用户名: 密码: 验证码:
基于云计算的农业图像处理系统设计与算法研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
图像处理在农产品检测、农作物病虫草害诊断识别、精准喷药和果实采摘等方面都有着广泛的应用,取得了丰硕的研究成果,对农业各领域的现代化进程起到了十分重要的促进作用。但由于图像处理系统复杂,成本高昂,使用和维护不便,不能适应恶劣的生产环境,许多成果还没有真正被农民所接受,发挥出应有的经济效益和社会效益。如何做到对图像的实时处理的同时降低农民的使用成本是亟需解决的问题。
     论文将云计算与农业图像处理相结合,提出了农业图像云构想,构建了农业图像云架构。将云平台的结构分为三个层次,形成以控制层为核心,过渡层作决策判断,算法层执行具体功能的模式。建立了农业图像处理系统的Petri网模型,提出了农业图像处理系统的参数化设计方法,系统可以针对不同的目标设置不同参数进行处理,根据不同目标的不同参数,模型可自动对算法进行调度,并用FPGA对模型进行了实验验证。论文还对图像处理中各种分割、去噪和锐化算法进行了研究,重点研究了这些算法的优化和融合,提高了图像处理的质量。
     论文研究的具体内容如下:
     (1)为提高农业图像处理的实时性、系统功能的广泛性、操作使用的简便性、工作环境的适应性、使用成本的廉价性,提出了农业图像云的思想并进行了架构设计,将其核心的云平台分为三个层次:控制层、过渡层和算法层。控制层根据用户选择的服务,来调用服务需要的过渡层中的算法过渡模块;过渡层中的算法过渡模块根据服务参数来判断是否被调用,在执行条件满足时,选择算法层中相对应算法群里面空闲的算法模块执行具体的功能;算法层主要是接收过渡层中传递的数据执行算法的功能。此外还建立一个服务参数库,用来存储各个目标的参数信息。
     (2)针对农业图像云云平台架构中的控制层与过渡层之间的工作模式,提出参数化农业图像处理系统设计方法。它由用户对系统进行参数设置,选择所需算法,系统将根据用户的设置执行相应的算法,完成用户要求的功能。这种设计方法提高了图像处理系统的灵活性,使系统适用范围更广,适用于云平台大规模分布式并行计算模式的设计,也可以用来设计独立的参数化农业图像处理系统。
     (3)为了解决具有并行结构的农业图像处理系统的建模问题,提出农业图像处理系统的Petri网建模方法,构建基于参数的算法调用模式。基于Petri网对参数化农业图像处理系统的顶层控制模块进行建模,并对模型进行验证。论文使用SnoopyIOPT软件将顶层控制模块的Petri网建模图转换为PNML(Petri Net Markup Language)语言文本文件,再通过PNML2VHDL编译生成VHDL语言文件,在QuartusⅡ环境中进行仿真验证,仿真结果波形图说明了模型的正确性。
     (4)为了使棉花等绿色农作物图像分割效果更好,提出G-分量彩色图像圆锥分割算法,并推导任意颜色的彩色图像圆锥分割算法公式并简单验证。在色差法的基础上,提出G-分量彩色图像圆锥分割算法。为了限定目标像素灰度值的取值范围,G-分量彩色图像圆锥分割算法与阈值化分割法相融合,提出G-分量彩色图像圆台分割算法。新算法以(0,0,0)点为顶点,G轴为中心轴,r为半径做圆锥,圆锥内部同时在阈值范围内的像素点即为目标像素点。通过直方图统计的方法确定新算法中的未知量,将新算法与色差法和阈值化分割法分割的结果进行比较,结果表明新算法分割效果较好。
     (5)基于中值滤波和掩膜消噪法的图像滤波融合算法研究。其中5×5窗口的中值滤波去噪效果好但图像比较模糊,而掩膜消噪法去噪效果较差但图像比较清晰。将5×5窗口的中值滤波和掩膜消噪法通过分配不同权值的方式进行融合,得到新的图像去噪融合算法及结果。选择不同的权值,得到不同的结果。仿真结果表明,权值越大,图像去噪效果越好,图像越模糊,其中权值k=0.6的去噪融合算法得到的图像去噪效果较好且图像较为清晰。
Image processing has been widely used in detection of agricultural products, diagnosis and identification on diseases, pests and weeds of crops, precision spraying and fruit harvesting, etc; it has achieved lots of research results in agricultural field and promotes the development of agricultural modernization. But these achievements haven't been accepted by users because of the complexity and the high cost of image processing system, the inconvenience of use and maintenance, and then they don't give full play in economic benefit and social benefit. So it is a problem to realize the real-time processing of image and make low cost that could be accepted by users.
     Agricultural image cloud is proposed by combining the cloud computing and agricultural image processing and then the architecture of agricultural image cloud is designed. The cloud platform of agricultural image cloud is divided into three levels: control layer is the core, transition layer makes the choice and algorithm layer executes the functions. For the purpose of designing the control layer, the parametric design method of agricultural image processing system is proposed, and then the system can set different parameters for different objects. The model of top-level controller of the system is built, and the model can schedule algorithm module automatically according to the parameters of different objects. At last, image segmentation, image de-noising and image sharpening are researched in the paper. The optimization and integration of these algorithms are researched for improving the quality of image processing.
     The main research contents are as follows:
     (1) Agricultural image cloud is proposed for improving the real-time of the system, the extensiveness of the system functions, the convenience of the operation, the adaptation of the working environment and the cheapness of the using cost, and then the architecture of agricultural image cloud is designed. The cloud platform, as the core of the agricultural image cloud, is divided into three levels:control layer, transition layer and algorithm layer. The control layer schedules the algorithm transition modules which the service needs in the transition layer according to the service that selected by users; the algorithm transition module in the transition layer should judge whether it is scheduled and select the idle algorithm modules in the algorithm group which corresponds with the algorithm transition module to executive the function when the execution conditions are favorable. There is also a service parameter library used to store the parameters of various objects.
     (2) For the purpose of designing the control layer in the cloud platform of agricultural image cloud, the parametric design method of agricultural image processing system is proposed. Users can select the algorithms which are needed and set the parameters into the system, and then the system will execute the algorithms according to the parameters to complete the functions that the users requested. The design method improves the flexibility of image processing system and makes the system more widely used; it is applicable to design the large-scale, distributed parallel computing system, such as cloud platform, and it is also can be used to design independent parametric agricultural image processing system.
     (3) In order to solve the modeling problem of agricultural image processing system which has a parallel structure, a Petri nets modeling method of algorithm image processing system is proposed and an algorithm call model based on parameters is constructed. The model of top-level controller of the agricultural image processing system based on Petri net is built, it is transferred to PNML by using SnoopylOPT software, and then the VHDL is got through the PNML2VHDL software; at last, the VHDL is simulated in QuartusII and the simulation result shows that the model is correct.
     (4) Color image cone segment algorithm based on G-component is proposed for getting better segment results of cotton leaves and other green crops. The paper also proposed color image frustum segment algorithm of any color, reduced the expression and verified it. For the purpose of limiting the range of pixel gray value of the target, the color image frustum segment algorithm based on G-component is proposed by fusing the color image cone segment algorithm based on G-component and the thresholding method. The new algorithm makes a cone, the apex of the cone is (0,0,0), the center axis is G-axis and the radius is r. The pixels which in the cone at the same time the pixel gray value is in the range are the target pixels. The unknown quantities are determined by histogram method. At last, the new algorithm is compared with color difference method and thresholding method. The result shows that the pixel error number is the least and the pixel error rate is the smallest by using the new algorithm.
     (5) Fusion algorithm research of image de-noising based on median filter and mask de-noising method. The de-noising effect is good but the image is fuzzy by using median filter5X5; and the de-noising effect is not good but the image is clear by using mask de-noising method. The fusion algorithm is got by fusing the two methods through assigning different weights to the results of the two methods. The result shows that the bigger the k is, the better the de-noising effect is and the fuzzier the image is; the de-noising effect is better and at the same time the image is clearer by using the fusion algorithm which the k is0.6.
引文
[1]Sonka M, Hlavac V, Boyle R. Image Processing, Analysis, and Machine Vision(Second Edition)[M]北京:人民邮电出版社,2002.
    [2]中华人民共和国国民经济和社会发展第十二个五年规划纲要(全文)[EB/OL]. http://www.ce.cn/macro/more/201103/16/t20110316_22304698.shtml,2011.
    [3]2012年中央一号文件(全文)[EB/OL]. http://www.farmer.com.cn/news/btxw/201202/t20120202_695145_5.htm,2012.
    [4]Sarkar N, Wolfe R. Feature extraction techniques for sorting tomatoes by computer vision[J]. Transactions of the ASAE,1985,28(3):970-974.
    [5]Choi K, Lee G, Han Y, et al. Tomato maturity evaluation using color image analysis[J]. Transactions of the ASAE,1995,38(1):171-176.
    [6]张书慧,陈晓光,张晓梅,等.苹果、桃等农副产品品质检测与分级图像处理系统的研究[J].农业工程学报,1999,15(1):201-204.
    [7]Bulanon D, Kataoka T, Zhang S, et al. Optimal threshold for the automatic recognition of apple fruits[J]. Computers and Electronics in Agriculture,2001,32(3):61-65.
    [8]Ji Haiyan, Yuan JinLi. The application study of apple color grading by particle swarm optimization neural networks[C]. Proceedings of the 6th World Congress on Intelligent Control and Automation,2006,1:2651-2654.
    [9]Liao K, Reid J, Ni B, et al. Corn kernel shape identification by machine vision using a neural network classifier[J]. Transactions of the ASAE,1992,35(5):1069-1707.
    [10]Hong-sun Yun, Won-ok Lee, Hoon Chung, et al. A computer vision system for rice kernel quality evaluation[J]. Computer and Electronics in Agriculture,2002,37(2):29-38.
    [11]Ninomiya K, Kondo N, Chong V, et al. Machine vision systems of eggplant grading system[J]. Computer and Electronics in Agriculture,2004,49(2):72-79.
    [12]赵彦如,钱东平,杨世风,等.鸭梨品质检测计算机视觉系统研究[J].河北农业大学学报,2003,26(Z1):280-282.
    [13]沈明霞,李秀智,姬长英.水果品质检测中的模糊阈值分割方法[J].农业机械学报,2003,34(5):113-115.
    [14]沈明霞,姬长英,李秀智.基于遗传BP神经网络的苹果形状识别[J].粮油加工与食品机械,2003,3(12):64-66.
    [15]Shahin M, Tollner E, McClendon R, et al. Apple classification based on surface bruises using image processing and neural networks[J]. Transactions of the ASAE,2002,45(5):1619-1627.
    [16]王树文,张长利,房俊龙.基于计算机视觉的番茄损伤自动检测与分类研究[J].农业工程学报,2005,21(8):98-101.
    [17]蔡健荣.利用计算机视觉定量描述茶叶色泽[J].农业机械学报,2000,31(4):67-70.
    [18]陈全胜,赵杰文,张海东,等.利用计算机视觉识别茶叶的色泽类型[J].江苏大学学报(自然科学版),2005,26(6):461-464.
    [19]Tahir A, Neethirajan S, Jayas D, et al. Evaluation of the effect of moisture content on cereal grains by digital image analysis[J]. Food Research International,2007,40(9):1140-1145.
    [20]Manickavasagan A, Sathya G, Jayas D. Comparison of illuminations to identify wheat classes using monochrome images[J]. Computers and Electronics in Agriculture,2008,63(2): 237-244.
    [21]黄星奕,吴守一,方如明,等.计算机视觉在大米胚芽识别中的应用[J].农业机械学报,2000,31(1):62-65.
    [22]Kawamura S, Natsuga M, Takekura K. Development of an automatic rice quality inspection system[J]. Computers and Electronics in Agriculture,2003,40(1-3):115-126.
    [23]张聪,管庶安.基于图像分析的大米形状识别[J].粮食与饲料工业,2006,(6):5-7.
    [24]Gunasekaran S, Cooper T, Berlage A, et al. Image processing for stress cracks in corn kernels[J]. Transactions of the ASAE,1987,30(1):266-271.
    [25]Qiu W, Shearer S. Maturity assessment of broccoli using the Discrete Fourier Transform[J]. Transactions of the ASAE,1992,35(6):2057-2062.
    [26]张长利,房俊龙,潘伟.用遗传算法训练的多层前馈神经网络对番茄成熟度进行自动检测的研究[J].农业工程学报,2001,17(3):153-156.
    [27]应义斌,饶秀勤,马俊福.柑橘成熟度机器视觉无损检测方法研究[J].农业工程学报,2004,20(2):144-147.
    [28]Yutaka S, Tsuguo O. Automatic Diagnosis of Plant Disease[J]. Journal of JSAM,1999,61(2): 119-126.
    [29]崔艳丽,程鹏飞,董晓志,等.温室植物病害的图像处理及特征值提取方法的研究——基于色度的特征值提取研究[J].农业工程学报,2005,21(Z2):32-35.
    [30]张静,王双喜,董晓志,等.基于温室植物叶片纹理的病害图像处理及特征值提取方法的研究[J].沈阳农业大学学报,2006,37(3):282-285.
    [31]田有文,李成华.基于图像处理的日光温室黄瓜病害识别的研究[J].农机化研究,2006,(2):151-153,160.
    [32]Keagy P, Schatzki T. Machine recognition of weevil damage in wheat radiographs[J]. Cereal Chemistry,1993,70 (6):696-700.
    [33]沈佐锐,于新文.温室白粉虱自动计数技术研究初报[J].生态学报,2001,21(1):94-99.
    [34]陈佳娟,纪寿文,李娟,等.采用计算机视觉进行棉花虫害程度的自动测定[J].农业工程学报,2001,17(2):157-160.
    [35]Panigrahi S, Misra M, Bern C, et al. Background segmentation and dimensional measurement of corn germplasm[J]. Transactions of the ASAE,1995,38(1):291-297.
    [36]Zhang N, Chaisattapagon C. Effective criteria for weed identification in wheat fields using machine vision[J]. Transactions of ASAE,1995,38 (3):965-974.
    [37]Burks T, Shearer S, Payne F. Classification of weed species using color texture features and discriminant analysis[J]. Transactions of ASAE,2000,43(2):441-448.
    [38]Burks T, Shearer S, Gates R, et al. Backpropagation neural network design and evaluation for classifying weed species using color image texture[J]. Transactions of ASAE,2000,43(4): 1029-1037.
    [39]相阿荣,王一鸣.利用色度法识别杂草和土壤背景物[J].中国农业大学学报,2000,5(4):98-100.
    [40]Woebbecke D, Meyer G, Bargen K, et al. Color indices for weed identification under various soil, residual, and lighting conditions [J]. Transactions of ASAE,1995,38(1):259-269.
    [41]Franz E, Gebhardt M, Unklesbay K. Shape description of completely visible and partially occluded leaves for identifying plants in digital images[J]. Transactions of ASAE,1991,34(2): 673-681.
    [42]周平,汪亚明,赵匀.基于颜色分量运算与色域压缩的杂草实时检测方法[J].农业机械学报,2007,38(1):116-119.
    [43]纪寿文,王荣本,陈佳娟,等.应用计算机图像处理技术识别玉米苗期田间杂草的研究[J].农业工程学报,2001,17(2):154-156.
    [44]曹晶晶,王一鸣,毛文华,等.基于纹理和位置特征的麦田杂草识别方法[J].农业机械学报,2007,38(4):107-110.
    [45]Lee W, Slaughter D, Giles D. Robotic weed control system for tomatoes using machine vision system and precision chemical application[C]. ASAE Paper No.97-3093, St. Joseph, MI, USA, 1997.
    [46]Lee W, Slaughter D, Giles D. Robotic weed control system for tomatoes[J]. Precision Agriculture,1999,1(1):95-113.
    [47]Giles D, Slaughter D. Precision band spraying with machine-vision guidance and adjust able yaw nozzles[J]. Transactions of ASAE,1997,40(1):29-36.
    [48]Blackshow R, Molnar L, Lindwall C. Merits of a weed-sensing sprayer to control weeds in conservation fallow and cropping systems[J]. Weed Science,1998,46:120-126.
    [49]Tian Lei, Reid J, Hummel J. Development of precision sprayer for site-specific weed management[J]. Transactions of ASAE,1999,42(4):893-900.
    [50]Tian Lei. Development of a sensor-based precision herbicide application system[J]. Computers and Electronics in Agriculture,2002,36:133-149.
    [51]Gerhards R, Sokefeld M, Timmermann C, et al. Site-specific weed control in maize, sugar beet, winter wheat and winter barley[J]. Precision Agriculture,2002,3(1):25-35.
    [52]Tellaeche A, Burgos-Artizzu X, Pajares G, et al. A vision-based method for weeds identification through the Bayesian decision theory[J]. Pattern Recognition,2008,41: 521-530.
    [53]Irvine J, Ward B, Teti P, et al. Evaluation of a method to count and measure live salmonids in the field with a video camera and computer[J]. North American Journal of Fisheries Management,1991,11:20-26.
    [54]Beddow T, Ross L. Predicting biomass of Atlantic salmon from morphometric lateral measurements[J]. Journal of Fish Biology,1996,49 (3):469-482.
    [55]Beddow T, Ross L, Marchant J. Predicting salmon biomass remotely using a digital stereo-imaging technique[J]. Aquaculture,1996,146(3):189-203.
    [56]Israeli D, Kimmel E. Behavioral response of carp (Cyprinus carpio) to ammonia stress[J]. Aquaculture,1998,165(1):81-93.
    [57]Kato S, Tamada K, Shimada Y, et al. A quantification of goldfish behavior by an image processing system[J]. Behavioural Brain Research,1996,80:51-55.
    [58]Kato S, Nakagawa T, Ohkawa M, et al. A computer image processing system for quantification of zebrafish behavior[J]. Journal of Neuroscience Methods,2004,134(1):1-7.
    [59]刘星桥,孙玉坤,赵德安,等.采用图像处理技术对鱼体健康状况监视和预报[J].农业工程学报,2005,21(6):118-121.
    [60]Zion B, Shilyar A, Karplus Ⅰ. In-vivo fish sorting by computer vision[J]. Aquacultural Engineering,2000,22(3):165-179.
    [61]Paulf N, Culverhouse P, Pilgrim D, et al. Automatic fish population counting by artificial neural network[J]. Aquaculture,1995,133(1):45-55.
    [62]林享昙,张嘉孟,方烽,等.应用机器视觉的养殖池鱼类自动计量分析系统[J].农业机械学刊,2006,15(1):25-36.
    [63]Chatain B, Debas L, Bourdillon A. A photographic larval fish counting technique: comparison with other methods, statistical appraisal of the procedure and practical use[J]. Aquaculture, 1996,141(1/2):83-96.
    [64]Petrell R, Shi X, Ward R, et al. Determining fish size and swimming speed in cages and tanks using simple video techniques[J]. Aquaculture Engineering,1997,16(1-2):63-84.
    [65]Boles W, Geva S, Busch A. An image processing approach for estimating the number of live prawn larvae in water[C]. Proceedings of the Fifth International Symposium on Signal Processing and Its Applications(ISSPA),1999:571-574.
    [66]Blackmer T, Scheper J. Use of a chlorophyll meter to monitor N status and schedule fertigation of corn[J]. J. Prod. Agric.,1995,8(1):56-60.
    [67]Blackmer T, Scheper J, Varvel G, et al. Analysis of Aerial Photography for nitrogen stress within corn fields[J]. Agron,1996,88:729-733.
    [68]Singh N, Casady W, Costello T. Machine vision based nitrogen management models for rice[J]. Transactions of the ASAE,1996,39(5):1899-1904.
    [69]张为民,唐剑锋,罗治国,等.云计算:深刻改变未来[M].北京:科学出版社,2010.
    [70]摩尔定律.http://baike.baidu.com/view/17904.htm.
    [71]Lenk A, Klems M, Nimis J, et al. What's inside the Cloud? An Architectural Map of the Cloud Landscape[C]. Proceedings of the 2009 ICSE Workshop on Software Engineering Challenges of Cloud Computing,2009:23-31.
    [72]Amazon Web Services[EB/OL].http://aws.amazon.com/.
    [73]Google app engine[EB/OL].http://appengine.google.com.
    [74]Microsoft azure[EB/OL].http://www.microsoft.com/azure/.
    [75]Google Docs[EB/OL].http://docs.google.com/.
    [76]Hazelhurst S.Scientific computing using virtual high-performance computing: a case study using the Amazon Elastic Computing Cloud[C]. Proceedings of the 2008 annual research conference of the South African Institute of Computer Scientists and Information Technologists on IT research in developing countries: riding the wave of technology,2008: 94-103.
    [77]Vaquero L, Rodero-Merino L, Cacerex J, et al.A break in the clouds:towards a cloud definition[J]. ACM SIGCOMM Computer Communication Revies,2009,39(1):50-55.
    [78]Chris M, Yvonne C. Virtualized recomposition: Cloudy or clear[C]. CLOUD '09 Proceedings of the 2009 ICSE Workshop on Software Engineering Challenges of Cloud Computing,2009: 38-43.
    [79]Ricardo V, Rui O. Clouder:A flexible large scale decentralized object store: architecture overview[C]. WDDM '09 Proceedings of the Third Workshop on Dependable Distributed Data Management,2009:25-28.
    [80]Broberg J, Buyya R, Tari Z. MetaCDN: Harnessing storage clouds for high performance content delivery[C]. Proceedings Sixth International Conference on Service-Oriented Computing,2008:730-731.
    [81]Dean J, Chemawat S. MapReduce: Simplied Data Processing on Large Clusters[C]. OSDI'04: Sixth Symposium on Operating System Design and Implementation,2004.
    [82]Chang F, Dean J, Chemawat S, et al. Bigtable: A Distributed Storage System for Structured Data[C]. OSDI'06:Seventh Symposium on Operating System Design and Implementation, 2006.
    [83]Dornemann T, Juhnke E, Freisleben B. On-demand resource provisioning for BPEL workflows using Amazon's elastic compute cloud[C]. Proceedings of the 9th IEEE/ACM International Symposium on Cluster Computing and the Grid,2009:140-147.
    [84]Christina H, Gaurang M, Timothy F, et al. On the use of cloud computing for scientific workflows[C]. Proc of the 2008 4th IEEE International Conference on e-Science,2008: 640-645.
    [85]Washburn D, Nelson L, Staten J, et al. Cloud computing helps accelerate green IT[EB/OL]. http://www.forrester.com/Cloud+Computing+Helps+Accelerate+Green+IT/fulltext/-/E-RES58 938?objectid=RES58938,2011.
    [86]Wikipedia. John McCarthy(computer scientist) [EB/OL]. http://en.wikipedia.org/wiki/John_McCarthy_(computer_scientist).
    [87]IBM. Google and IBM announced university initiative to address internet scale computing challenges[EB/OL]. http://www-03.ibm.com/press/us/en/pressrelease/22414.wss,2007.
    [88]Armbrust M, Fox A, Griffith R, et al. Above the Clouds: A Berkeley View of Cloud Computing[R]. Department of Electrical Engineering and Computer Sciences, University of California at Berkeley, Technical Report No. UCB/EECS-2009-28, CA, USA,2009.
    [89]Buyya R, Yeo C, Venugopal S, et al. Cloud computing and emerging IT platforms:Vision, hype, and reality for delivering computing as the 5th utility [J]. Future Generation Computer Systems,2009,25(6):599-616.
    [90]Buyya R, Yeo C, Venugopal S. Market-Oriented Cloud Computing: Vision, Hype, and Reality for Delivering IT Services as Computing Utilities[C]. In the 10th IEEE International Conference on High Performance Computing and Communications(HPCC '08),2008:5-13.
    [91]Borthakur D. The hadoop distributed file system:Architecture and design[EB/OL]. http://hadoop.apache.org/common/docs/r0.18.3/hdfs_design.html.
    [92]Enomalism [EB/OL]. http://www.enomalism.com/.
    [93]Nunni D, Wolski R, Grzegorczyk C, et al. The eucalyptus open-source cloud-computing system[C]. CCGRID '09 Proceedings of the 2009 9th IEEE/ACM International Symposium on Cluster Computing and the Grid,2009:124-131.
    [94]Nimbus [EB/OL].http://www.nimbusproject.org/.
    [95]10gen [EB/OL].http://www.10gen.com/.
    [96]Leavitt N. Is cloud computing really ready for prime time[J]. Computer,2009,42(1):15-20.
    [97]Miyamoto T, Hayashi M, Tanaka H. Customizing Network Functions for High Performance Cloud Computing[C]. IEEE International Symposium on Network Computing and Applications,2009:130-133.
    [98]Hao Z, Zhong S, Yu N. A Time-Bound Ticket-Based Mutual Authentication Scheme for Cloud Computing[J]. International Journal of Computers, Communications & Control,2011,6(2): 227-235.
    [99]Zhuo H, Sheng Z, Nenghai Y. A Privacy-Preserving Remote Data Integrity Checking Protocol with Data Dynamics and Public Verifiability[J]. IEEE Transactions on Knowledge and Data Engineering,2011,23(9):1432-1437.
    [100]Wang C, Wang Q, Ren K, et al. Ensuring data storage security in cloud computing[C].17th International Workshop on Quality of Service,2009:1-9.
    [101]Wang C, Wang Q, Ren K, et al. Privacy-Preserving Public Auditing for Data Storage Security in Cloud Computing[C]. IEEE INFOCOM 2010 Proceedings,2010:1-9.
    [102]Hazelhurst S. Scientific computing using virtual high-performance computing:a case study using the Amazon elastic computing cloud[C]. Proceedings of the 2008 annual research conference of the South African Institute of Computer Scientists and Information Technologists on IT research in developing countries:riding the wave of technology.2008: 94-103.
    [103]Grossman R, Gu Y. Data mining using high performance data clouds: experimental studies using sector and sphere[C]. Proceeding of the 14th ACM SIGKDD international conference on Knowledge discovery and data mining.2008:920-927.
    [104]Yifan B, Haiyan W. The application of cloud computing and the internet of things in agriculture and forestry[C].2011 International Joint Conference on Service Sciences.2011: 168-172.
    [105]大卫R,奥兰H著.佩特利网和逻辑控制器图形表示工具(GRAFCET)[M]黄建文,赵不贿译.北京:机械工业出版社,1996.
    [106]Kurt J. Coloured Petri nets-basic concepts, analysis methods and practical use [M]. EATCS Monographs on Theoretical Computer Science. Berlin, Germany: Springer-Verlag,1997.
    [107]Barabasi A, Albert R. Emergence of scaling in random networks[J]. Science,1999,286: 509-512.
    [108]Dong Lingxun, Dou Lihua, Yang Hongju, et al. Hybrid modeling of control system based on hybrid petri nets[C]. IEEE International Conference on Control and Automation,2007: 2158-2162.
    [109]Balduzzi F, Giua A, Menga G. First-order hybrid Petri nets:a model for optimization and control[J]. IEEE Transactions on Robotics and Automation,2000,16(4):382-399.
    [110]Du Y, Jiang C, Zhou M. A Petri Net Based Correctness Analysis of Internet Stock Trading Systems[J].IEEE Transactions on Systems, Man, and Cybernetics, Part C: Applications and Reviews,2008,38(1):93-99.
    [111]Du Y, Jiang C. On the design and temporal Petri net verification of grid commerce architecture[J]. Chinese Journal of Electronics,2008,17(2):247-251.
    [112]赵不贿.基于Petri网密码系统的实现[J].江苏理工大学学报(自然科学版),2001,22(4):71-74.
    [113]Chaouiya C. Petri net modelling of biological networks[J]. Briefings in Bioinformatics,2007, 8(4):210-219.
    [114]Magnin M, Lime D, Roux O. Symbolic state space of stopwatch Petri nets with discrete-time semantics[C]. Proceedings of 29th International Conference on Applications and Theory of Petri Nets and Other Models of Concurrency. Heidelberg: Springer Verlag,2008:307-326.
    [115]Bouroulet R, Devillers R, Klaudel H, et al. Modeling and analysis of security protocols using role based specifications and Petri nets[C]. Proceedings of 29th International Conference on Applications and Theory of Petri Nets and Other Models of Concurrency. Heidelberg: Springer Verlag,2008:72-91.
    [116]杜天艳,赵不贿.基于Lab VIEW的Petri网控制器实现[J].江苏大学学报(自然科学版),2011,32(1):75-78,83.
    [117]袁崇义Petri网原理与应用[M].北京:电子工业出版社,2005.
    [118]Costa A, Gomes L, Barros J, et al. Petri nets tools framework supporting FPGA-based controller implementations[C]. Industrial Electronics, IECON 2008,34th Annual Conference of IEEE,2008:2477-2482.
    [119]Dornbusch T, Andrieu B. Lamina2Shape-an image processing tool for an explicit description of lamina shape tested on winter wheat[J]. Computers and Electronics in Agriculture,2010, 70(1):217-224.
    [120]朱伟兴,金飞剑,谈蓉蓉.基于颜色特征与多层同质性分割算法的麦田杂草识别[J].农业机械学报,2007,38(12):120-124.
    [121]李正明,王森,孙俊.图像分割在成熟茄子目标识别中的应用[J].农业机械学报,2009,40(S1):105-108,96.
    [122]陈丰农,成芳.基于自适应双阈值的彩色线阵CCD小麦黑胚分割[J].农业工程学报,2011,27(3):341-344.
    [123]董金勇,王建仑,李道亮,等.田间枣树叶片复杂目标图像综合分割方法[J].农业机械学报,2011,42(1):165-170.
    [124]Onyango C, Marchant J. Physics-based colour image segmentation for scenes containing vegetation and soil[J]. Image and Vision Computing,2001,19(8):523-538.
    [125]Bunting P, Lucas R. The delineation of tree crowns in Australian mixed species forests using hyperspectral compact airborne spectrographic imager (CASI) data[J]. Remote Sensing of Environment,2006,101(2):230-248.
    [126]Gee Ch, Bossu J, Jones G, et al. Crop/weed discrimination in perspective agronomic images[J]. Computers and Electronics in Agriculture,2008,60(1):49-59.
    [127]张亚秋,吴文福,王刚.基于逐步改变阈值方法的玉米种子图像分割[J].农业工程学报,2011,27(7):200-204.
    [128]凌云,王一呜,孙明,等.基于流域算法的谷物籽粒图像分割技术[J].农业机械学报,2005,36(3):95-98.
    [129]Wang W, Paliwal J. Separation and identification of touching kernels and dockage components in digital images[J].Canadian Biosystems Engineering,2006,48:7.1-7.7.
    [130]伍学千,廖宜涛,樊玉霞,等.基于KFCM和改进分水岭算法的猪肉背最长肌分割技术 [J].农业机械学报,2010,41(1):172-176.
    [131]汪建.结合颜色和区域生长的茶叶图像分割算法研究[J].茶叶科学,2011,31(1):72-77.
    [132]张德国,胡海虹,梁继民.基于模糊积分的图像分割算法融合[J].系统工程与电子技术,2006,28(10):1480-1483.
    [133]Woebbecke D, Meyer G, Von B, et al. Color indices for weed identification under various soil, residue, and lighting conditions [J]. Transactions of the ASAE,1995,38(1):259-269.
    [134]陈树人,沈宝国,毛罕平,等.基于颜色特征的棉田中铁苋菜识别技术[J].农业机械学报,2009,40(5):149-152.
    [135]Yang C, Prasher S, Landry H, et al. A vegetation localization algorithm for precision farming[J]. Biosystems Engineering,2002,81(2):137-146.
    [136]罗希平,田捷,诸葛婴,等.图像分割方法综述[J].模式识别与人工智能,1999,3(12):300-312.
    [137]Brink A. Thresholding of digital images using two dimensional entropies[J]. Pattern Recognition,1992,25(8):803-808.
    [138]Shafarenko L, Petrou M, Kittler J. Automatic watershed segmentation of randomly textured color images [J]. IEEE Transactions on Image Processing,1997,6(11):1530-1544.
    [139]Salembier P, Pardas M. Hierarchical morphological segmentation for image sequence coding[J]. IEEE Transactions on Image Process,1994,3(5):639-651.
    [140]陈州徽,雷奕,刘海华.基于多分辨率-分水岭算法的图像分割方法[J].中南民族大学学报(自然科学版),2006,25(1):47-50.
    [141]罗玲,解梅,陈杉.基于多尺度形态滤波的分水岭图像分割方法[J].计算机辅助设计与图形学学报,2004,16(2):168-173.
    [142]Park J, Keller J. Snakes on the watershed [J]. IEEE Transactions on Pattern Analysis and Machine Intelligence,2001,23(10):1201-1205.
    [143]范静辉,吴建华,刘晔.基于矢量量化和区域生长的彩色图像分割新算法[J].中国图象图形学报,2005,10(9):1079-1081.
    [144]黄长专,王彪,杨忠.图像分割方法研究[J].计算机技术与发展,2009,19(6):76-79,83.
    [145]雷丽珍.数字图像边缘检测方法的探讨[J].测绘通报,2006,(3):40-42.
    [146]Yasnoff W, Mui J, Bacus J. Error measures for scene segmentation[J]. Pattern Recognition, 1977,9(4):217-231.
    [147]Chalana V, Kim Y. A methodology for evaluation of boundary detection algorithms on medical images[J]. IEEE Transactions on Medical Imaging,1997,16(5):642-652.
    [148]Xiaoyi Jiang. Performance evaluation of image segmentation algorithms [J]. Handbook of Pattern Recognition and Computer Vision,2005, (3):525-542.
    [149]Min J, Powell M, Bowyer K. Automated performance evaluation of range image segmentation algorithms [J]. IEEE Transactions on Systems, Man and Cybernetics, Part B: Cybernetics,2004,34(1):263-271.
    [150]Udupa J, LeBianc V, Zhege Y, et al. A framework for evaluating image segmentation algorithms[J]. Computerized Medical Imaging and Graphics,2006,30(2):75-87.
    [151]Ortiz A, Oliver G. On the use of the overlapping area matrix for image segmentation evaluation: A survey and new performance measures[J]. Pattern Recognition Letters,2006, 27(16):1916-1926.
    [152]侯格贤,毕笃彦,吴成柯.图像分割质量评价方法研究[J].中国图象图形学报,2000,5A(1):39-43.
    [153]章毓晋.图像分割评价技术分类和比较[J].中国图象图形学报,1996,1(2):151-158.
    [154]王益艳.图像去噪算法的研究[D].陕西:陕西师范大学,2008.
    [155]陆系群,陈纯.图像处理原理、技术与算法[M].浙江:浙江大学出版社,2001.
    [156]Wang J, Lin L. Improved median filter using minmax algorithm for image processing[J]. Electronics Letters,1997,33(16):1362-1363.
    [157]Chan R, Ho C-W, Nikolova M. Salt-and pepper noise removal by median-type noise detectors and detail-preserving regularization[J]. IEEE Transactions on Image Processing, 2005,14(10):1479-1485.
    [158]Gonzalez R, Woods R数字图像处理(第二版)[M].阮秋琦,阮宇智等译.北京:电子工业出版社,2004.
    [159]Mallat S信号处理的小波导引[M].杨力华等译.北京:机械工业出版社,2002.
    [160]Donoho D, Johnstone J. Ideal spatial adaptation by wavelet shrinkage[J]. Biometrika,1994, 81(3):425-455.
    [161]Donoho D, Johnstone Ⅰ. Adapting to unknown smoothness via wavelet shrinkage[J]. Journal of the American Statistical Association,1995,90(12):1200-1224.
    [162]Mallat S, Hwang W. Singularity detection and processing with wavelets[J]. IEEE Transactions on Information Theory,1992,38(2):617-643.
    [163]王明印,韦群,何国林,等.基于拉普拉斯图像锐化算法研究[C].中国电子学会第十六届信息论学术年会论文集,2009:464-468.
    [164]秦襄培MATLAB图像处理与界面编程[M].北京:电子工业出版社,2009.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700