用户名: 密码: 验证码:
区间不确定性优化的若干高效算法研究及应用
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
不确定性广泛存在于实际工程优化设计问题中,基于不确定分析理论和算法的研究对于复杂系统的研发设计具有重要意义。概率模型和模糊集模型常被用来描述这些不确定性。概率模型可以很好地描述系统中的随机不确定性,而模糊模型则能有效地描述对系统的认知不确定性或者决策不确定性,但是由于不确定信息不全或者计算成本过高等原因,导致以上两种模型较少应用于实际问题中。区间模型通过上下边界来描述不确定性,并且对不确定分布不做任何假设,因此对于实际问题具有很强的适用性。对区间不确定优化方法的研究近年来开始逐渐受到国内外的重视,并且在工程优化设计领域展现出了较高的应用潜力。然而目前对基于区间模型的不确定优化问题的研究还存在许多有待改进的地方,例如在优化过程中,不确定性度量的数学模型转换导致了两层嵌套优化问题等一系列技术难点,特别是对于计算效率以及结果正确性的高要求,给区间不确定优化理论和方法的发展提出了挑战。
     为此,本文将针对区间不确定优化问题的计算效率以及结果有效性等方面展开系统的研究,力求在其理论及实用性算法等方面做出一些卓有成效的尝试和探索。借助于成熟的代理模型技术,根据区间不确定优化本身的特点,结合有效的代理模型管理技术,在一定程度上解决计算效率和结果有效性的矛盾。基于此思路,本论文开展和完成了如下研究工作:
     (1)为了有效求解区间不确定优化问题,将其转换为两层嵌套的确定性优化问题,并通过引入代理模型代替真实模型来提高计算效率。为了进一步解决代理模型的近似误差可能导致的优化结果不可靠性,进而提出了局部加密的模型管理方法,保证了不确定优化求解结果的可靠性,达到了同时提高计算效率和保证计算精度的目标。最后将区间不确定优化算法应用于侵彻混凝土复合介质的优化设计问题中,结果表明本文的不确定优化设计方法对侵彻系统中着速和入射角的控制、弹体结构设计、装药设计、引信设计等方面具有重要的参考价值。
     (2)为了保证区间不确定优化算法中内层优化的“极值”要求,提出了一种改进的基于代理模型的全局搜索策略,用于解决针对不确定参数的变化范围较大,并且系统非线性程度较强的复杂系统优化设计问题。根据代理模型的特性,以其作为引导,构造出改进的全局搜索策略和有效的算法停止准则,在提高计算效率的同时,保证了区间不确定优化算法的有效性,以及结果的正确性。
     (3)为了对两层嵌套优化问题进行解耦求解,采用了不同的鲁棒性和可靠性度量方式。目标函数的鲁棒性通过函数敏感性指标来描述,并提出基于许可度的最小容差圆来度量约束的可靠性。在此基础上通过采用约束偏移解耦方法将两层嵌套优化问题转换为序列优化问题,从而有效地提高了不确定优化方法的计算效率。进一步针对复杂系统的区间不确定可靠性优化问题,通过基于代理模型和估计误差函数的失效面搜索策略,使得近似的失效面逐步逼近精确的失效面,在保证计算效率的同时,进一步提高了区间不确定可靠性优化问题的求解精度。
     (4)提出了通过结合高维代理模型技术,有效解决了一般代理模型对于高维问题的描述能力较差等问题。对区间不确定优化问题采用直接解耦方法,统一地处理区间鲁棒性优化问题和区间可靠性优化问题,将两层嵌套优化问题转换为序列优化问题,改进了基于约束偏移解耦的不确定优化算法只有利于解决可靠性优化问题,而不利于求解鲁棒性优化问题的特点。针对一阶高维代理模型非线性描述能力不足而二阶高维代理模型计算量偏大的问题,提出了改进的高维代理模型,找到了高维代理模型在近似能力和计算效率之间的平衡。
Uncertainty widely exists in practical engineering problems. Studies on theories and algorithms of optimization under uncertainty are significant for development of industrial complex products and systems. Uncertainty is commonly quantified by probabilistic model and fuzzy set model. Probabilistic model can easily address the aleatory type of uncertainty, and the fuzzy set model is quite suitable for representing the epistemic type of uncertainty or decision-making uncertainty. These two classes of models, however, are rarely applied in practical engineering problems, due to some limitations and deficiencies, such as low computational efficiency and the inability of handling the uncertainty with incomplete information. Interval models are applicable to problems with incomplete information. It considers only the lower and upper bounds of the uncertain parameters without assuming their precise probability distribution functions. In recent years, the interval-based optimization method has been attracting more and more attentions, and shown a high application potential for practical engineering problems. However, some difficulties in interval-based optimization methods should be undertaken. For instance, uncertainty quantification in interval-based optimization problem results in a two-level deterministic optimization process, thus high requirment for computational efficiency, as well as the validity of optimal result pose a great challenge to the development of interval-based optimization algorithms.
     For this reason, this dissertation is dedicated to a systematical research on the computational efficiency and validity of optimal result in interval-based optimization problems, aiming at making some useful contribution and progress to the improvement. According to the features of interval-based optimization problem, this paper tries to deal with the trade-off between computational efficiency and validity of optimal result by using surrogate model technique under the effective model management framework. Based upon this concept, the following studies are carried out in this dissertation:
     (1) The general interval-based optimization problem under uncertainty is transformed into a two-level optimization process, such that it can be solved effectively and easily. The surrogate model technique is used to promote the computational efficiency by replacing the time-comsuming simulation model in the two-level optimization process. In order to diminish the untrustworthiness of the optimal result introduced by the approximation error of surrogate model, a local-densifying model management strategy is suggested, based upon which, high computational efficiency and low approximation error can be achieved simultaneously. The interval-based optimization method using surrogate model technique is then applied to an optimization design problem of penetration of multi-layer concrete target. Results indicate that the present method is very encouraging in design of penetration.
     (2) An improved global search strategy is proposed to ensure the "extremum" of uncertainty analysis in the lower level optimization. The interval-based optimization method combining with this global search strategy can be used to solve time-consuming problems with highly nonlinearity and large uncertain level. The improved global search strategy is established by using the surrogate model as the sampling guide according to the surrogate model's features. This strategy also gives an effective stopping criterion for the iterations. As a result, an efficienct and trustworthy interval-based optimization method is formed.
     (3) Different robust measurement and reliability measurement are suggested to transform the interval-based optimization problem, so that the two-level optimization can be decoupled accordingly. An uncertain sphere with allowable degree and minimum tolerance sphere are used to quantify the reliability of constraints, and the sensitivity information is used to measure the robustness of objective function. Based on the above uncertainty measurement, constraint shift method can decouple the two-level optimization process into a sequential optimization process, so that the computational efficiency would increase significantly.
     (4) High dimensional model representation technique supplements the deficiency of ordinary surrogate model for modeling the high dimensional problems. Combined with a direct decoupling method, a new interval-based method is developed to tackle the high dimensional optimization problems under uncertainty. The direct decoupling method can cope with the robustness of objective and reliability of constraints simultaneously by transformed the two-level optimization process into a sequential optimization process. It improves the constraint shift method from the last chapter which is merely suitable for handling the problems of constraint reliability. Last but not least, an improved high dimensional model representation method is suggested to balance the trade-off between approximation capacity and computational efficiency, for the reason that first order high dimensional model representation does not have enough nonlinear modeling ability, while second order high dimensional model representation needs too much amount of computation.
引文
[1]Schuller G I, Jensen H A. Computational methods in optimization considering uncertainties - An overview. Computer Methods in Applied Mechanical Engineering,2008,198:2-13
    [2]Byeng D, Kyung K, Liu D, et al. Integration of possibility-based optimization and robust design for epistemic uncertainty. Journal of Mechanical Design,2007,129: 876-882
    [3]连华东.区间参数结构的区间有限元方法:[吉林工业大学博士学位论文].长春:吉林工业大学,2002.
    [4]Leon R V, Shoemaker A C, Kacker R N. Performance Measures Independent of Adjustment. Technometrics,1987,29 (3):253-265
    [5]Elishakoff I, Haftka R T, Fang J. Structural design under bounded uncertainty—optimization with anti-optimization. Computers and Structures,1994, 53 (6):1401-1405
    [6]Doltsinis I, Kang Z. Robust design of structures using optimization methods. Computer Methods in Applied Mechanics and Engineering,2004,193:2221-2237
    [7]芮延年,傅戈雁.现代可靠性设计.北京:国防工业出版社,2007.
    [8]Ben-Haim Y. Robust reliability in the mechanical sciences. Berlin:Springer-Verlag, 1996
    [9]何方国.不确定条件下若干网络优化问题的模型与算法研究:[华中科技大学博士学位论文].武汉:华中科技大学,2009
    [10]刘宝碇,赵瑞清,王纲.不确定规划及应用.北京:清华大学出版社,2003
    [11]Kall P. Stochastic programming:achievements and open problems. In:models, methods and decision support for management:essays in honor of Paul Stahly, Heidelberg. New York:Physica-Verlag,2001,285-302
    [12]Zhao J, Liu B D. New stochastic models for capacitated location-allocation problem. Computers & Industrial Engineering,2003,45 (1):111-125
    [13]Streletskii N S. Structure of the safety factor, Inzh. Konstr., Trudy MISI,1947,5
    [14]Streletskii N S. Fundamentals of statistical calculation of the safety factor for structures. Stroiizdat, Moscow,1947 (in Russian)
    [15]Rzhanitsyn A R. Determination of safety factor in construction. Building Industry. 1947,8 (in Russian)
    [16]Norton R L. Machine design. Upper Saddle River, NJ:Prentice-Hall,2000
    [17]Bruhn E F. Analysis and design of missile structures. Cincinnati:Tri-Stable Offset Company,1975
    [18]Freudenthal A M. Safety and safety factor for airframe. Technical Report 153, Palaia de Chaillot, France:NATO,1957
    [19]Elishakoff I. Safety factors and reliability:Friends or Foes? Dordrecht, Netherlands:Kluwer Academic Publishers,2004
    [20]Cornell C A. Structural safety specifications based on second-moment reliability analysis. In:IABSE Symposium on Concepts of Safety of Structures and Methods of Design. International Association of Bridge and Structural Engineering,1969,4,235-245
    [21]袁亚湘,孙文瑜.最优化理论与方法.北京:科学出版社,2005
    [22]Haftka R T, Gurdal Z. Elements of structural optimization. Netherlands:Kluwer Academic Publishers,1992
    [23]陈宝林.最优化理论与算法(第二版).北京:清华大学出版社,2005
    [24]Kantorovich L V. A new method of solving some classes of extremal problems. Doklady Akad Sci USSR,1940,28:211-214
    [25]Dantzig G B. Maximization of a linear function of variables subject to linear inequalities. In: Activity Analysis of Production and Allocation. New York-London:Wiley & Chapman-Hall,1951,339-347
    [26]Beale E M L. On minimizing a convex function subject to linear inequalities. Journal of the Royal Statistical Society,1955,17B,173-184
    [27]Bellman R E. Dynamic programming. Princeton, PA:Princeton University Press. 1957
    [28]Charnes A, Cooper W W. Chance-constrained programming. Management Science,1959,6:73-79
    [29]Dantzig G B. Linear programming under uncertainty. Management Science,1955, 1:197-206
    [30]Tintner G. Stochastic linear programming with applications to agricultural economics. In:Proceedings of the Second Symposium in Linear Programming. Washington, DC:National Bureau of Standards,1955,197-228
    [31]Birge J R, Louveaux F V. Introduction to stochastic programming. New York, NY: Springer,1997
    [32]Ahmed S, Tawarmalani M, Sahinidis N V. A finite branch-and-bound algorithm for two-stage stochastic integer programs. Mathematical Programming,2004, 100(2):355-377
    [33]Sherali H D, Fraticelli B M P. A modified benders'partitioning approach for discrete subproblems:an approach for stochastic programs with integer recourse. Journal of Global Optimization,2002,22:319-342
    [34]Bastin F. Nonlinear stochastic programming:[PhD Dissertation]. Namur, Belgium: University of Namur,2004
    [35]Mulvey J M, Vanderbei R J, Zenios S A. Robust optimization of large-scale systems. Operations Research,1995,43:264-281
    [36]Takriti S, Ahmed S. On robust optimization of two-stage systems. Mathematical Programming,2003,99 (1):109-126
    [37]Liu B. Dependent-chance programming:a class of stochastic programming. Computers & Mathematics with Applications,1997,34(12):80-104
    [38]Chen W, Allen J, Tsui K L, et al. A procedure for robust design:Minimizing variations caused by noise factors and control factors. ASME Journal of Mechanical Design,1996,118(4):478-493
    [39]Taguchi G. Quality engineering through design optimization, New York:Kraus International Publications,1984
    [40]Freudenthal A M. The safety of structures. ASCE Transactions,1947,112: 125-129
    [41]Hasofer A M, Lind N C. Exact and invariant second-moment code format. Journal of Engineering Mechanics Division,1974,100(1):111-121
    [42]Rackwitz R, Fiessler B. Structural reliability under combined random load sequences. Computers & Structures,1978,9(3):489-494
    [43]Du X P, Sudjianto A, Chen W. An integrated framework for optimization under uncertainty using inverse reliability strategy. Journal of Mechanical Design, 2004,126(4):562-570
    [44]Wang Z, Huang H, Liu Y. A unified framework for integrated optimization under uncertainty. Journal of Mechanical Design,2010,132:051008
    [45]Lee I, Choi K K, Du L, et al. Dimension reduction method for reliability-based robust design optimization. Computers & Structures.2008,86:1550-1562
    [46]Helton J C. Uncertainty and sensitivity analysis in the presence of stochastic and subjective uncertainties. Journal of Statistical Computation and Simulation,1997, 57:3-76
    [47]Mahadevan S, Rebba R. Inclusion of model errors in reliability-based optimization. Journal of Mechanical Design,2006,128(4):936-944
    [48]Zhang J, Wiecek M, Chen W. Local approximation of the efficient frontier in robust design. Journal of Mechanical Design,2000,122 (2):232-236
    [49]Kang J S, Suh M H, Lee T Y. Robust economic optimization of process design under uncertainty. Engineering Optimization,2004,36 (1):51-75
    [50]Chen W, Sahai A, Messac A, et al. Physical programming for robust design. In: 40th AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics, and Materials Conference and Exhibit. American Institute of Aeronautics and Astronautics,1999
    [51]Chen W, Wiecek M M, Zhang J. Quality utility—A compromise programming approach to robust design. Journal of Mechanical Design,1999,121(2):179-187
    [52]Parkinson D B. Robust design by variability optimisation. Quality and Reliability Engineering International,1997,13(2):97-102
    [53]Parkinson D B. The application of a robust design method to tolerancing. Journal of Mechanical Design,2000,122(2):149-154
    [54]Du X P, Sudjianto A, Chen W. An integrated framework for optimization under uncertainty using inverse reliability strategy. Journal of Mechanical Design, 2004,126(4):562-70
    [55]Agarwal H. Reliability based design optimization: Formulations and methodologies:[PhD Dissertation]. South Bend, IN:University of Notre Dame, 2004
    [56]Du X, Chen W. Towards a better understanding of modeling feasibility robustness in engineering design. Journal of Mechanical Design,2000,122(4):385-394
    [57]Zadeh L A. Fuzzy sets. Information and Control,1965,8(3):338-353
    [58]Bellman R E, Zadeh L A. Decision-making in a fuzzy environment. Management Science,1970,17:141-164
    [59]Zadeh L A. Fuzzy sets, Fuzzy logic, Fuzzy systems:Selected papers. World Scientific Press,1996
    [60]Zadeh L A. Fuzzy sets as the basis for a theory of possibility. Fuzzy Sets and Systems,1978,1:3-28
    [61]Zimmermann H J. Applications of fuzzy sets theory to mathematical programming. Information Sciences,1985,36:29-58
    [62]Fedrizzi M, Kacprzyk J, Verdegay J L. A suvey of fuzzy optimization and mathematical programming. In:Interactive Fuzzy Optimization. Heidelberg, 1991,15-28
    [63]Negoita C V. The current interest in fuzzy optimization. Fuzzy Sets and Systems, 1981,6:261-269
    [64]Simoes L. Fuzzy optimization of structures by the two-phase method. Computers & Structures,2001,79:2481-2490
    [65]Campos F, Villar J, Jimenez M. Robust solutions using fuzzy chance constraints. Engineering Optimization,2006,38 (6):627-645
    [66]Verdegay J L. A dual approach to solve the fuzzy linear programming problem. Fuzzy Sets and Systems,1984,14:131-141
    [67]Delgado M, Verdegay J L, Vila M A. Relating different approaches to solve linear programming problems with imprecise costs. Fuzzy Sets and Systems,1990,37: 33-42
    [68]Zhang G, Wu Y H, Remios M, et al. Formulation of fuzzy linear programming problems as four-objective constrained optimization problems. Applied Mathematics and Computation,2003,139:383-399
    [69]Buckley J, Eslami E. An introduction to fuzzy logic and fuzzy sets. Heidelberg: Physica-Verlag, A Springer-Verlag Company,2002
    [70]Chen S. Comparing probabilistic and fuzzy set approaches for design in the presence of uncertainty:[PhD Dissertation]. Blacksburg, VA:Virginia Polytechnic Institute and State University,2000
    [71]Ben-Haim Y, Elishakoff I. Convex models of uncertainties in applied mechanics. Amsterdam:Elsevier Science Publisher,1990.
    [72]Boley B A. Bounds on the maximum thermoelastic stress and deection in a beam and plate. Journal of Applied Mechanics,1966,33(4):881-887
    [73]Drenick R F. Functional analysis of effect of earthquakes. In:Proceeding of 2nd Joint United States-Japan Seminar on Applied Acoustics. Washington D.C.,1968
    [74]Shinozuka M. Maximum structural response to seismic excitation. Journal of Engineering Mechanics Division,1970:729-738
    [75]Dwyer P S. Linear Computations. New York:John Wiley & Sons,1951
    [76]Moore R E. Interval arithmetic and automatic error analysis in digital computing: [PhD Dissertation]. Stanford University,1962
    [77]Moore R E. Methods and applications of interval analysis. Philadelphia, PA: SIAM,1979
    [78]Moore R E. Introductory remarks on reliable engineering computing. Reliable Computing,2006,12:405-408
    [79]Moreau J J. Quadratic programming in mechanics:One-sided constraints. SIAM Journal of Control,1966,4:153-158
    [80]Panagiotopoulos P D. Convex analysis and unilateral static problems. Ingenieur Archive,1976,45:55-68
    [81]Borkowski A. On application of ellipsoidal methods in rigid-plastic analysis and design. In:Optimization Methods in Structural Design. Mannheim, Germany: Wissenschaftsverlag,1983:289-294
    [82]Elishakoff I, Haftka R T, Fang J. Structural design under bounded uncertainty-optimization with anti-optimization. Computers and Structures, 1994,53(6):1401-1405
    [83]Qiu Z P, Ma L H, Wang X J. Ellipsoidal-bound convex model for the non-linear buckling of a column with uncertain initial imperfections. International Journal of Non-linear Mechanics,2006,41(8):919-925
    [84]刘新旺,达庆利.一种区间线性规划的满意解.系统工程学报,1999,14(2):123-128
    [85]Ramik J, Rommelfanger H. A single- and multi-valued order on fuzzy numbers and its use in linear programming with fuzzy coefficients. Fuzzy Sets and Systems,1993,57(2):203-208
    [86]Dubios D, Parade H. Ranking fuzzy numbers in the setting of possibility theory. Information Sciences,1983,30(3):183-224
    [87]Ohta H, Yamaguchi T. Linear fractional goal programming in consideration of fuzzy solution. European Journal of Operational Research,1996,92(1):157-172
    [88]张全,樊治平,潘德惠.不确定性多属性决策中区间数的一种排序方法.系统工程理论与实践,1999,5:129-133
    [89]姜潮,基于区间的不确定性优化理论与算法:[湖南大学博士学位论文].长沙:湖南大学,2008
    [90]Herrmann J. A genetic algorithm for minimax optimization problems. In: Proceedings of the Congress on Evolutionary Computation.1999,2:1099-1103.
    [91]Lewis A. Robust regularization. Technical Report, Vancouver, Canada:Simon Fraser University,2002
    [92]马龙华.不确定系统的鲁棒优化方法及其研究:[浙江大学博士学位论文].杭州:浙江大学,2002
    [93]Wu H C. The Karush-Kuhn-Tucker optimality conditions in an optimization problem with interval-valued objective function. European Journal of Operational Research,2007,176:46-59
    [94]Huang B, Du X. A robust design method using variable transformation and Gauss-Hermite integration, International Journal of Numerical Methods in Engineering,2006,66(12):1841-1858
    [95]Gu L. A Comparison of Polynomial Based Regression Models in Vehicle Safety Analysis. In:ASME Design Engineering Technical Conferences - Design Automation Conference. Pittsburgh, PA,2001
    [96]Wang G G, Shan S. Review of metamodaling techniques in support of engineering design optimization. Journal of Mechanical Design,2007,129:370-80
    [97]Myers R H, Montgomery D C. Response surface methodology:process and product optimization using designed experiments. New York:Wiley,2002
    [98]Sacks J, Welch W J, Mitchell T J, et al. Design and analysis of computer experiments. Statistical Science,1989,4(4):409-435
    [99]Martin J D, Simpson T W. Use of Kriging models to approximate deterministic computer models. AIAA Journal,2005,43(4):853-863
    [100]Dyn N, Levin D, Rippa S. Numerical procedures for surface fitting of scattered data by radial basis functions. SIAM Journal on Scientific and Statistical Computing,1986,7(2):639-659
    [101]Clarke S M, Griebsch J H, Simpson T W. Analysis of support vector regression for approximation of complex engineering analyses. Journal of Mechanical Design,2005,127(11):1077-1087
    [102]Smith M. Neural networks for statistical modeling. New York:Von Nostrand Reinhold,1993
    [103]Friedman J H. Multivariate Adaptive Regressive Splines. Annals of Statistics, 1991,19(1):1-67
    [104]Acar E, Solanki K. Improving the accuracy of vehicle crashwor-thiness response predictions using an ensemble of metamodels. International Journal of Crashworthiness,2009,14(1):49-61
    [105]Chen V C P, Tsui K L, Barton R R, et al. A review on design modeling and applications of computer experiments. HE Transactions,2006,38:273-291
    [106]Jin R, Chen W, Simpson T W. Comparative studies of meta-modeling techniques under multiple modeling criteria. Structural and Multidisciplinary Optimization, 2001,23(1):1-13
    [07]Krige D G. A statistical approach to some mine valuations and allied problems at the Witwatersrand:[Master Dissertation]. South Africa:University of Witwatersrand,1951
    [108]Matheron G. The theory of regionalized variables and its applications. Fontainebleau, France:Les Cahiers du Centre de Morphologie Mathematiques de Fontainebleau 5,1971.
    [109]Cressie N. Spatial prediction and ordinary kriging. Mathematical Geology,1997, 20(4):405-421
    [110]Goovaerts P. Geostatistics for natural resources evaluation. New York:Oxford University Press,1997
    [111]Sasena M J. Flexibility and efficiency enhancements for constrained global design optimization with Kriging approximations:[PhD Dissertation]. Michigan, USA:University of Michigan,2002
    [112]Sacks J, Welch W J, Mitchell W J, et al. Design and analysis of computer experiments. Statistical Science,1989,4(4):409-435
    [113]Welch W J, Buck R J, Sacks J, et al. Screening, predicting, and computer experiments. Technometrics,1992,34:15-25
    [114]Osio I G, Amon C H. An engineering design methodology with multistage bayesian surrogates and optimal sampling. Research in Engineering Design, 1996,8(4):189-206
    [115]Booker A J, Dennis J E, Frank Jr. P D, et al. A rigorous framework for optimization of expensive functions by surrogates. Structural Optimization,1999, 17(1):1-13
    [116]Shan S, Wang G G. An efficient pareto set identification approach for multi-objective optimization on black-box functions. Journal of Mechanical Design,2005,127:866-874
    [117]Kloess A, Mourelatos Z, Meernik P. Probabilistic analysis of an automotive body-door System. International Journal of Vehicle Design,2004,34(2): 101-125
    [118]Chen W. A robust concept exploration method for configuring complex system: [PhD Dissertation]. Atlanta, GA: Georgia Institute of Technology,1995
    [119]Xiong F, Chen W, Xiong Y, et al. Weighted stochastic response surface method considering sample weights. Structural and Multidisciplinary Optimization,2011, 43(6):837-49
    [120]Jin R, Du X, Chen W. The use of metamodeling techniques for optimization under uncertainty. Structural and Multidisciplinary Optimization,2003,25(2): 99-116
    [121]Jiang C, Han X, Liu G R, A nonlinear interval number programming method for uncertain optimization problems. European Journal of Operational Research, 2008,188:1-13
    [122]邱志平.不确定参数结构静力响应和特征值问题的区间分析方法:[吉林工业大学博士学位论文].长春:吉林工业大学,1994
    [123]蒋峥,刘斌.不确定优化问题的研究动向.武汉科技大学学报,2006,29(6):599-602
    [124]Jiang C, Han X, Liu G R. Optimization of structures with uncertain constraints based on convex model and satisfaction degree of interval. Computer Methods in Applied Mechanics and Engineering,2007,196:4791-4800
    [125]Chen C S, Hon Y C, Schaback R A. Scientific computing with radial basis functions (Preprint). Hattiesburg, USA:Department of Mathematics, University of Southern Mississippi,2005
    [126]Powell M J D. The theory of radial basis function approximation in 1990. In: Light W. Advanced in numerical analysis, Volume 2:Wavelets, Subdivision Algorithms and Radial basis functions. Oxford:Oxford University Press,1992, 105-120
    [127]Xu Y G, Liu G R, Wu Z P, A novel hybrid genetic algorithm using local optimizer based on heuristic pattern move. Applied Artificial Intelligence,2001, 15:601-631
    [128]Wang G G. Adaptive response surface method using inherited Latin hypercube design points. Journal of Mechanical Design,2003,125:210-220
    [129]王海亮,基于耐撞性数值仿真的汽车车身结构优化设计研究:[上海交通大学博士学位论文].上海:上海交通大学,2002
    [130]石艳霞,郝丽萍.国外钻地武器的技术特点及发展趋势.导弹与航天运载技术,2003,4:50-53
    [131]Haldlar A, Hamieh H A. Local effects of solid missiles on concrete structures. Journal of the Structural Engineering Division,1984,110(5):948-960
    [132]Young C W, Young E R. Simplified analytical model of penetration with lateral loading. Albuquerque, NM:Sandia National Laboratories,1988
    [133]尹双增.断裂判据在混凝土工程中的应用.北京:科学技术出版社,1996,10
    [134]曾必武,姜春兰,王在成,等.反跑道动能斜侵彻机场多层跑道的三维数值模拟.兵工学报,2007,28(12):1433-1437
    [135]Ugray Z, Lasdon L, Plummer J, et al. Scatter search and local NLP solvers:A multistart framework for global optimization. INFORMS Journal on Computing, 2007,19(3):328-340
    [136]Lophaven S N, Nielsen H B, Sφndergaard J. DACE a Matlab toolbox. Technical Report IMM-TR-2002-12, Informatics and Mathematical Modeling, Danish Technical University,2002.
    [137]Sacks J, Schiller S B, Welch W J. Design for computer experiments. Technometrics,1989,31:41-47
    [138]Schonlau M. Computer experiments and global optimization: [PhD Dissertation]. Waterloo, Canada:University of Waterloo,1997
    [139]Hertog D D, Kleijnen J P C., Siem A. The correct kriging variance estimated by bootstrapping. Journal of the Operational Research Society,2006,57:400-409
    [140]Jones D R. A taxonomy of global optimization methods based on response surfaces. Journal of Global Optimization,2001,21(4):345-83
    [141]Gutmann H M. A radial basis function method for global optimization. Journal of Global Optimization,2001,19(3):201-27
    [142]Gutmann H M. On the semi-norm of radial basis function interpolants. Journal of approximation theory,2001,111:315-328
    [143]Ge R P. A filled function method forfinding a global minimizerof a function of several variables. Mathematical Programming,1990,46:191-204
    [144]Dixon L C W, Szego G P. The global optimization problem:An introduction, In: Toward global optimization. New York:North Holland Publishing Company, 1978,17-37
    [145]Jones D R. Lipschizian optimization without Lipschizian constant. Journal of Optimization Theory and Applications,1993,79(1):157-181
    [146]Wang G G. Adaptive response surface method using inherited Latin hypercube design points. Journal of Mechanical Design,2003,125:210-220
    [147]Ganzerli S, Pantelides C P. Optimum structural design via convex model superposition. Computers & Structures,2000,74(6):639-647
    [148]Au F T K, Cheng Y S, Tham L G, et al. Robust design of structures using convex models. Computers & Structures,2003,81:2611-2619
    [149]Sobol I M. Sensitivity estimates for nonlinear mathematical models. mathema-tical modeling & computational experiment,1993,1(4):407-414
    [150]Shan S, Wang G G. Metamodeling for high dimensional simulation-based design problems. Journal of Mechanical Design,2010,132:051009
    [151]Eldred MS, Bichon BJ. Second-order reliability formulations in DAKOTA/UQ. AIAA Paper,2006,20061828
    [152]Ong Y S, Lum K Y, Nair P B. Hybrid evolutionary algorithm with hermite radial basis function interpolants for computationally expensive adjoint solvers. Computational Optimization and Applications,2008,39:97-119
    [153]Wu Z. Hermite-birkhoff interpolation of scattered data by radial basis functions. Approximation Theory & its Applications.1992,8(2):1-10
    [154]Rabitz H, Alis O F, Shorter J, et al. Efficient input-output model representations. Computatioinal Physics Communication,1998,115:1-10
    [155]Rabitz H, Alis O F. General foundations of high dimensional model representa-tions. Journal of Mathematical Chemistry,1999,25:197-233
    [156]Shorter J, Rabitz H. An efficient chemical kinetics solver using high dimen-sional model representations. Journal of Physical Chemistry,1999,103(36): 7192-7198
    [157]Wang S W, Levy Ⅱ, Li G, et al. Fully equivalent operational models for atmo-spheric chemical kinetics within global chemistry-transport models. Journal of Geophysical Research,1999,30:417-426
    [158]Nocedal J, Wright S J. Numerical optimization (Second Edition). Springer,2006
    [159]Rockafellar R T. The multiplier method of Hestenes and Powell applied to convex programming. Journal of Optimization Theory and Applications,1973, 85(12):555-562
    [160]Rodriguez J F, Renaud J E, Watson L T. Convergence of trust region augmented lagrangian methods using variable fidelity approximation data. Structural Optimization,1998,15:141-156
    [161]Hestenes M R. Multiplier and gradient methods. Journal of Optimization Theory and Applications,1969,4:303-320
    [162]Powell M J D. A method for nonlinear constraints in minimization problems in optimization. London, New York:Academic Press,1969
    [163]Siddiqui S, Azarm S, Gabriel S. A modified benders decomposition method for efficient robust optimization under interval uncertainty. Structural and Multidisciplinary Optimization,2011,44(2):259-75
    [164]Hock W, Schittkowski K. Test examples for nonlinear programming codes. New York, NY, USA:Springer,1980
    [165]宗国庆.混凝士介质爆破效应研究.北京:北京理工大学,1994
    [166]王成,付晓磊,宁建国.柱形装药爆炸破坏混凝上的数值模拟分析.计算力学学报,2007,24(3):318-322
    [167]王政,倪玉山,曹菊珍等.冲击载荷下混凝上动态力学性能研究进展.爆炸与冲击,2005,25(6):519-527
    [168]周宁,任辉启,沈兆武等.弹丸在多层复合介质中的爆炸破坏效应研究.中国工程科学,2006,8(8):56-60
    [169]Jiang C, Han X, Liu G P. A sequential nonlinear interval number programming method for uncertain structures. Computer Methods in Applied Mechanical Engineering,2008,197(49-50):4250-4265

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700