用户名: 密码: 验证码:
时间差型磁通门传感器研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
时间差型磁通门是依据磁芯磁饱和特性以及法拉第电磁感应定律原理制作的磁传感器。其具有体积小、重量轻、测量范围大等特点,可以对矢量磁场进行测量,并通过时间量对待测的目标磁场进行表征。时间差型磁通门具有不易受奇次谐波影响,测量简单方便等特点,是磁通门研究的一个新方向。国内对此相关研究较少,而国外的研究于2003开始至今已近10年。在国家自然基金的支持下,本文对时间差型磁通门进行建模和相关的研究工作,完成了时间差型磁通门基本原理、磁芯磁滞回线建模、数字化时间差型磁通门设计、磁通门的随机共振现象研究等内容。
     简要介绍了偶次谐波磁通门的原理及结构,针对奇次谐波对偶次谐波型磁通门的影响,介绍了时间差型磁通门的原理和相关的灵敏度计算公式等基础理论。通过理论研究及对比给出时间差型磁通门的优势所在;为对时间差型磁通门磁芯选材进行深入研究,提出磁滞回线的修正模型。利用修正模型对时间差型磁通门的输出特性进行研究,得出磁芯相关参数对时间差型磁通门的具体影响;为获得更好的磁通门探头设计方案,设计多种磁通门的探头参数进行比较。通过对物理制作参数的研究得出相关的结论,为探头的物理加工指明方向并提供参考。设计了全数字化的时间差型磁通门,以FPGA为数控核心,搭配信号的转换、处理电路,完成了整体化设计,采样计数周期为5ns;为解决磁芯噪声对输出信号的影响,研究了时间差型磁通门的随机共振效应,提出利用反馈改进时间差型磁通门系统参数的方法,并进一步提出时间差型磁通门级联的理论可能;最后对制作完成的时间差型磁通门做了相关的指标实验测试,得到时间差型磁通门原理样机的测量范围>105nT,线性度<0.09%,测量精度<0.018%满量程等指标。为进一步研究时间差型磁通门提供技术储备。
Residence Time Difference Fluxgate is the magnetic sensor which is based onmeasuring the time difference of the magnetic state. It has the characteristic that thereis not affected by the odd harmonic in it. Especially it has a smaller volume and lightweight. Therefore, the Residence Time Difference Fluxgate has excellent prospects infurther improving the accuracy and resolution. Because of there are less domesticresearches about the Residence Time Difference Fluxgate, the basic principle analysisof the Residence Time Difference Fluxgate, modeling and correction of the hysteresisloop, the physical parameters of the fluxgate probe, architecture of the digital fluxgateand stochastic resonance phenomena of the fluxgate has been researched in the article.The exploratory work of developing of the Residence Time Difference Fluxgate hasbeen completed. The main work and results of the paper are as follows:
     1) The fundamentals study of the Residence Time Difference Fluxgate. Basedon the assumptions of the hysteresis loop of the core is ideal, the theoretical formulaof the Residence Time Difference Fluxgate has been derived. Under this premise, therelationship between the target magnetic field and the time difference has beenstudied with the triangle wave or sine wave as the excitation field.So is the correspondding sensitivity.
     2) The new model of hysteresis loop has been researched. The model based onthe arctangent with coercive force and dynamicf permeability worked out the problemthat there is no proper model for the RTD fluxgate time domain research and how tochoose the material of RTD fluxgate probe. There are two main innovations in thenew hysteresis loop,Respectively, is the introduction of the parameters and the modelof the coercive force by using a dynamic permeability parameter. Introduced coerciveforce parameters to the model can be applied to the time difference fluxgate principlewith. The role played by the coercive force parameters in the time difference fluxgateis clear by the results of the model calculations. The lowest value of the excitationmagnetic field because the coercive force directly affects the emergence of the peakposition and the time difference. Therefore, it is a very important parameter in themodel. Coercive force write the model parameters by using the sign function method, The model can be used directly derived analytically, Solve the former involvescoercive force model needs to proration shortcomings; Dynamic permeabilityparameters make the model more accurate, Solve the original arctangent model of themagnetic induction over zero will produce larger deviations, While addressing theoriginal arctangent model curvature fixed, Unable to distinguish between the problemof the similarity of the two cores. Adding coercive force model using dynamicpermeability can also reduce the excitation magnetic field extreme value at step, tomake the model more accurate, higher accuracy. Use of introduction of the coerciveforce and the dynamic permeability arctangent model, Not only provide a theoreticalbasis for the study of the time difference fluxgate, and provide the basis for the timedifference type the fluxgate core material selection, you can also take advantage of thetheoretical introduction of the time difference fluxgate circuit noise intensity.
     3) The research on the relationship about excitation magnetic field and modelparameters. Under fitting the model with many excitation magnetic field,the functioncan be proposed. The errors between parameters computed by the function and theparameters fited by the model is less than5%. The model can also be applied to thestudy of other needs hysteresis loop model. For a core, Using the model of eachparameter and the relationship of the excitation field can be derived for the shape ofthe hysteresis loop in the under arbitrary excitation magnetic field is, Provides aconvenient and theoretical basis for the study of many materials can not directlymeasure the hysteresis loop.
     4) The preliminary comparative test of the probe design of time differencefluxgate. Depending on the different physical characteristics of the probe, from thepoint of view of the detect ion difficulty, explore the structure of the probe core, theinfluence of the winding programs on the output characteristics of the probe, mainlyinduced electromotive force. Followed by comparisons and instructions of theperformance of the core materials, the existing materials are brief analyzed. The moreappropriate core materials of time difference fluxgate are proposed.
     5) According to the problems encountered in the preliminary experiment, thestochastic resonance phenomenon of time difference fluxgate has been found bymaking use of simulation. Then the method about feedback is proposed by stochasticresonance phenomenon to improve the sensitivity of the time difference fluxgate. Thesimulation shows that with the method of using linear feedback, the parameters of the system's inherent coercive force has been changed, and with coercive force reduced,the exciting magnetic field which is subjected to the coercive force can be furtherreduced, which can achieve the purpose of enhance the time difference fluxgatesensitivity. The shape of the potential well of the system by using cubic feedbackmethod can be changed, thus the value of optimum stochastic resonance noise willchange, too. Matching the optimum noise of system with external noise intensity bythe initiative adjust of system, it can reach resonance state. Then we can also improvethe sensitivity of the time difference fluxgate.
     6) Basic performance testing of static indicators of the time difference fluxgate.According to the basic requirements of the sensor test, the time difference fluxgatemeasurement range, linearity, dynamic range, and other basic indicators of the testtime difference fluxgate meet the basic indicators of the current magnetic explorationand measurement needsconclusion. Test of basic indicators, given the time differencefluxgate parameter range and the direction for the time difference fluxgateapplications.
     The innovation of this paper is mainly reflected in the following aspects:
     1) Put forward the model contain the parameters of the coercive force hysteresisloop and solve the problems of the original hysteresis loop model involving coerciveforce parameters can not resolve the derivativly. Before the model in the paper, almostall the research on the hysteresis loop model has rarely involved in the coercive forceparameters. Once the research involves the coercive force parameters, the use ofalmost all is piecewise function method. The piecewise function biggest problem isnot conducive to view the role played by the coercive force throughout the course ofthe study, and not conducive to intuitively find the relationship between the coerciveforce and the object of study. In this article with the coercive force parameter modelproposed to solve the conventional relates coercive force requires segmented solvingproblems. Will take coercive force of the magnetic hysteresis model is applied to timedifference type magnetic gate can more easily find coercive force to the influence oftime and coercive force the existence of the influence of the output signal delay.Hysteresis loop model with a coercive force can be further applied to a series of usedmagnetic core device power consumption calculation, and provide theoreticalreference.Changing the arctangent model’s magnetic permeability parameter to thedynamic parameter can reduce the model’s fitting errors caused by the fixed curvature. Arctangent model of the hysteresis curve is sufficient in the nonlinear models, themain problem of the model is the magnetic permeability parameters are constants.The arctangent model is in accordance with a substantially constant curvaturevariation and can’t simulate the nonlinear characteristics of the hysteresis curve well.By introduction of dynamic magnetic permeability parameter, the curvature of thearctangent model can change dynamically as needed. So, the arctangent model get abetter simulation results of the hysteresis curve’s nonlinear characteristics. Theoriginal arctangent model’s maximum errors, which are caused by the zero crossingmagnetic induction and the extreme position of the excitation magnetic field, can bereduced to an acceptable range (<5%).
     2)The function about the parameters of the model and the excitation field hasbeen found, which solved corresponding model of excitation of magnetic field and themagnetic permeability the is established. Previously, none of the model gives the linkbetween the magnetic permeability and incentives. In this paper, the arctangent modelapproximately gives relationship between permeability and excitation field, and thatprovide reference and solutions for the other studies on permeability. On the dynamicpermeability model that the order is five, The fitting residual magnetic permeabilityparameters on the magnetic permeability is small, and that meets the need for thestudy of the magnetic permeability. Thus the permeability changes under arbitraryexcitation field can be calculated directly without measurement, and the study onmagnetic permeability is easier.
     3) Based on stochastic resonance phenomenon of time difference fluxgate,putting forward the application feedback methods to improve the sensitivity of thetime difference fluxgate. Time difference fluxgate has similar characteristics of thesystem with Schmitt trigger, while the input signal is also a regular cycle signal, sothe time difference fluxgate meet the prerequisites of stochastic resonance. Thestochastic resonance phenomenon of time difference fluxgate can be observedvisually by simulation. According to the research results of stochastic resonance,adjusting parameters of the time difference fluxgate whose parameters are fixed byusing feedback on the system, then the higher sensitivity of time difference fluxgatecan be obtain. By using linear feedback lower threshold of time difference fluxgatecan be obtained, with reducing the incentive intensity, the sensitivity of timedifference fluxgate can be increase with less power consumption; using cubic feedback can change the shape of potential well of the time difference fluxgate andthus the time difference fluxgate can take the initiative to adapt to the noise, thenreach the purpose of matching the optimal noise system with outside noise, andother high-level feedbacks have a similar effect.
引文
[1]张学孚,路怡良.磁通门技术[M].北京:国防工业出版社,1995.
    [2]程德福,王君,凌振宝,等.传感器原理及应用[M].北京:机械工业出版社,2008.
    [3]邵英秋,程德福,王言章等.高灵敏度感应式磁传感器的研究[J].仪器仪表学报,2012,33(2):349-355.
    [4]林继鹏,王君,凌振宝等.基于非晶态合金的感应式磁敏传感器的研究[J].仪器仪表学报,2004,25(2):195-197,211.
    [5]邵英秋,王言章,程德福等.基于磁反馈的宽频带磁传感器的研制[J].仪器仪表学报,2010,31(11):2461-2466.
    [6]张飞.宽频带感应式磁传感器放大技术研究[D].吉林大学,2012.
    [7]邵英秋.宽频带感应式磁传感器的研制[D].吉林大学,2012.
    [8]詹艳,汤吉,刘国栋等.GMS-06电磁测深系统及应用[J].中国地球物理学会第十七届年会,2001.
    [9]赵静,刘光达,安战锋等.提高高温超导磁力仪动态范围的补偿方法[J].吉林大学学报:工学版,2011,41(5):1342-1347.
    [10]冯蒙丽,丁红胜,孙景春等.高温超导量子干涉器磁测量中的电磁反演[J].北京科技大学学报,2007,29(10):1046-1050.
    [11]张昌达.航空磁力梯度张量测量——航空磁测技术的最新进展[J].工程地球物理学报,2006,3(5):354-361.
    [12]张靓.高精度高温超导磁悬浮测试系统的数据采集与控制[D].西南交通大学,2006.
    [13]赵静,刘光达,安战锋等.高温超导磁梯度仪测控系统的设计与实现[J].计算机测量与控制,2011,19(5):1052-1054,1075.
    [14]陈晓东,赵毅,张杰等.高温超导磁强计在瞬变电磁法中的应用研究[J].地球物理学报,2012,55(2):702-708.DOI:10.6038/j.issn.0001-5733.2012.02.034.
    [15]卢志才,米东,徐章遂等.基于改进巨磁阻传感器的地磁定向系统[J].传感技术学,2011,24(2):304-307.DOI:10.3969/j.issn.1004-1699.2011.02.028.
    [16]李欣,张清,阮建中等.不同长度敏感元件的两种巨磁阻抗传感器传感性能研究[J].传感技术学报,2008,21(7):1147-1150.
    [17]鲍丙豪,蒋峰,赵湛等.基于非晶带巨磁阻抗效应的新型弱磁场传感器[J].传感技术学报,2006,19(6):2380-2383.
    [18]蒋颜玮,房建成,王三胜等.基于非晶合金非对称巨磁阻抗效应的磁传感器设计[J].传感技术学报,2011,24(2):175-179.
    [19]鲍丙豪,周亚东,王伟志等.非晶合金带巨磁阻抗效应新型磁传感器研究[J].仪表技术与传感器,2008,(9):3-5.
    [20]J. E. Lenz "A review of magnetic sensors", Proc. IEEE, vol.78,pp.9731990
    [21]P. Ripka. Advances in fluxgate sensors.Sensors and Actuators A,2003,vol.106, pp.82003
    [22]姚远.弱磁场的检测与应用技术研究[D].武汉:武汉理工大学硕士论文,2002
    [23]杨会平.一维磁通门磁力计的研究[D].武汉:华中科技大学硕士论文,2005.
    [24]丁鸿佳,隋厚堂.磁通门磁力仪和探头研制的最新进展[J].地球物理学进展,2004,19(4):743-745.
    [25]涂疑,郭文生,曹大平.磁通门传感器的应用与发展[J].水雷战与舰船防护,2002:36-38.
    [26]王正华.磁通门测磁传感器的特性[J].上海交通大学,1992.
    [27]郭爱煌,傅君眉.磁通门技术及其应用[J].传感器技术,2000.
    [28]李南,吕晓煜,岳喜展.微型磁通门传感器研究[J].电测与仪表,2007.
    [29]付鑫生,刘塞立,周静.磁通门测量原理与方法[J].测井技术,1992.
    [30]翁孟超,杨志强,宣仲义.微型磁通门传感器的制备与测试研究进展[J].仪表技术与传感器,2008-6:9-11.
    [31]何静,李斌.基于二次谐波脉冲幅值法的磁通门[J].传感器与微系统,2007.
    [32]Bruno Andò, Salvatore Baglio, Adi R. Bulsara, Vincenzo Sacco.‘‘Residencetimes difference’’ fluxgate. Measurement38(2005)89–112.
    [33]Bruno Andò, Salvatore Baglio, Vincenzo Sacco, and Adi R. Bulsara. Effects ofDriving Mode and Optimal Material Selection on a Residence TimesDifference-Based Fluxgate Magnetometer. IEEE Transactions on Instrumentationand Measurement,2005,54(4),:1366-1373
    [34]A. R. Bulsara, and C. Seberino. Signal detection via residence-time asymmetry innoisy bistable devices. Physical Review E67,016120(2003).
    [35]Nikitin, N. G. Stocks, and A. R. Bulsara. Signal detection via residence timesstatistics: Noise-mediated minimization of the measurement error. PhysicalReview E68,036133(2003)
    [36]Bruno Andò, Salvatore Baglio, Senior Member, IEEE, Adi R. Bulsara, andVincenzo Sacco.“Residence Times Difference” Fluxgate Magnetometers. IEEESensors Journal, Vol.5, No.5, october2005(895-904).
    [37]何静.宽带低噪声磁通门传感器[D].西安:西北工业大学硕士论文,2007.
    [38]周行平.全数字磁通门的设计和实现[D].杭州:浙江大学硕士论文,2007.
    [39]唐列娟.磁场反馈式磁通门磁强计研究[D].武汉:华中科技大学硕士论文,2006.
    [40]张莹.基于单片机的数字磁通门传感器[D].西安:西北工业大学硕士论文,2006.
    [41]王钧钧.数字微弱磁场传感器的设计[D].成都:电子科技大学硕士论文,2007.
    [42]唐列娟,殷恭维,林钢.磁通门磁力计测地磁研究[J].传感器与微系统,2006.
    [43]石志勇,王怀光,庞发亮.磁通门信号处理电路分析与设计[J].兵工自动化,2006.
    [44]林钢,杨会平,白彦峥,周泽兵.高精度空间磁通门磁力计[J].华中科技大学学报,2005.
    [45]石志勇,王怀光,吕游.一种三探头磁通门传感器的设计[J].传感技术学报,2005.
    [46]谢子殿,朱秀,周鑫.磁通门信号处理电路的设计与研究[J].黑龙江科技学院学报,2003.
    [47]顾伟,禇建新.单绕组单磁芯磁通门的设计[J].磁芯材料及器件,1996.
    [48]倪宏伟,徐政,史俊荣,刘兆和.低功耗磁通门磁力仪的研究[J].同济大学学报,1997
    [49]张莹,刘诗斌,刘子懿.基于单片机的数字磁通门传感器[J].传感器与微系统,2006.
    [50]黄源高,陈斯文.数字式全自动中强度磁通门磁力仪[J].电测与仪表,1993.
    [51]刘腾飞.环型磁通门传感器的研究与设计[D].华中科技大学,2010.
    [52]曹红松,陈国光,赵捍东等.姿态测试用磁通门磁强计的设计[J].弹道学报,2002,14(2):79-83.
    [53]干露.高灵敏度环形磁通门传感器的研究与设计[D].华中科技大学,2008.
    [54]李江.磁通门磁力仪自动补偿与传感器小型化的设计[D].中国地震局地球物理研究所,2002.
    [55]殷恭维.磁通门磁强计的反馈线圈设计及磁芯温度效应研究[D].华中科技大学,2006.
    [56]周斌.基于数字信号处理的磁通门磁强计设计[C].//中国空间科学学会空间探测专业委员会第二十二次学术会议论文集.2009:255-260.
    [57]崔智军.一种磁通门传感器的选频放大电路设计[J].信息与电子工程,2012,10(2):213-216.
    [58]X. P. Li,J. Fan,J. Ding,H. Chiriac,X. B. Qian and J. B. Yi. A design oforthogonal fluxgate sensor. Journal of Applied Physics99,08B313(2006).
    [59]Kubik, L. Pavel, P. Ripka. PCB racetrack fluxgate sensor with improvedtemperature stability. Sensors and Actuators A130–131(2006)184–188.
    [60]I.Sasada. Orthogonal fluxgate mechanism operated with dc biased excitation.Journal of Applied Physics volume91, number1015may2002(7789-7791).
    [61]B. Andò, S. Baglio, V. Caruso, V. Sacco and A. Bulsara, Multilayer basedtechnology to build RTD fluxgate magnetometer, IFSA, Sensors and TransducersMagazine65, issue3,509-514(2006)
    [62]B. Andò, S. Baglio, V. Caruso and V. Sacco,“Investigate the optimal geometry tominimize the demagnetizing effect in RTD-Fluxgate” in IEEE IMTC2006,Proceedings of the IEEEInstrumentation and Measurement TechnologyConference,2006,2175-2178
    [63]B. Andò, S. Baglio, V. Sacco, A.R. Bulsara and V. In,"PCB FluxgateMagnetometers with a Residence Times Difference (RTD) Readout Strategy: TheEffects of Noise" in IEEE Transactions on Instrumentation and Measurement57,19-24(2008).
    [64]P Ripka. Contribution to the ring-core fluxgate theory, Phys.Scripta40(1989)544-547
    [65]F Primdahl. The fluxgate magnetometer, J Phys.E12(1979)241-253
    [66]巨汉基,朱万华,方广有.磁芯感应线圈传感器综述,地球物理学进展,2010,25(5)
    [67]F Primdahl, B Hernando, O V Nilsen, J R Petersen. Demagnetizing factor andnoise in the fluxgate ring core sensor, J Phys.E22(1989)1004-1008
    [68]鲍丙豪,蒋峰.单非晶丝磁芯双绕组新型磁传感器理论与实验研究[J].传感技术学报,2006,19(4):1001-1004,1008.
    [69]W Bornhofft, G Trenkler. Sensors: a comprehensive survey, in: W Gopel, J Hesse,J N. Zemel(Eds.), Magnetic Sensors,Vol.5, VCH, FRG,1989,pp.152-165
    [70]Héctor Trujillo, Juan Cruz, Mairée Rivero, Mario Barrios. Analysis of thefuluxgate response through a simple spice model, Sensors and Actuators75(1999)1-7
    [71]顾伟,禇建新.基于磁导率分段线性化的单绕组磁通门原理研究[J].仪器仪表学报,2001.
    [72]郭来祥.磁通门磁强计的一种计算法[J].仪器仪表学报,1981.
    [73]王峰,刘仁浩,张有维.三端式磁通门传感器的数学建模[J].中山大学学报,2008.
    [74]何乃明.磁通门探测器的数值计算与仿真[J].仪器仪表学报,2002,23(2):157-160,165.
    [75]高宏,郭颖娜,王世山.基于PSpice的电力变压器绕组中暂态电压分布的仿真计算[J].现代电子技术,2006
    [76]徐玉珍,林维明.一种改进型磁放大器PSPICE模型在多路输出开关电源中的应用[C].中国电源学会第18届全国电源技术年会论文集.2009:584-586.
    [77]万枫,李孜.多级磁压缩脉冲电源[J].电源技术,2012,36(1):118-120.
    [78]郝玉福,刘健花,董海鹰等.基于Pspice的交流调速系统的建模与仿真研究[J].电气传动自动化,2012,34(2):9-12.
    [79]张东东,严萍,王珏等.磁脉冲压缩系统元件参数及电路仿真[J].高压电器,2009,45(1):18-20,24.
    [80]徐伟.磁耦合电路的PSPICE分析[J].天津理工大学学报,2005,21(5):72-74.
    [81]于春龙.倍流整流电路中集成磁件的PSPICE仿真[J].机电工程技术,2009,38(1):78-81.
    [82]张东辉,严萍,高迎慧等.Pspice电路仿真中变压器模型的使用[J].电气应用,2007,26(1):21-26.
    [83]刘小军,石玉,赵宝林等.一种高频动态磁滞回线的PSpice电路模型研究[J].磁性材料及器件,2011,42(5):60-63.
    [84]黄子平,王文斗.非线性含磁芯线圈的PSpice模拟[J].强激光与粒子束,2004,16(8):1063-1066.
    [85]杨实,钟辉煌,杨汉武等.铁基非晶磁环磁开关设计[J].强激光与粒子束,2010,22(5):1172-1176.DOI:10.3788/HPLPB20102205.1172.
    [86]黄子平,荆晓兵,陈思富等.铁氧体磁芯感应加速腔模型[J].强激光与粒子束,2008,20(6):1034-1038.
    [87]尹华,唐哲,冉建桥等.汽车电子点火器电磁感应式传感器PSPICE模型[J].微电子学,2003,33(5):422-424.
    [88]严密,彭晓领.磁学基础与磁性材料[M].杭州:浙江大学出版社,2006.
    [89]R.C.奥汉德利.现代磁性材料原理和应用[M].北京:化学工业出版社,材料科学与工程出版中心,2002.
    [90]徐游.电磁学[M].北京:科学出版社,2004.
    [91]C.B.冯索夫斯基,Я.C.舒尔.铁磁学[M].北京:科学出版社,1965.
    [92]祝恒江,李蓉,温孝东等.利用随机共振在强噪声下提取信息信号[J].物理学报,2003,52(10):2404-2408.
    [93]冷永刚,王太勇,秦旭达等.二次采样随机共振频谱研究与应用初探[J].物理学报,2004,53(3):717-723.
    [94]冷永刚,王太勇,郭焱等.双稳随机共振参数特性的研究[J].物理学报,2007,56(1):30-35.
    [95]夏均忠,刘远宏,马宗坡等.基于调制随机共振的微弱信号检测研究[J].振动与冲击,2012,31(3):132-135,140.
    [96]张雷,宋爱国.基于随机共振的逻辑计算理论回顾与展望[J].仪器仪表学报,2011,32(10):2393-2400.
    [97]林敏,黄咏梅.调制与解调用于随机共振的微弱周期信号检测[J].物理学报,2006,55(7):3277-3282.
    [98]杨定新,胡茑庆.随机共振在微弱信号检测中的数值仿真[J].国防科技大学学报,2003,25(6):91-94.
    [99]王晶,张庆,梁霖等.采用遗传算法的自适应随机共振系统弱信号检测方法研究[J].西安交通大学学报,2010,44(3):32-36.
    [100]周登荣,周玉荣.信号调制白噪声作用下线性系统的随机共振[J].振动与冲击,2008,27(7):138-140.
    [101]黄凡,林春生,杨振宇等.随机共振技术在微弱舰船轴频电场信号检测中的应用[J].海军工程大学学报,2012,24(2):78-81.
    [102]冷永刚,赵尔华,石鹏等.二维随机共振参数调节的图像处理[J].天津大学学报,2011,44(10):907-913.
    [103]蔡卫菊.基于随机共振的微弱信号检测[J].信息与电子工程,2012,10(2):210-212,236.
    [104]谭继勇,陈雪峰,何正嘉等.冲击信号的随机共振自适应检测方法[J].机械工程学报,2010,46(23):61-67.DOI:10.3901/JME.2010.23.061.
    [105]冷永刚,王太勇,郭焱等.级联双稳系统的随机共振特性[J].物理学报,2005,54(3):1118-1125.
    [106]邵菊花.微弱信号检测的随机共振方法与应用研究[D].电子科技大学,2008.
    [107]杨保国,田坦,张殿伦等.双稳态随机共振系统参数选择快速算法及应用[J].哈尔滨工程大学学报,2011,32(3):282-287.
    [108]梁军利,杨树元,唐志峰等.基于随机共振的微弱信号检测[J].电子与信息学报,2006,28(6):1068-1072.
    [109]张静静,靳艳飞.非高斯噪声驱动下非对称双稳系统的平均首次穿越时间与随机共振研究[J].物理学报,2011,60(12):49-57.
    [110]赵艳菊,王太勇,冷永刚等.级联双稳随机共振降噪下的经验模式分解[J].天津大学学报,2009,42(2):123-128.
    [111]张晓燕,徐伟,周丙常等.色高斯噪声驱动双稳系统的多重随机共振研究[J].物理学报,2011,60(6):162-167.
    [112]陈旋.基于分段线性模型的随机共振信号检测研究[D].杭州电子科技大学,2009.
    [113]林敏,毛谦敏,郑永军等.随机共振控制的频率匹配方法[J].物理学报,2007,56(9):5021-5025.
    [114]刘鑫.基于随机共振理论的非周期信号提取方法研究[D].杭州电子科技大学,2009.
    [115]胡茑庆,温熙森,陈敏等.随机共振原理在强噪声背景信号检测中的应用[J].国防科技大学学报,2001,23(4):40-44.
    [116] V S Anishchenko, M A Safonova, L O Chua. Stochastic Resonance inCHUA’s Circuit [J]. Sciences and Engineering,1992,2(2):397-401.
    [117] P Jung.Stochastic Resonance and Optimal Design of Threshold Detectors[J].Physics Letters A,1995,207(1-2):93-104.
    [118] Ting Zhou, Frank Moss. Analog Simulations of Stochastic Resonance [J].Physics Letters A,1990,41(8):4255-4264.
    [119] Ting Zhou, Frank Moss. Escape-time distributions of a periodicallymodulated bistable system with noise [J]. Physical Review A,1990,42(6):3161-3169.
    [120]周英玉,丁淑华,郭晨等.利用Matlab的S-Function实现非线性PID控制[J].自动化与仪器仪表,2001,(2):24-26.
    [121]周黎妮,唐国金,罗亚中等.基于Matlab/Simulink的航天器姿态动力学与控制仿真框架[J].系统仿真学报,2005,17(10):2517-2520,2524.
    [122]黄祖洪.Matlab/PSB在电路仿真分析中的应用[J].湖南师范大学自然科学学报,2005,28(2):30-32.
    [123] QI Kun-peng,FENG Li-yan,LENG Xian-yin, etc. Simulation ofquasi-dimensional model for diesel engine working process[J].中南大学学报(英文版),2010,17(4):868-872.
    [124]孟艳丽,王素秋,韩晶等.基于Matlab的非线性动力学系统分析[J].物理实验,2005,25(8):42-45.
    [125] Shampine, Lawrence F.,Kierzenka, Jacek A.,Reichelt, Mark W. et al.Solvingindex-I DAEs in MATLAB and Simulink[J].SIAMReview,1999,41(3):538-552.DOI:10.1137/S003614459933425X.
    [126]张江霞.利用MATLAB求解微分方程的方法探索[J].机械管理开发,2008,23(6):48-49.
    [127] J.R. Slowik,L.M. Kasprzyczak,E. Macha et al.A Digital Control System forthe Hydraulic Fatigue Stand SHM250b[J].Diffusion and Defect Data. Part B,Solid State Data, Solid State Phenomena,2006,113(0):39-44.
    [128] W. Srirattanawichaikul,Y. Kumsuwan,S. Premrudeepreechacharn etal.Design of Matlab/Simulink Model of Self-Excited Induction Generator Drivenby Variable Speed Prime Mover[J].日本AEM学会誌,2009,17(SUPPL):S81-S84.
    [129]林敏,黄咏梅,方立民.双稳系统随机共振的反馈控制[J].物理学报,2008,57(4):2041-2047.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700