
     第二章,介绍了我们采用的基于密度泛函理论的第一性原理电子结构计算方法以及计算软件包(Vienna Ab-initio Sinlulation Package, VASP)。
     第三章,研究了非金属轻元素N和贵金属Ag分别掺杂的SnO2体系的电子结构和磁性。计算预测N掺杂金红石结构的Sn02体系自旋极化态比非自旋极化态在能量上更有利(大约478meV)。每个取代N诱导了1.0μB的总磁矩,磁矩主要来自N原子,小部分来自N原子周围的O原子。对不同磁性氮原子之间的耦合研究表明N杂质之间不仅存在反铁磁耦合也存在铁磁性耦合。对于Ag掺杂的Sn02体系,计算表明Ag掺杂导致了体系的自旋极化态为基态,每个取代Ag离子产生了1.0μB的总磁矩。体系中以空穴为媒介诱导的铁磁性耦合可归因于O和Ag离子之间的p-d跳转相互作用。本征缺陷氧空位(Vo)对Ag掺杂Sn02体系的磁性有着非常重要的影响。Vo提高了单Ag掺杂体系的自旋极化态的稳定性,对双Ag掺杂的构型作用错综复杂。如果Ag离子对距离足够远,两磁性Ag离子之间的铁磁性耦合加强。结果说明Ag掺杂SnO2体系有望成为将来自旋器件应用中最有前途的材料之一。
     第四章,研究了非金属轻元素C和N分别掺杂的Ce02体系的电子结构和磁性。首先估算了C和N掺入Ce02基质中所需的形成能,在富Ce的条件下N是比较容易掺入Ce02基质中去的,而C相对来说要难。在Ce02基质中,取代杂质C和N形成磁性离子,并分别产生2.0μB和1.0μB的总磁矩。局域磁矩主要来自于杂质原子及其邻近的0原子,起因于洪特定则耦合。对于N掺入Ce02的体系,采用LSDA(+U)和GGA(+U)四种计算方案,我们发现体系都是半金属性质的铁磁体。铁磁性起源于以空穴为媒介的长程双交换作用机制。要在体系中建立起磁逾渗,需要N的浓度超过4.6%。C掺杂的Ce02体系呈半金属铁磁性,建立起这种铁磁性的机制有C原子和O原子以及C原子和Ce原子之间的p-p,p-d,和p-f杂化机制。C和N掺杂Ce02体系中的半金属铁磁性特征有望在自旋器件领域获得应用。
     第五章,对非金属N和磁性元素Ni掺杂Ga203体系的电子结构和磁性进行了探索。我们发现取代原子N在β-Ga2O3晶体中占据高对称的O位。不同占位的N原子都提供1.0μB的总磁矩。磁性N离子间为短程铁磁性耦合。类似于p-d杂化机制的p-p相互作用机制可以稳定这种短程铁磁性。结果中发现的N-2p带隙态可以解释实验中发现的红移现象。计算预测Ni掺杂Ga203体系是半金属铁磁体。当Ni占据八面体或四面体位时,每个杂质Ni产生1.0或3.0μB的磁矩。Ni取代八面体位的结构是体系最稳定的结构。双交换作用机制稳定了体系的铁磁性序,其对应的居里温度有望超过室温。
Dilute magnetic semiconductors with half-metallic ferromagnetism is the key martial for application in spintronic devices. Most previous attention to DMS has been focused on magnetic cation (3d or4f elements) doing conventional semiconductors and wide gap oxides. People have made a great effort to study the photocatalysis and photoelectron, but to neglect the magnetism induced by doping negative ion in host material. Therefore, in the field of dilute magnetic semiconductors, it is necessary to probe into the possibility of preparing ferromagnetic semiconductors by doing non-magnetic elements in wide gap oxides semiconductors. In this paper, we investigate the electronic structure and magnetic properties in oxides doped with non-magnetic elements, and explore the origin of magnetism in these systems. This paper is organized as follows:
     In chapter1, we introduce conceptions of spintronics and dilute magnetic semiconductor, depict the development of the DMS and its essential properties, expatiate on various mechanism of the magnetic coupling, and summarize the uptodate progression in SnO2-, CeO2-and Ga2O3-based oxide DMSs.
     In chapter2, we introduce computing method based on first-principles density functional theory calculations as implemented in the Vienna ab initio Simulation Package (VASP).
     In chapter3, the electronic and magnetic properties in SnO2doped with non-magnetic elements N and Ag are investigated. Calculations predict that the spin-polarized state, with a magnetic moment of about1.0μB per Nitrogen-dopant, is more favorable in energy (about478meV) than the non-spin polarized state. The magnetic moment mainly arises from p orbital of Nitrogen which substitutes the Oxygen atom, with a little contribution from the Oxygen atoms surrounding Nitrogen atom. Furthermore, the coupling between different Nitrogen is discussed, and the results show that Nitrogen impurities not only couple antiferromagnetically but also ferromagnetically. As for Ag-doped SnO2, calculations demonstrate that Ag-doping introduces spin-polarization in SnO2and gives rise to a local magnetic moment of1.0μB per substitutional silver ion. The hole-mediated ferromagnetic coupling between two Ag ions in this material is possibly ascribed to a p-d hopping interaction between O and Ag ion. Oxygen vacancy (V0) plays an important role in determining the magnetic properties of Ag-doped SnO2system. The Vo enhances stability of spin-polarized sate for the case of single Ag doped system, and imposes intricate effect on a pair of Ag doped configurations. The ferromagnetic coupling between two Ag ions is possibly reinforced if Vo is sufficiently far away from them. The result indicates that Ag-doped SnO2is a promising candidate for applications in spintronic devices.
     In chapter4, the electronic structures and magnetic properties in Carbon-doped CeO2have been investigated. First, the formation energies of N-and C-doped CeO2are estimated. Under the Ce-rich condition, N is preferentially incorporated into CeO2and substitutes oxygen, while N cannot easily doped into the CeO2matrix. The substituental N and C contribute a magnetic moment of1.00and2.00μB per dopant, respectively, which mainly stems from Hund's rule coupling. The magnetic moment mainly arises from N or C, with a little contribution from the Oxygen atoms surrounding it. For the case of N-doped CeO2, the half-metal ferromagnetic ground state is predicted by GGA, LSDA, GGA+U and LSDA+U. The predicted ferromagnetism by LSDA attributes to the hole-mediated long-range double exchange mechanism. To establish the collective ferromagnetism, the minimum percolation concentration must be larger than4.6%. Half-metallic characteristics in C-doped CeO2can be attributed to the collective effects of the p-p, p-d, and p-f hybridizations between C and neighboring O or Ce atoms. Half-metallic ferromagnetism in N and C-doped CeO2make it possible to be an ideal material for spintronic devices.
     In chapter5, the electronic and magnetic properties of nitrogen-doped monoclinic β-phase gallium oxide are investigated. The substituental N prefers to occupy a high symmetric O site in β-Ga2O3crystal. Calculations predict that the spin-polarized state is stable with a magnetic moment of about1.0μB per nitrogen-dopant. Similar to p-d hybridization, p-p exchange mechanism stabilize the short-range ferromagnetism. Results also reveal experimentally observed red-shift should be N-2p gap states to band transition. Calculations predict that Ni-doped β-Ga2O3is predicted to be robust half-metallic ferromagnet. When one Ni atom occupies the octahedral or tetrahedral site, each Ni-impurity give rise to1.0or3.0μB. The structure in which one Ni substitutes the octahedral site is most stable. The double exchange mechanism stablizes the ferromagnetic ground state with an ordering temperature above room-temperature.
引文
[1]Baibich Mato N, Broto J M, Fert A et al. Giant Magnetoresistance of (001)Fe/(001)Cr Magnetic Superlattices. Phy. Rev. Lett.,1988,61(21): 2472-2475
    [2]Awschalom D D, Flatte M E. Challenges for semiconductor spintronics. Nature Physics,2007,3:153-159
    [3]utic I, Fabian J, Das Sarma S. Spintronics:Fundamentals and applications. Rev. Mod. Phys.,2004,76(2):323-410
    [4]Schmidt G. Concepts for spin injection into semiconductors-a review. J. Phys. D:Appl. Phys.,2005,38(7):R107-R122
    [5]Wolf S A, Awshalom D D, Buhrman R A, et al. Spintronic:A spin-based electronics vision for the future. Science,2001,294 (5546):1488-1495
    [6]张家鑫,许丽萍,王忠斌等.半导体自旋电子学的最新研究进展.硅谷,2010,19:31-37
    [7]Zhu H J, Ramsteiner M, Kostial H, et al. Room-temperature spin injection from Fe into GaAs. Phys. Rev. Lett.,2001,87(1):016601-1-3
    [8]Hu C -M, Nitta Junsaku, Jensen A, et al. Spin-polarized transport in a two-dimensional electron gas with interdigital-ferromagnetic contacts. Phys. Rev. B,2001,63(12):125333-125336
    [9]Schmidt G, Richter G, Grabs P et al. Large Magnetoresistance Effect Due to Spin Injection into a Nonmagnetic Semiconductor. Phys. Rev. Lett.,2001, 87(22):227203(1-4)
    [10][10]Janisch R, Gopal P, Spaldin N A. Transition metal-doped TiO2 and ZnO-present status of the field. J. Phys.:Condens Matter,2005,17(27): R657-6R89
    [11]都有为.磁性材料新近进展.物理,2006,35(9):731-739
    [12]Coey J M D. d0 Ferromagnetism. Solid State Sci.,2005,7(6):660-667
    [13]Yang K, Wu R, Shen L, et al. Origin of d0 magnetism in II-VI and III-V semiconductors by substitutional doping at anion site. Phys. Rev. B,2010, 81(12):125211-125215
    [14]赵建华,邓加军,郑厚植.稀磁半导体的研究进展.物理学进展,2007,27(2):109-150
    [15]Cervenka J, Katsnelson M I, and Flipse C F J. Room-temperature ferromagnetism in graphite driven by two-dimensional networks of point defects. Nature Physics,2009,5:840-844
    [16]Son Y, Cohen M L, Louie S G. Half-metallic graphene nanoribbons. Nature, 2006,444(7117):347-349
    [17]Yazyev O V and Katsnelson M I. Magnetic correlations at graphene edges: Basis for novel spintronics devices. Phys. Rev. Lett.,2008,100(4):047209-1-4
    [18]Pearton S J, Abernathy C R, Overberg M E, et al. Wide band gap ferromagnetic semiconductors and oxides. J. Appl. Phys.,2003,93(1):1-13
    [19]Pearton S J, Heo W H, Ivill M, et al. Dilute magnetic semiconducting oxides. Semicond. Sci. Technol.,2004,19(10):R59-R74
    [20]Ogale S B. Dilute Doping, Defects, and Ferromagnetism in Metal Oxide Systems. Adv. Mater.,2010,22(29):3125-3155
    [21]Von Molnar S, and Read D. New materials for semiconductor spin-electronics. Proceedings of the IEEE,2003,91(5):715-726
    [22]Furdyna J K. Diluted magnetic semiconductors.J. Appl Phys,1988,64(4): R29-R64
    [23]Ohno H. Making nonmagnetic semiconductors ferromagnetic. Science,1998, 281 (5379):951-956
    [24]Ferrand D, Cibert J, Wasiela A. et al. Carrier-induced ferromagnetism in p-Zn1-xMnxTe. Phys. Rev. B,2001,63(18),085201-0852013
    [25]常凯,夏建白.稀磁半导体—自旋和电荷的桥梁.物理,2004,33(6):414-418
    [26][26]Saito H, Zayets V, Yamagata S, et al. Room-Temperature Ferromagnetism in a Ⅱ-Ⅵ Diluted Magnetic Semiconductor Zn1-xCrxTe. Phys Rev Lett.,2003, 90 (20):207202-1-4
    [27]Matsukura F, Ohno H, and Dietl T. Handbook of Magnetic Materials,2002,14: 1-87
    [28]Munekata H, Ohno H, Molnar S von, et al. Diluted magnetic Ⅲ-Ⅴ semiconductors. Phys Rev Lett,1989,63(17):1849-1852
    [29]Ohno H, Shen A, Matsukura F, et al. (Ga,Mn)As:A new diluted magnetic semiconductor based on GaAs. Appl Phys Lett.,1996,69(3):363-365
    [30]Henini M. Ⅲ-Ⅴ based magnetic semiconductors. Ⅲ-Ⅴs Review,2000,13(3): 32-37
    [31]Dietl T, Ohno H. Zener model description of ferromagnetism in zinc-blende magnetic semiconductors. Science,2000,287(5455):1019-1021
    [32]Fukumura T, Jin Z, Ohtomo A, et al. An oxide-diluted magnetic semiconductor: Mn-doped ZnO. Appl. Phys. Lett.,1999,75(21):3366-3368
    [33]Matsumoto Y, Murakami M, Shono T, et al. Room-Temperature Ferromagnetism in Transparent Transition Metal-Doped Titanium Dioxide Science,2001,291(5505):854-856
    [34]王颖,湛永钟,许艳飞.稀磁半导体材料的研究进展及应用前景.材料导报,2007,21(7):20-23
    [35]Fukumura T, Yamada Y, Toyosaki H, et al. Exploration of oxidebased diluted magnetic semiconductors toward transparent spintronics. Appl Surf Sci,2004, 223(1-3):62-67
    [36][36]Wu H-B, Chang K, and Xia J-B. Electronic structure of diluted magnetic semiconductor superlattices:In-plane magnetic field effect. Phys. Rev. B,2002, 65(19):195204-1-5
    [37]王学忠,陈辰嘉,王荣明,等.Cd1-xMnxTe的巨大法拉第旋转与激子跃迁.半导体学报,1994,15(5):333-338
    [38]刘力锋,杨瑞霞,郭惠.基于GaAs的新型稀磁半导体材料(Ga,Mn)As.半导体情报,2001,38(6):25-30
    [39]Kramers H. A. L.interaction Entre les Atomes Magndtogenes dans un Cristal Paramagndtique. Physica.,1934,1:182-189
    [40]Anderson P W. An Approximate Quantum Theory of the Antiferromagnetic Ground State. Phys. Rev,1952,86 (5):694-701
    [41]戴道生,铁昆明.铁磁学(上册).北京:科学出版社,1987,209-220
    [42]Zener C. Ferromagnetic compounds of manganese with perovskite structure. Phys. Rev.,1951,82(3):403-405
    [43]Akai H. Ferromagnetism and its stability in the diluted magnetic semiconductor(In, Mn)As, Phys Rev Lett.,1998,81(14):3002-3005
    [44][44] Sato K and Katayams H. Material design for transparent ferromagnets with ZnO-based magnetic semiconductors. Jpn. J. Appl. Phys,2000,39(6B): L555-L558
    [45]Calderon M J and Brey L. Monte Carlo simulations for the magnetic phase diagram of the double-exchange Hamiltonian. Phys. Rev. B,1998,58(6): 3286-3292
    [46]Ruderman M A, Kittel C. Indirect Exchange Coupling of Nuclear Magnetic Moments by Conduction Electrons.Phys.Rev,1954,96:99-1025
    [47]White R M, Quantum Theory of Magnetism. New York:McGraw-Hill,1970
    [48]MacDonald A H, Schiffer P, and Samarth N. Ferromagnetic semiconductors: moving beyond (Ga,Mn)As. Nature Materials,2005,4(3):195-202
    [49]Tormnee J B, Shafer M W, McGuire T R. Bound magnetic Polarons and the insulator-metal transition in EuO. Phys Rev Lett.,1972,29(17):1168-1171
    [50]Wolff P A, Bhatt R N and Durst A C. Polaron-polaron interactions in diluted magnetic semiconductors. J. Appl. Phys.,1996,79(8):6196-5198
    [51]Kaminski A, Sarma S Das. Polaron Percolation in Diluted Magnetic Semiconductors. Phys Rev Lett.,2002,88(24):247202-1-4
    [52]Coey J M D, Douvalis A P, Fitzgerald C B, et al. Ferromagnetism in Fe-doped SnO2 films. Appl. Phys. Lett.,2004,84(4),1332-1334
    [53]Liu X F, Sun Y, and Yu R H. Role of oxygen vacancies in tuning magnetic properties of Co-doped SnO2 insulating films. J. Appl. Phys.,2007,101(12): 123907-1-6
    [54]Coey J M D,Venkatesan M, Fitzgerald C B. Donor impurity band exchange in dilute fermmagnetic oxides. Nature Materials,2005,4 (2):173-179
    [55]Calderon M J, Sarma S Das.Theory of carrier mediated ferromagnetism in dilute magnetic oxides. Ann. Phys.,2007,322(11):2618-2634
    [56]Ueda K, Tabata H, and Kawai T. Magnetic and electric properties of transition-metal-doped ZnO films. Appl. Phys. Lett.,2001,79(7):988-990
    [57]Ghoshal S, and Kumar P S A. Suppression of the magnetic moment upon Co doping in ZnO thin film with an intrinsic magnetic moment. J. Phys.:Condens. Matter,2008,20(19):192201-1-4
    [58]Borges R P, da Silva R C, Magalhaes S, et al. Magnetism in Ar-implanted ZnO. J. Phys.:Condens. Matter,2007,19(47):476207-1-12
    [59]Shen L, Wu R Q, Pan, H, et al. Mechanism of ferromagnetism in nitrogen-doped ZnO:First-principle calculations. Phys. Rev. B,2008,78 (7):073306-1-4
    [60]Pan H, Yi J B, Shen L, et al. Room-Temperature Ferromagnetism in Carbon-Doped ZnO. Phys. Rev. Lett.,2007,99(12):127201-1-4
    [61]Hua W, Alessandro S, Sung S, et al. Magnetism in C-or N-doped MgO and ZnO: A Density-Functional Study of Impurity Pairs. Phys. Rev. Lett.,2010,105 (26): 2672031-1-4
    [62]Ye L-H, Freeman A J, and Delley B. Half-metallic ferromagnetism in Cu-doped ZnO:Density functional calculations. Phys. Rev. B,2006,73(3):033203-1-4
    [63]Xing G Z, Yi J B, Tao J G, et al. Comparative study of room-temperature ferromagnetism in Cu-doped ZnO nanowires enhanced by structural inhomogeneity. Adv. Mater.,2008,20:3521-1-7
    [64]Keavney D J, Buchholz D B, Ma Q, et al. Where does the spin reside in ferromagnetic Cu-doped ZnO?. Appl. Phys. Lett.,2007,91(1):012501-1-3
    [65]Ogale S B, Choudhary R J, Buban J P, et al. High Temperature Ferromagnetism with a Giant Magnetic Momentin Transparent Co-doped SnO2-d, Phys. Rev. Lett.2003,91(7):077205-077208
    [66]Fitzgerald C B, Venkatesan M, Douvalis A P, et al. SnO2 doped with Mn, Fe or Co:Room temperature dilute magnetic semiconductors. J. Appl. Phys.,2004,95 (11):7390-7392
    [67]Fitzgerald C B, Venkatesan M, Dorneles L S, et al. Magnetism in dilute magnetic oxide thin films based on SnO2. J. Phys. Rev. B,2006,74(11): 115307-115316
    [68]Kimura H, Fukumura T, Kawasaki M, et al. Rutile-type oxide-diluted magnetic semiconductor:Mn-doped SnO2, Appl. Phys. Lett.2002,80(1):94-96
    [69]Archer P I, Radovanovic P V, Heald S M, et al. Low-Temperature Activation and Deactivation of High-Curie-Temperature Ferromagnetism in a New Diluted Magnetic Semiconductor:Ni2+-Doped SnO2. J. Am. Chem. Soc.,2005,127(41): 14479-14487
    [70]Hong N H, Poirot N, and Sakai J. Ferromagnetism observed in pristine SnO2 thin films. Phys. Rev. B,2008,77(3):033205-033208
    [71]Menzel D, Awada A, Dierke H, et al. Free-carrier compensation in ferromagnetic ion-implanted SnO2:Co, J. Appl. Phys.2008,103(7): 07D106-1-3
    [72]Mishra A K, Sinha T P, Bandyopadhyay S, et al. Structural and magnetic properties of nanocrystalline Fe-doped SnO2. Mater. Chem. Phys.,2011,125: 252-256
    [73]Sambasivam S, Choi B C and Lin J G. Intrinsic magnetism in Fe doped SnO2 nanoparticles. J. Solid State Chem.,2011,184(1):199-203
    [74]Zhang C, and Yan S. Origin of ferromagnetism of Co-doped SnO2 from first-principles calculations. J. Appl. Phys.,2009,106(6):06370-063714
    [75]Wang H, YanY, Mohammed Y Sh, et al.The role of Coimpurities and oxygen vacancies in the ferromagnetism of Co-doped SnO2:GGA and GGA+U studies. J. Magn. Magn. Mater.,2009,321(19):3114-3119
    [76]Wang X L, Dai Z X and Zeng Z. Search for ferromagnetism in SnO2 doped with transition metals (V, Mn, Fe, and Co). J. Phys.:Condens. Matter,2008,20(4): 045214
    [77]Wang H, Yan Y, Du X, et al. Origin of ferromagnetism in Ni-doped First-principles calculation. J. Appl. Phys.,2010,107(10):103923-103926
    [78]Rahman G, Garcia-Suarez V M, and Hong S C. Vacancy-induced magnetism in SnO2:A density functional study. Phys. Rev. B,2008,78(18):184404-184408
    [79]Long R and English N J. Density functional theory description of the mechanism of ferromagnetism in nitrogen-doped SnO2. Phys. Lett. A,2009, 374(2):319-322
    [80]Ghosh S, Mandal M and Mandal K. Effects of Fe doping and Fe-N-codoping on magnetic properties of SnO2 prepared by chemical co-precipitation. J. Magn. Magn. Mater.,2011,323(3):1083-1087
    [81]Liu X F, Iqbal J, Yang S L, et al. Nitrogen doping-mediated room-temperature ferromagnetism in insulating Co-doped SnOP2 films. Appl. Surf. Sci.,2010,256 (14):4488-4492
    [82]Rahman G, and Garcia-Suarez V M. Surface-induced magnetism in C-doped SnO2. Appl. Phys. Lett. (2010),96(5):052508-1-3
    [83][83]Wang C, Ge M and Jiang J Z. Magnetic behavior of SnO2 nanosheets at room temperature. Appl. Phys. Lett.,2010,97(4):042510-1-3
    [84]Zhang C, Kao H and Dong J. Origin of ferromagnetism via hole doping in SnO2: First-principles calculation. Phys. Lett. A,2009,373(30):2592-2595
    [85]Zhang C, Kao H and Dong J, et al. Electronic structure and magnetic properties of Cu-doped SnO2 from first-principles study. Phys. Status Solidi B,2009,246 (7):1652-1655
    [86]Zhang C and Yan S. First-principles study on ferromagnetism in Mg-doped SnO2. Appl. Phys. Lett. (2009),95 (23):232108-1-3
    [87]Zhou W, Liu L and Wu P. Nonmagnetic impurities induced magnetism in SnO2. J. Magn. Magn. Mater.,2009,321(19):3356-3359
    [88]Srivastava S K, Lejay P, Barbara B, et al. Possible room-temperature ferromagnetism in K-doped SnO2: X-ray diffraction and high-resolution transmission electron microscopy study. Mater. Sci.,2010,82(19):193203-1~4
    [89]Wei W, Dai Y, Guo M, et al. Density functional study of magnetic properties in Zn-doped SnO2. J. Appl. Phys.,2010,108 (9):093901-1-5
    [90]Liu X F, Iqbal J and Wu Z B, et al. Structure and Room-Temperature Ferromagnetism of Zn-Doped SnO2 Nanorods Prepared by Solvothermal Method. J. Phys. Chem. C,2010,114(11):4790-4796
    [91]Tiwari A, Bhosle V M, Ramachandran S, et al. Ferromagnetism in Co doped CeO2:Observation of a giant magnetic moment with a high Curie temperature. Appl. Phys. Lett.,2006,88(14):142511-1-3
    [92]Fernandes V, Klein J J, Mattoso N, and Mosca D H. Room temperature ferromagnetism in Co-doped CeO2 films on Si(001). Phys. Rev. B,2007,75 (12):121304(R)
    [93]Vodungbo B, Vidal F, Zheng Y, et al. Structural, magnetic and spectroscopic study of a diluted magnetic oxide:Co-doped CeO2-d. J. Phys.:Condens. Matter, 2008,20:125222-1-10
    [94]Song Y Q, Zhang H W, Yang Q H, et al. Electronic structure and magnetic properties of Co-doped CeO2:based on first principle calculation. J. Phys.: Condens. Matter,2009,21 (12):125504-1-5
    [95]Song Y Q, Zhang H W, Liu Y L, et al. Annealing effects on the ferromagnetism of Ceo.97Coo.o302-d compounds. Physica B,2010,405 (11):2530-2533
    [96]Shah L R, Bakhtyar A, Zhu H, et al. Detailed study on the role of oxygen vacancies in structural, magnetic and transport behavior of magnetic insulator: Co-Ce02. J. Phys.:Condens. Matter,2009,21(48):486004-1-9
    [97]Song Y Q, Zhang H W, Wen Q Y, et al. Direct evidence of oxygen vacancy mediated ferromagnetism of Co doped CeO2 thin films on Al2O3(0001) substrates. J. Phys.:Condens. Matter,2008,20 (25):255210-1-5
    [98]Liu Y, Lockman Z, Aziz A, et al. Size dependent ferromagnetism in cerium oxide (CeO2) nanostructures independent of oxygen vacancies. J. Phys.: Condens. Matter,2008,20(16):165201-1-5
    [99]Colis S, Bouaine A, Moubah R, et al. Extrinsic ferromagnetism in epitaxial Co-doped CeO2 pulsed laser deposited films. J. Appl. Phys.,2010,108(5): 053910-1-6
    [100]Li M, Ge S, Qiao W, et al. Relationship between the surface chemical states and magnetic properties of CeO2 nanoparticles. Appl. Phys. Lett.,2009,94(15): 152511-1-3
    [101]Han X, Lee J, and Yoo H. Oxygen-vacancy-induced ferromagnetism in CeO2 from first principles. Phys. Rev. B,2009,79(10):100403(R)-1-4
    [102]Fernandes V, Mossanek R J O, Schio P, et al. Dilute-defect magnetism:Origin of magnetism in nanocrystalline CeO2. Phys. Rev. B,2009,80(3):035202-1-7
    [103]Inerbaev T M, Seal S and Masunov A E. Density functional study of oxygen vacancy formation and spin density distribution in octahedral ceria nanoparticles. J Mol Model,2010,16(10):1617-1623
    [104]Li G, Qu D, Tong Y. Facile fabrication of magnetic single-crystalline ceria nanobelts. Electrochem. Commun.,2008,10(1):80-84
    [105]Li G, Qu D, Arurault L, et al. Hierarchically Porous Gd3+-Doped CeO2 Nanostructures for the Remarkable Enhancement of Optical and Magnetic Properties. J. Phys. Chem. C,2009,113(4):1235-1241
    [106]Brito P C A, Santos D A A, Duque J G S, et al. Structural and magnetic study of Fe-doped CeO2. Physica B,2010,405(7):1821-1825
    [107]Xia C, Hua C, Chen P, et al. Magnetic properties and photoabsorption of the Mn-doped CeO2 nanorods. Mater. Res. Bull.,2010,45(7):794-798
    [108]Lee S W, R yu, Geun Y G, et al. Ferromagnetic effects on transition metal doped Ga2O3-based semiconductor, physica status solidi (c),2004,1(12): 3550-3553
    [109]Hayashi H, Huang R, Ikeno H, et al. Room temperature ferromagnetism in Mn-doped y-Ga2O3 with spinel structure. Appl. Phys. Lett.,2006,89(18): 181903-1-3
    [110]Huang R, Hayashi H, Oba F, et al. Microstructure of Mn-doped y-Ga2O3 epitaxial film on sapphire (0001) with room temperature ferromagnetism. J. Appl. Phys.2007,101(6):063526-1-6
    [111]Song Y P, Wang P W, Xu X Y, et al, Magnetism and photoluminescence in manganese-gallium oxide nanowires with monoclinic and spinel structures. Physica E,2006,31(1):67-71
    [112]Pei G, Xia C, Dong Y, et al, Studies of magnetic interactions in Mn-doped β-Ga2O3 from first-principles calculations. Scripta Mater.,2008,58(11): 943-946
    [113]Kaneko K, Nomura T, Kakeya I, et al. Fabrication of Highly Crystalline Corundum-Structured a-(Gal-xFex)2O3. Alloy Thin Films on Sapphire Substrates Appl. Phys. Express,2009,2(7):075501-~3
    [114]Wang N, Wen F S, Li L, et al. Structural and magnetic characterization of rhombohedral Ga1.2Fe0.8O3 ceramics prepared by high-pressure synthesis. Solid State Commun.,2011,151(1):33-36
    [115]Parr R G, Yang W. Density Functional Theory of Atoms and Molecules. New York:Oxford University Press,1989
    [116]Ryu Y, Lee T, Lubguban J A, et al. Next generation of oxide photonic devices: ZnO-based ultraviolet light emitting diodes. Applied Physics Letters,2006,88 (24):241108-1-3
    [117]Born M, Oppenheimer R. ZUT quantentheorie der Molekeln. Ann. Phys.1927, 84:457-484
    [118]Hohenberg P, Kohn W. Inhomogeneous electron gas. Phys. Rev. B,1964, 136(3):864-871
    [119]Wang W, Parr B G. Density Functional Theory of Atom and Molecules. Oxford: Oxford University Press.1989
    [120]Kohn W. Density Functional and Density Matrix Method Scaling Linearly with the Number of Atoms. Phys. Rev. Lett.,1996,76 (17):3168-3171
    [121]Perdew P, Burke K, Ernzerhof M. Generalized Gradient Approximation Made Simple Phys. Rev. Lett.,1996,77 (18):3865-3868
    [122]Martin R M. Electronic structure:Basic theory and practical methods, New York:Cambridge University Press,2004,624
    [123]U.von Barth, L. Hedin. A local exchange-correlation potential for the spin polarized case. J. Phys. C:Solid State Phys.,1972,5:1629-1642
    [124]Wang Y and Perdew J P. Correlation hole of the spin-polarized electron gas, with exact small-wave-vector and high-density scaling. Phys. Rev. B,1991,44 (24):13298-13307
    [125]Anisimov V I, Zaanen J, and Andersen O K. Band theory and Mott insulators: Hubbard U instead of Stoner I. Phys. Rev. B,1991,44(3):943-954
    [126]Kresse G, Hafner J. Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set. Comput. Mater. Sci.,1996,6: 15-50
    [127]Pulay P. Convergence Acceleration in Iterative Sequences:The Case of SCF Iteration. Chem. Phys. Lett.,1980,73(2):393-398
    [128]Teter M P, Payne M C, Allan D C. Solution of Schrodinger's equation for large systems. Phys. Rev. B,1989,40(18):12255-12263
    [129]Lewis B G and Paine D C. Applications and processing of transparent conducting oxides. MRS Bull.2000,25(8):22-27
    [130]Torres C E R, Errico L, Golmaret F, et al. The role of the dopant in the magnetism of Fe-doped SnO2 films. J. Magn. Magn. Mater.,2007,316(2): e219-e222
    [131]Hong N H, Sakai J, Prellier W, et al. Transparent Cr-doped SnO2 thin films: ferromagnetism beyond room temperature with a giant magnetic moment J. Phys.:Condens. Matter,2005,17(10):1697-1702.
    [132]Hong N H, and Sakai. Ferromagnetic V-doped SnO2 thin films. J. Physica B, 2005,358(1-4):265-268
    [133]Hong N H, Ruyter A, Prellier W, et al. Magnetism in Ni-doped SnO2 thin films. J. Phys.:Condens. Matter,2005,17(41):6533-6538
    [134]Wang W D, Wang Z J, Hong Y J, et al. Structure and magnetic properties of Cr/Fe-doped SnO2 thin films. J. Appl. Phys.,2006,99(8):08M115-1-3
    [135]Adhikari R, and Das A K. Structure and magnetism of Fe-doped SnO2 nanoparticles. Phys. Rev. B,2008,78(2):024404-024412
    [136]Kenmochi K, Seike M, Sato K, et al. New Class of Diluted Ferromagnetic Semiconductors based on CaO without Transition Metal Elements. Jpn. J. Appl. Phys.,2004,43(7A):L934-L936
    [137]Kenmochi K, Dinh V A, Sato K, et al. Materials Design of Transparent and Half-Metallic Ferromagnets of MgO, SrO and BaO without Magnetic Elements. J. Phys. Soc. Jpn.,2004,73(11):2952-2954
    [138]Elfimov I S, Rusydi A, Csiszar S I, et al. Magnetizing Oxides by Substituting Nitrogen for Oxygen. Phys. Rev. Lett.,2007,98(13):137202-1-4
    [139]Pan H, Feng Y P, Wu Q Y, et al. Magnetic properties of carbon doped CdS:A first-principles and Monte Carlo study. Phys. Rev. B,2008,77(12): 125211-125214
    [140]Yan Y, Zhang S B, Pantelides S T. Control of Doping by Impurity Chemical Potentials:Predictions for p-Type ZnO. Phys. Rev. Lett.,2001,86(25): 5723-5726
    [141]Sun X, Long R, Cheng X, et al. Structural, Electronic, and Optical Properties of N-doped SnO2. J. Phys. Chem. C,2008,112(26):9861-9864
    [142]Liu C H, Zhang L, He Y. Properties and mechanism study of Ag doped SnO2 thin films as H2S sensors Thin Solid Films,1997,304:13-15
    [143]Kresse G, and Hafner J. Ab initio molecular dynamics for liquid metals. Phys. Rev. B,1993,47(1):558-561
    [144]Kresse G, and Furthmuller J. Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Phys. Rev. B,1996, 54(16):11169-11186
    [145]Blochl P E. Projector augmented-wave method. Phys. Rev. B,1994,50(24): 17953-1779
    [146]Kresse G, and Joubert D. From ultrasoft pseudopotentials to the projector augmented-wave method. Phys. Rev. B,1999,59(3):1758-1775
    [147]Perdew J P, Wang Y. in Electronic Structures of Solids'91. Berlin: Akademie-Verlag,1991
    [148]Monkhorst H J, Pack J D. Special points for Brillouin-zone integrations. Phys. Rev. B,1976,13(12):5188-5192
    [149]Press W H, Flannery B P, Teukolsky S A, et al. Numerical recipes:The art of scientific computing. New York:Cambridge University Press,1996
    [150]Vanderbilt D. Soft self-consistent pseudopotentials in a generalized eigenvalue formalism. Phys. Rev. B,1990,41(11):7892-7895
    [151]Pan S S, Ye C, Teng X M, et al. Preparation and Characterization of nitrogen-incorporated SnO2 films. Appl. Phys. A,2006,85(1):21-24
    [152]Zener C. Interaction Between the d Shells in the Transition Metals. Phys. Rev. B,1951,81(3):440-444
    [153]Kilic C, and Zunger A. Origins of Coexistence of Conductivity and Transparency in SnO2. Phys. Rev. Lett.,2002,88(9):095501-1-4
    [154]Godinho K G, Walsh A, and Watson G W. Energetic and Electronic Structure Analysis of Intrinsic Defects in SnO2. J. Phys. Chem. C,2009,113(1):439-448
    [155]Heyd J, Scuceria G E, Ernzerhof M. Erratum:"Hybrid functionals based on a screened Coulomb potential". J. Chem. Phys.,2006,124(21):219906-1
    [156]Paier J, Marsman M, Hummer K, et al. J. Chem. Phys.,2007,127(2): 024103-1-10
    [157]Peng H W, Li J, Li S, et al. Phys. Possible origin of ferromagnetism in undoped anatase TiO2. Phys. Rev. B,2009,79 (9):092411-1-4
    [158]Themlin J M, Sporken R, Darville J, et al. Resonant-photoemission study of SnO2:Cationic origin of the defect band-gap states. Phys. Rev. B,1990,42(18): 11914-11925
    [159]Vodungbo B, Zheng Y, Vidal F, et al. Room temperature ferromagnetism of Co doped CeO2 diluted magnetic oxide:Effect of oxygen and anisotropy. Appl. Phys. Lett.,2007,90(25):062510-1-3
    [160]Yi J B, Shen L, Pan H, et al. Enhancement of room temperature ferromagnetism in C-doped ZnO films by nitrogen codoping. J. Appl. Phys.,2009,105(7): 07C513-1-3
    [161]Kwak H. and Chelikowsky J R. Size-dependent Spin-polarization of Carbon-doped ZnO Nanocrystals. Appl. Phys. Lett.,2009,95(26):263108-1-3
    [162]Pardo V, Pickett W E. Magnetism from 2p states in alkaline earth monoxides: Trends with varying N impurity concentration. Phys. Rev. B,2008,78(13): 134427-1-5
    [163]Droghetti A, Pemmaraju C D, Sanvito S. Predicting d0 magnetism: Self-interaction correction scheme. Phys. Rev. B,2008,78(14):140404(R)-1-4
    [164]Droghetti A, Pemmaraju C D, Sanvito S. Polaronic distortion and vacancy-induced magnetism in MgO. Phys. Rev. B,2010,81(9):092403-1-4
    [165]Kovacik R, Ederer C. Correlation effects in p-electron magnets:Electronic structure of RbO2 from first principles. Phys. Rev. B,2009,80(14): 140411(R)-1-4
    [166]van der Marel D, and Sawatzky G A. Electron-electron interaction and localization in d and f transition metals. Phys. Rev. B,1988,37(18): 10674-10684
    [167]Fabris S, Gironcoli S de, and Baroni S, et al. Reply to "Comment on'Taming multiple valency with density functionals:A case study of defective ceria ". Phys. Rev. B,2005,72(23):237102-1-2
    [168]Ghijsen J, Tjeng L H, van Elp J, et al. Electronic structure of Cu2O and CuO. Phys. Rev. B,1988,38(16):11322-11330
    [169]Mao C, Zhao Y, Qiu X, et al. Synthesis, characterization and computational study of nitrogen-doped CeO2 nanoparticles with visible-light activity. Phys. Chem. Chem. Phys.,2008,10(36):5633-5638
    [170]Fan S W, Yao K L, Liu Z L. Half-metallic ferromagnetism in C-doped ZnS: Density functional calculations. Appl. Phys. Lett.,2009,94(15):152506-1-3
    [171]Osorio-Guillen J, Lany S, Barabash S V. Nonstoichiometry as a source of magnetism in otherwise nonmagnetic oxides:Magnetically interacting cation vacancies and their percolation. Phys. Rev. B,2007,75(18):184421-1-9
    [172]Litvinov O A, Kataeva O N, Naumov V A. et al. J. Struct. Chem., USSR (Engl. Transl.).1988,29(5):139
    [L73]Yang K S, Dai Y, Huang B, et al. Appl. On the possibility of ferromagnetism in carbon-doped anatase TiO2. Phys. Lett.,2008,93(13):132507-1-3
    [174]Sousa S F, Fernandes P A, and Ramos M J. General performance of density functionals. J. Phys. Chem. A,2007,111(42):10439-10452
    [175]Elfimov I S, Yunoki S, and Sawatzky G A. Possible Path to a New Class of Ferromagnetic and Half-Metallic Ferromagnetic Materials. Phys. Rev. Lett., 2002,89(21):216403-1-4
    [176]Peng H W, Xiang H J, Wei S H, et al. Origin and Enhancement of Hole-Induced Ferromagnetism in First-Row d0 Semiconductors. Phys. Rev. Lett.,2009,102(1): 017201-1-4
    [177]Stearns M B. Evidence for itinerant 3d-electron spin density oscillations surrounding solute atoms in Fe alloys. Physica B+C,1977,91:37-42
    [178]Kizaki H, Sato K, Yanase A, et al. Physica B,2006,376-377:812-815
    [179]Sato K, Dederichs P H, Katayama-Yoshida H, et al. Exchange interactions in diluted magnetic semiconductors. J. Phys.:Condens. Matter,2004,16(48): S5491-S54977(4):308-313
    [180]Sato K, and Katayama-Yoshida H. Electronic structure and ferromagnetism of transition-metal-impurity-doped zinc oxide.Physica B,2001,308-310: 0904-0907
    [181]Li Z, de Groot C, Moodera J H. Gallium oxide as an insulating barrier for spin-dependent tunneling junctions. Appl. Phys. Lett.,2000,77(22):3630-3632
    [182][182]Song Y P, Zhang H Z, Lin C, et al. Luminescence emission originating from nitrogen doping of β-Ga2O3 nanowires. Phys. Rev. B,2004,69(7): 075304-1-7
    [183]Chang L W, Yeh J W, Li C F, et al. Modulation of luminescence emission spectra of N-doped β-Ga2O3 nanowires by thermal evaporation. Thin Solid Films.2009,518(5):1434-1438
    [184]Geller S. Crystal structure of β-Ga2O3. J. Chem. Phys.,1960,33:676-684
    [185]Dev P, Xue Y, and Zhang P. Defect-Induced Intrinsic Magnetism in Wide-Gap III Nitrides. Phys. Rev. Lett.,2008,100(11):117204-1-4
    [186]Wu B, Zhou S, Ren J, et al. Broadband infrared luminescence from transparent glassceramics containing Ni2+-doped-Ga2O3 nanocrystals. Appl. Phys. B-Lasers Opt.,2007,87(4):697-699
    [187]Sato K, Katayama-Yoshida H. First principles materials design for semiconductor spintronics. Semicond. Sci. Technol.,2002,17(4):367-376
    [188]Sato K, Schweika W, Dederichs P H,et al. Low-temperature ferromagnetism in (Ga, Mn)N:Ab initio calculations. Phys. Rev. B, (2004) 70(20):201202(R)-1-4

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700