用户名: 密码: 验证码:
海洋深层水对代谢综合征预防作用的初步研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
近年来,随着世界经济的迅猛发展,陆地资源的有限性与经济发展对资源的需求之间的矛盾日益突出,于是世界各大经济强国对资源探索的目光都不约而同的转向海洋。海洋是一座资源宝库,它不但拥有大量的矿藏、能源,同时还拥有其它众多的宝贵资源,海洋深层水(deep-sea water, DSW)正是其中之一。DSW作为一种新的天然资源正在受到世人的瞩目。
     DSW通常是指阳光照射不到,不能进行光合作用,约200m以深的海水。研究表明,DSW具有不少有别于海洋表层水(surface-sea water, SSW)的优良性质,如低温恒定性、矿物元素丰富且稳定及无菌清洁性等特性。药理研究表明,DSW具有多种药理活性,如预防心血管疾病(cardiovascular disease, CVD),预防和治疗肥胖病和糖尿病(diabetes mellitus, DM),治疗皮肤病,调节免疫系统及抗氧化,抗疲劳,抗肿瘤及治疗骨质疏松等,但是其作用机制尚未阐明,而且DSW的取水深度也不确定,在不同文献中DSW的取水深度不尽相同。DSW的开发利用在日本、韩国和美国已经进入商品化阶段,但我国尚无DSW方面的研究开发。
     随着人们生活方式和饮食习惯的改变,代谢综合征(metabolic syndrome,MS)及其相关疾病如高脂血症、Ⅱ型糖尿病(type2diabetes mellitus, T2DM)的发病率逐年升高。研究表明,矿物元素与MS及其相关疾病的发生和发展密切相关,通过饮食补充有益矿物元素Ca、V、, Cr、Mn、Zn、Se,同时减少有毒微量元素Pb、Hg等的接触,以维持体内矿物元素含量的相对稳定,对预防MS及其相关疾病的发生具有积极意义。DSW富含92种矿物元素,涵盖了人体新陈代谢所需的元素种类,可以均衡满足机体摄取各种矿物元素的需求,因此理论上,DSW对MS及其相关疾病均具有较好的预防作用。
     在我国水资源日益紧缺,水污染日趋严重,MS及其相关疾病发病率逐年攀升的情况下,无论是从经济角度还是人类健康角度出发,开发和利用DSW都具有非常重要的意义及价值。
     本论文对我国南海海域DSW的药用价值进行了较为系统的研究,首先确定具有开发利用价值的DSW的取水深度,并在细胞和动物水平对DSW的安全性、其对MS及其相关疾病的预防作用与作用机制进行了深入研究。主要内容如下:
     1.具有开发利用价值的DSW取水深度的确定。研究表明,在海洋深层,海水的化学成分是相对恒定的,不随深度、季节和海域的不同而变化;同时,日本学者Miyamura M发现,与SSW相比,DSW对高脂血症的预防作用更显著。即在化学成分和药理活性方面,DSW与SSW是有区别的。因此,采用化学成分和药理活性分析相结合的方法确定具有开发利用价值的DSW的取水深度。分别汲取深度为150m,200m,300m,500m和1000m处海水,选择这5个深度的原因为150m为公认的表层,200m,300m和500m则是不同学者对海洋深层和表层的分界点,而1000m则是公认的海洋深层。首先对这5个不同深度海水的化学成分进行分析对比:采用ICP-MS测定海水中52种无机元素的含量;通过OPA-MPA柱前衍生RP-HPLC法、TPTZ分光光度法、气相色谱法及HPLC、UPLC-MS法对海水中的溶解游离氨基酸(dissolved free aminoacid, DFAA)、碳水化合物、脂肪酸和溶解有机物(dissolved organic matter, DOM)进行测定分析,并采用主成分分析和聚类分析方法对测定结果进行分析,结果表明,500m和1000m海水的化学成分非常相似,而与其他深度差异较大,说明500m及其以深的海水化学成分较为恒定。然后对不同深度的海水进行脱盐处理,制备得到硬度为1000的实验用海水,并以自由饮水的方式给予高脂乳剂造模的高脂血症大鼠,观察它们对高脂血症的预防作用及差异,结果发现,给予28天后,500m和1000m海水能显著降低高脂血症大鼠的血脂水平,提高机体抗氧化酶如SOD及GSH-Px的酶活,抑制脂质过氧化,并显著提高脂蛋白代谢酶LCAT, LPL及HL的活性,从而改善高脂血症大鼠体内的脂质代谢紊乱状态及其并发的脂肪肝和糖尿病,而其它深度海水组的各项指标则与模型对照组没有显著差异,这一结果表明500m及其以深的海水具有较好的生物活性。结合化学成分与药理活性分析结果,我们确定中国南海海域500m及其以深的海水均可用于DSW的开发利用。因为海洋的平均水深为3800m,所以海水的87%都可以用于DSW的研究开发,这一资源的数量是相当巨大的。此外,化学成分分析表明,与SSW相比,DSW富含有益微量元素V、Cr、Mn、Zn、Se等,而有毒微量元素Hg和Pb的含量则很低,而这些元素对MS及其相关疾病的发病和治疗都是有影响的,所以DSW的药理活性应该与这些元素密切相关,而这些元素在DSW和SSW中的含量差异导致了它们药理活性的差异。接下来,以取自1000m的DSW为例,对其安全性及对MS相关疾病如高脂血症及T2DM的预防作用及其作用机制进行了深入研究。
     2.DSW的长期毒性研究。小鼠连续饮用硬度为1000的DSW63天,结果发现,与给予自来水的空白对照组相比,其生长指标如体重、饮水量、摄食量及各项血液学指标、血液生化学指标均无差异,主要脏器的组织形态学正常,未见与药物毒性相关的明显病变。这些结果表明DSW是安全无毒的。
     3.DSW对脂质代谢的调节作用及机制研究。通过体外培养HepG2细胞,并采用ELISA、Western Blot等方法检测脂质代谢关键蛋白HMGCR、ACC、LDLR、 CYP7Al、Apo AI等的含量及其对AMPK及SREBPs信号通路的影响,对DSW的降脂机制进行研究。结果表明,DSW可以显著降低HepG2细胞胞内的脂质含量,对肝脏脂质代谢具有很好的调节作用。其作用机制为通过激活AMPK,磷酸化并失活胆固醇及脂肪酸合成的关建酶HMGCR和ACC,从而抑制胆固醇和脂肪酸的合成,并促进脂肪酸的氧化,同时抑制SREBP-1c的表达,进一步抑制脂肪酸及TG的合成;通过激活SREBP-2的裂解,上调LDLR的表达,提高机体清除LDL-C的能力;促进CYP7A1的表达,促进胆固醇向胆汁酸的转化;促进Apo AI的分泌,增强胆固醇的逆转运,从而在各个方面对脂质代谢进行调节。
     4.DSW对T2DM的预防作用及机制研究。分别在动物和细胞水平探讨了DSW对T2DM的预防作用及其机制。动物实验结果表明硬度为1000的DSW可以显著降低高脂高糖饲料联合STZ诱导的T2DM小鼠的空腹血糖(fasting blood glucose, FBG)和空腹胰岛素(fasting insulin, FIns)含量,并显著提高其胰岛素敏感指数(insulin sensitivity index, ISI),说明DSW可以提高T2DM小鼠的胰岛素敏感性,对T2DM具有较好的预防作用。细胞实验结果表明DSW能够明显对抗高浓度葡萄糖诱导的胰岛素抵抗(insulin resistance, IR)。DSW能够激活IRS-2/PI3K信号途径,促进IRS-2的酪氨酸磷酸化及其与PI3K的p85亚基之间的相互作用,提高下游分子Akt及GSK-3的磷酸化程度,抑制G6Pase的表达,促进糖原合成,抑制糖异生而减少肝糖输出,从而抑制IR的形成。此外,DSW能够激活细胞内的AMPK信号通路,打开AMPK这个代谢“总开关”进而调节糖脂代谢,通过抑制肝脏脂质沉积改善IR。DSW还能够抑制细胞内JNK信号通路的激活,从氧化应激方面改善IR。因为IR被公认为MS的一个重要诱发因素,所以DSW对IR的改善作用表明其对MS具有较好的预防作用。
     同时,研究发现,人工配制的只含Mg和Ca的人工矿物质水(artificial mineral water, AMW)对脂质代谢和IR也具有一定的调节作用,而且作用机制和DSW较为相似,只是各方面的作用都较为微弱。这些结果表明DSW中的常量元素Mg和Ca对于DSW改善糖脂代谢和IR发挥了一定作用,而微量元素如V、Cr、 Mn、Zn、Se等则进一步加强了该效应,使得DSW的药理活性更为显著,因此DSW对MS及其相关疾病的预防作用应归因于其中常量元素和微量元素的联合作用,体现了多种矿物元素“协同作战”的效果。
     本论文首次对我国南海海域DSW对MS及其相关疾病的预防作用进行了较为系统的研究,为MS及其相关疾病如高脂血症、DM等的预防提供一个新的思路,为DSW的研究开发提供了实验基础和理论依据,并为更加全面而深入的研究开发提供了借鉴意义和启示。
     DSW可以通过多途径、多靶点对糖脂代谢进行调节,对MS及其相关疾病具有较好的预防作用,而且DSW具有安全无毒、资源丰富等特性,所以DSW在医药领域具有广阔的开发应用价值及前景。在当前水源污染日趋严重、水资源日益紧缺的情况下,DSW这一新资源的开发和利用必将给社会带来深远的影响,DSW将成为人类新的资源宝库。
Recently, as the development of the world economy, especially the Chinese economy, the contradiction between the limited land resources and the demand for resources has become increasingly prominent. Many countries pay more attention to the ocean for resources exploring. The ocean is rich in natural resources. It not only has a large number of minerals resources, energy, but also has many other valuable resources, such as DSW. Currently, DSW is attracting much attention as a new natural resource.
     DSW generally refers to sea water from a depth of more than200m. Water at those depths is free of the pollutants and pathogen that can taint SSW. Moreover, depth of more than200m is free of sunlight, so there is no photosynthesis, and the mineral component is more wealthy and stable. For these reasons, DSW exerts many properties that SSW does not have, such as purity, low temperature stability, and wealth of mineral components. DSW has been demonstrated to exert diverse beneficial health effects such as inhibition of atherosclerosis, hypertension, obesity, osteoporosis, and cancer. However, the underlying mechanisms remained totally undefined. Moreover, the pumping depth of DSW is not very precise, and is different in every literature.The development and utilization of DSW in Japan, Korea and the United States has entered into the commercialization stage, but in our country, there is no related research and development.
     Previous studies found relationship between minerals intake and MS. Supplement of mineral elements through diet is of positive significance to the prevention of MS. DSW contains abundant major elements such as Mg, Ca, along with minute amounts of many beneficial trace elements such as V, Cr, Mn, Zn and Se. Therefore, in theory, DSW should have preventative effect on MS. In our country, water resource shortage and water pollution is becoming more serious. Thus, from the perspectives of economy and treatment of disease, study on DSW has both scientific significance and application values.
     This paper conducted a systematic study on the pharmaceutical value of DSW pumped up from the South China Sea. Firstly, the pumping depth of DSW was determined, then, the safty, preventative effect on MS and the mechanism of DSW were investigated in cells and animals. The main results of this paper were listed below:
     1. The pumping depth of DSW was determined. Researchers found that in the deep ocean, the chemical composition is relatively stable and will not change along with the depth, sea area and season. Besides, investigators found that DSW was useful for the prevention of hyperlipidemia and arteriosclerosis compared with SSW in animal model studies, that is to say, DSW is distinct from SSW in chemical constituent and pharmacological effect, so in this study, The pumping depth of DSW was determined using the combination method of chemical composition and pharmacological effect analysis. Seawater was pumped up from150m,200m,300m,500m and1000m respectively, the reason why these5depths are chosen is that150m is acknowledged as SSW,1000m is accepted as DSW, while200m,300m and500m are considered as boundary between SSW and DSW by different researchers. The analyses of mineral elements, dissolved fatty amino aicds, carbohydrates, fatty acids and dissolved organic matter were performed by ICP-MS, RP-HPLC, TPTZ-spectrophotometric method, gas chromatography and UPLC-MS respectively. Results suggested that seawater from500m and1000m was similar in their chemical constituents, distinguishing from seawater from other depths. Thereafter, seawater was desalinated to prepare water with hardness1000, and given to rats administrated with high fat emulsion for28days. Lipid parameters were determined and results indicated that seawater from500m and1000m were useful for the prevention of hyperlipidemia compared to seawater from other depths. The results of chemical composition and pharmacological effect analysis suggested that seawater from more than500m could be used in the research and exploitation of DSW. Because the average water depth of seawater was3800m, so87%of the seawater could be used as DSW. DSW is a resource with large quantity. Besides, compared with SSW, DSW is rich in beneficial microelement, such as V, Cr, Mn, Zn and Se, while contents of poisonous element, such as Hg and Pb in DSW are lower. These elements have influence on the prevention and development of MS and related diseases, so the activity of DSW must be related to thses trace elemtents, The difference between DSW and SSW in the content of trace minerals was considered to cause the difference in the hypolipidemia effects.Thereafter, the subacute effect, preventative effect on MS and the action mechanism of DSW were studied deeply.
     2. DSW was safe as drinking water. To confirm the safety of DSW, the chronic toxicity of DSW was investigated in mice. None of the mice showed any clear abnormal growth or behavior, neither did any show signs of illness nor a single case of death during the9weeks of study. In terms of body weight gain, food and water intake, hematological parameters, blood biochemical parameters and morphological changes of the main internal organs, no significance difference was found between the DSW group and the control group who received tap water. This finding suggested that DSW showed no acute or subacute effects and was safe as drinking water.
     3. The modulation and action mechanism of DSW on lipid metabolism were investigated in HepG2cells. It has been found that DSW was associated with lower serum lipid in animal model studies. Herein we further elucidated how DSW modulated lipid metabolism in HepG2cells. When DSW was added to HepG2cells, it decreased the lipid contents of hepatocyte through the activation of AMPK, thus inhibiting the synthesis of cholesterol and fatty acid. Besides, LDLR was upregulated by activation of SREBP-2. In addition, the levels of ApoAI and CYP7Alwere also increased. That was to say, DSW could modulate lipid metabolism in many aspects.
     4. The preventive effects of DSW on T2DM were evaluated in mice and HepG2cells, with the investigation of its mechanism. Compared with the control group administrated with distilled water, treatment with DSW significantly decreased the fasting blood glucose and fasting insulin in mice, raised the insulin sensitive index at the same time. These results indicated that DSW exerted good hyperglycemic activity. Insulin resistance is recognized as an important causative factor for pathogenesis of MS, and many study suggested that the defect of insulin signaling was the main reason for insulin resistance, and IRS-2/PI3K pathway is mainly involved in the control of metabolic actions by insulin in liver. Therefore, in the present study, the investigations of DSW on insulin signaling are performed in insulin-responsive human HepG2cells cotreated with high glucose. Result suggested that treatment of DSW activated IRS-2/PI3K pathway, depressed glucose production, protected hepatocytes from oxidative stress, and inhibited lipogenesis in insulin resistant HepG2cells. Our data demonstrate that DSW may attenuate insulin signaling blockade via AMPK and JNK pathways, establishing a new mechanism for DSW preventing insulin resistance. Insulin resistance is recognized as an important causative factor for pathogenesis of metabolic syndrome, so DSW must have good preventive effect on metabolic syndrome.
     Interestingly, we found that AMW which contained Mg and Ca only also had similar effects to DSW on prevention of MS, moreover, both action mechanisms were similar, but AMW exerted weaker activities in all aspects than DSW. These results demonstrated that among minerals in DSW, Mg and Ca might play important roles in the regulatory effect of DSW in glcose and lipid metabolism, at the same time, trace elements such as V, Cr, Mn, Zn and Se enhanced these effects. So, the pharmacological activities of DSW must be attributed to the combined action of mineral ions contained in DSW.
     A systematic investigation of the pharmaceutical value of DSW has been performed in this paper for the first time, the present findings open up new avenues into the prevention and treatment of MS, providing experimental basis for the medicinal exploitation of DSW and reference meaning and inspiration in the further study.
     DSW can regulate glucose and lipid metabolism via multi-ruotes and multi-targets, and it possesses good prevention and protection effect on MS. DSW is natural, pure water resources with large quantity and is of benefit to people in many aspects. Under the condition of water pollution and water resources shortage, exploitation of DSW is of profound and lasting significance. DSW is a new resource treasury for China and the world.
引文
[1]Tsuchiya Y, Nakamura K, Sekikawa H, Kawamura H, Miyanishi K, Ishizu T, Yamamoto M. Subacute effects of deep-sea water from the Japan Sea on blood examination values in mice. Environ Health Prev Med.2002,7(5):189-192.
    [2]Tsuchiya Y, Watanabe A, Fujisawa N, Kaneko T, Ishizu T, Fujimoto T, Nakamura K, Yamamoto M. Effects of desalted deep seawater on hematologic and blood chemical values in mice. Tohoku J Exp Med.2004,203(3):175-182.
    [3]Yoshioka S, Hamada A, Cui T, Yokota J, Yamamoto S, Kusunose M, Miyamura M, Kyotani S, Kaneda R, Tsutsui Y, Odani K, Odani I, Nishioka Y. Pharmacological activity of deep-sea water: examination of hyperlipemia prevention and medical treatment effect. Biol Pharm Bull. 2003,26(11):1552-1559.
    [4]Miyamura M, Yoshioka S, Hamada A, Takuma D, Yokota J, Kusunose M, Kyotani S, Kawakita H, Odani K, Tsutsui Y, Nishioka Y. Difference between deep seawater and surface seawater in the preventive effect of atherosclerosis. Biol Pharm Bull.2004,27(11):1784-1787.
    [5]Kimura M. The effects on health status by drinking water made from deep sea water without salt-the decline effect on plasma cholesterol by drinking water made from deep sea water without salt. Magnesium Research.2004,23 (2):79-86.
    [6]Katsuda S, Yasukawa T, Nakagawa K, Miyake M, Yamasaki M, Katahira K, Mohri M, Shimizu T, Hazama A. Deep-sea water improves cardiovascular hemodynamics in Kurosawa and Kusanagi-Hypercholesterolemic (KHC) rabbits. Biol Phann Bull.2008,31(1):38-44.
    [7]Ueshima S, Fukao H, Okada K, Matsuo O. Suppression of the release of type-1 plasminogen activator inhibito: from human vascular endothelial cells by Hawaii deep sea water. Pathophysiology.2003,9(2):103-109.
    [8]Hwang HS, Kim SH, Yoo YG, Chu YS, Shon YH, Nam KS, Yun JW. Inhibitory effect of deep-sea water on differentiation of 3T3-L1 adipocytes. Mar Biotechnol.2009.11(2):161-168.
    [9]Hwang HS, Kim HA, Lee SH, Yun JW. Anti-obesity and antidiabetic effects of deep sea water on ob/ob mice. Mar Biotechnol (NY).2009,11(4):531-539.
    [10]Yoshizawa Y, Tanojo H, Kim SJ, Maibach HI. Sea water or its components alter experimental irritant dermatitis in man. Skin Research and Rechnology,2001,7 (1):36-39.
    [11]Hataguchi Y, Tai H, Nakajima H, Kimata H. Drinking deep-sea water restores mineral imbalance in atopic eczema/dermatitis syndrome. Eur J Clin Nutr.2005,59(9):1093-1096.
    [12]Kimata H, Tai H, Nakagawa K, Yokoyama Y, Nakajima H, Ikegami Y. Improvement of skin symptoms and mineral imbalance by drinking deep sea water in patients with atopic eczema/dermatitis syndrome (AEDS). Acta Medica (Hradec Kralove).2002;45(2):83-84.
    [13]Jung SJ, Joo EJ. Effect of the supply of natural water from deep sea rock on the immune response and antioxidant activity in rats. Journal of Animal Science and Technology,2006,48 (2): 211-215.
    [14]Iinuma Y, Motomur K. Ameliorative effect of deep-sea water on biochemical and mechanical properties of bone in SAMP6 and SAMR1. International Congress Series.2004,1260(1):437-442.
    [15]Machira F, Iinuma Y. Effects of soluble silicon compound and deep-sea water on biochemical and mechanical properties of bone and the related gene expression in mice. J Bone Miner Metab,2008,26 (2):446-452.
    [16]Wang ST, Hwang DF. Effect of deep sea water on the exercise-induced fatigue of rats. Journal of Food and Drug Analysis,2009,17 (2):133-136.
    [17]Kozuka Y, Tuji A. Anticancer drug using deep sea water [P]. US 2006/02634422 A1. 2006-11-23.
    [18]戴晓岚.代谢综合征的研究新进展.中国慢性病预防与控制.2011,19(4):432-434.
    [19]Isomaa B, Almgren P, Tuomi T, Forsen B, Lahti K, Nissen M, Taskinen MR, Groop L. Cardiovascular morbidity and mortality associated with the metabolic syndrome. Diabetes Care. 2001,24(4):683-689.
    [20]Trevisan M, Liu J, Bahsas FB, Menotti A. Syndrome X and mortality: a population-based study. Risk Factor and Life Expectancy Research Group.Am J Epidemiol.1998,,148(10):958-66.
    [21]顾东风,Reynolds K,杨文杰,陈恕凤等.中国成年人代谢综合征的患病率.中华糖尿病杂志,2005,13(3):181-186.
    [22]金雪娟,陈灏珠.代谢综合征与心血管疾病关系概述.中国实用内科杂志,2006,26(1):54-56.
    [23]Maier JA. Low magnesium and atherosclerosis: an evidence-based link. Mol Aspects Med. 2003:24 (123):137-146.
    [24]Rayssiguier Y. Magnesium, lipids and vascular diseases. Experimental evidence in animal models. Magnesium.1986,5(3-4):182-190.
    [25]秦爱平,章慧双,王志强.老年高脂血症与头发微量元素的关系.湖南医学.1993,29(1):38-39.
    [26]余飞苑,刘浩宇,刘锡仪.微量元素与血脂代谢及心血管疾病的关系.微量元素与健康研究,2005,22(5):10-12.
    [27]初开秋,庞统英,任立晟.糖尿病患者唾液中葡萄糖钙及镁含量测定.实用医学杂志,2002,18(3):319-320.
    [28]Longstreet DA, Heath DL, Panaretto KS, Vink R. Correlations suggest low magnesium may lead to higher rates of type 2 diabetes in Indigenous Australians. Rural Remote Health. 2007,7(4):843-849.
    [29]廖晓征.糖尿病患者头发微量元素的测定.实用医学杂志,1994,10(2):260-261.
    [30]高海思,肖诗亮,杨辰垣.硫酸镁对低氧性肺动脉高压大鼠血中丙二醛和SOD的影响.临床心血管病杂志,2002,18(2):72-73.
    [31]Lawrence A, Steven C, Sean M, et al. Magnesium reduces free radicals in a in vivo coronary occlusion reper fusion model. J Am Coll Cardiol,1998,32 (2):536-539.
    [32]Rosanoff A, Seelig MS. Comparison of Mechanism and Functional Effects of Magnesium and Statin Pharmaceuticals. J Am Coll Nutr.2004,23(5):501S-505S.
    [33]臧凤艳,王会文,王瑞.火焰原子吸收光谱法测定高血压患者头发中锌铜钙镁.理化检验-化学分册,2006,42:529-530.
    [34]张卓,徐超,郭连营,周波,王晓红,曹咏.钙摄入量对高胆固醇血症模型大鼠肝脏胆固醇代谢关键酶基因表达量的影响.《中国营养学会第十次全国营养学术会议暨第七届会员代表大会论文摘要汇编》2008年.
    [35]Ditscheid B, Keller S, Jahreis G. Cholesterol metabolism is affected by calcium phosphate supplementation in humans. J Nutr.2005,135(7):1678-1682.
    [36]Choi HK, Willett WC, Stampfer MJ, Rimm E, Hu FB. Dairy consumption and risk of type 2 diabetes mellitus in men: a prospective study. Arch Intern Med.2005,165(9):997-1003.
    [37]Barba G, Russo P. Dairy foods, dietary calciumand obesity: a short review of the evidence. Nutr Metab Cardiovasc Dis.2006,16(6):445-451.
    [38]Zemel MB. Nutritional and endocrine modulation of intracellular calcium: implications in obesity, insulin resistance and hypertension. Mol Cell Biochem .1998,188(1-2):129-136.
    [39]Woods A, Dickerson K, Heath R, Hong SP, Momcilovic M, Johnstone SR, Carlson M, Carling D.Ca2+/calmodulin-dependent protein kinase kinase-beta acts upstream of AMP-activated protein kinase in mammalian cells. Cell Metab.2005,2(1):21-33.
    [40].陈涛,王家翠,黄深等.脑梗塞患者血清中五种元素的改变.中华微量元素科学,1996,3(33):2-3.
    [41]Koo SI, Williams DA. Relationship between the nutritional status of zinc and cholesterol concentration of serum. Am J Clin Nutr.1981,34(11):2376-2381.
    [42]乔爱国,曹颖莉.微量元素锌铁与高血脂和动脉粥样硬化关系的实验研究.中国医疗前沿.2007,2(22):17-19.
    [43]江天,姜怡帆,陈明石,甄铁梅.人发中锌铬镁元素与代谢综合征相关疾病的研究分析.微量元素与健康研究.2008,25(4):54-55.
    [44]DUNN MF. Zinc-ligand interactions modulate assembly and stability of the insulin hexamer-a review. Biometals.2005,18(4):295-303.
    [45]Ford ES, Giles WH. A comparison of the prevalence of the metabolic syndrome using two proposed definitions. Diabetes Care.2003,26(3):575-581.
    [46]Juturu V, Giri R, Kesavulu M M, et al. Changes in serum zinc, sialic acid, glucose and lipid profile in NIDDM. Trace Elem Electrolytes.1999,16 (2):104-108.
    [47]Chausmer AB. Zinc, insulin and diabetes.J Am Coll Nutr.1998,17 (2):109-115.
    [48]Sondergaard LG, Stoltenberg M, Flyrbjerg A. Zinc ions in beta-cells of obese, insulin-resistant, type Z diabetic rats by autometallography.APMIS.2003,111(12):1147-1154.
    [49]魏清兰,柯于鹤,黄义久.高血压与微量元素的相关研究进展.广东微量元素科学,2006,13(9):1-6.
    [50]刘明,苏静怡,董超仁.微量元素(Cr3+)与动脉粥样硬化关系的研究.北京医科大学学 报.1991,23(1):335-337.
    [51]Abraham AS, Brooks BA, Eylath U. The effects of chromium supplementation on serum glucose and lipids in patients with and without non-insulin-dependent diabetes. Metabolism.1992, 41(3):768-771.
    [52]Bahijiri SM, Mira SA, Mufti AM, Ajabnoor MA. The effects of inorganic chromium and brewer's yeast supplementation on glucose tolerance, serum lipids and drug dosage in individuals with type 2 diabetes. Saud i Med J.2000,21(2):831-837.
    [53]侯少范,王丽珍,李海蓉,李德珠,杨林生,李崇正.胎儿组织锌、铬、硒、钒的随龄变化特征与代谢综合征.中国临床康复.2004,8(21):4298-4300.
    [54]Benjanuvatra N, BennionM. Hair chromium concentration of Thai subjects with and without diabetes mellitus. Nutr Report Int.1975,12(2):325-331.
    [55]黄汉明,梁宝鎏,孙大泽.非胰岛素依赖型糖尿病患者头发矿物元素分析.微量元素与健康研究,2004,21(6):10-12.
    [56]Mertz W. Chromium in human nutrition: a review. J Nutr.1993; 123(4):626-633.[57]孔令芳,姜雅秋,李强等.有机铬对Ⅱ型糖尿病患者红细胞胰岛素受体的影响.中国临床营养杂志,2006,14(1):47-50.
    [58]Anderson RA.Chromium, glucose intolerance and diabetes. J Amer Coll Nutr.1998,17 (6):548-555.
    [59]Cefalu WT, Bell-Farrou AD, Stigner J, et al. Effect of chromium picolinate on insulin sensitivity in vivo. J Trace Elem Exptl Med.1999,12:71-84.
    [60]Cefalu WT, Wang ZQ, Zhang XH, Baldor LC. Oral chromium picolinate improves carbohydrate and lipid metabolism and enhances skeletal muscle Glut-4 translocation in obese, hyperinsulinemic (JCR-LA corpulent) rats. J Nutr.2002,132:1107-1114.
    [61]刘双梅,贾少丹,刘伟.高血压病人血.清铬的研究.中国医刊.2004,39(5):40-41.
    [62]毕振旺,张亨菊,管晓丽.济南历下区正常与肥胖儿童发中微量元素含量研究.中国学校卫生.2003,24(2):105-107.
    [63]孙长颢,张薇,王舒然等.铬对大鼠肥胖基因表达及血糖血脂的影响.营养学报.2001,23(4):346-349.
    [64]安利峰,胜利,范桂香.硒的功能及其相关疾病.国外医学医学地理分册.2005,2(2):56-59.
    [65]孔祥瑞.必需微量元素的营养、生理及临床意义[M].合肥:安徽科学技术出版社,1982.297-298.
    [66]张笑天,熊咏民.硒与心血管疾病的研究进展.国外医学医学地理分册.2006,2(5):49-52.
    [67]侯小东.硒对氟致血管内皮细胞损伤的影响:[硕士学位论文].山东济南:山东大学,2008.
    [68]Rayman MP, Stranges S, Griffin BA, Guallar E. Summaries for patients, The Effects of Selenium Supplements on Blood Cholesterol Levels. Ann Intern Med.2011,154(6):656-665.
    [69]冯学冠,钱十匀,郑辅佑等.血脂正常的冠心病患者血清载脂蛋白AI、B100检测的临床 意义.现代诊断与治疗.1996,7(4):200-201.
    [70]曹丹阳.硒与心血管疾病.广东微量元素科学.2005,12(7):1-4.
    [71]Stapleton SR. Selenium: an insulin-mimetic. Cell Mol Life Sci.2000,57(3):1874-1879.
    [72]陈亚军,高秋华,黄开勋等.微量元素硒与糖尿病.广东微量元素科学.1998,5(9):1-4.
    [73]Hafez Y, Kratzer FH. The effect of dietary vanadium on fatty acid and cholesterol synthesis and turnover in the chick. J Nutr.1976,106(2):249-57.
    [74]Cusi K, Cukier S, Defronzo RA. Vanadyl sulfate improves hepatic and muscle insulin sensitivity in type Zdiabetes J Clin Endocrinol Metab.2001,86(2):1410-1417.
    [75]Goluber MA, Gorodetskii VK, Anis kina AP. Comparaive characteristics of vanadium containing compound possessing Insulin-like effects. Vopi Med KHIM.2000,46 (2):155-161.
    [76]Cam MC, Brownsey RW, Mcmeill JH. Mechanisms of vanadium action: Insulin-mimetic or insulin-enhancing agent. J Physiol Pharmacol.2000,78(9):829-947.
    [77]文永植,文香兰,李善花等.钒胰岛素样作用研究进展.广东微量元素科学.1997,4(8):5-7.
    [78]王艳林,余斌杰,袁敏生,张怡坚,肖亦斌.过氧钒烟酸对糖尿病鼠磷酸烯醇型丙酮酸羧化酶的影响.中山医科大学学报.1997,18(1):13-15.
    [79]李艳.钒抗糖尿病作用分子机制的研究进展.国外医学药学分册.2006,33(2):114-116.
    [80]苗青,朱晓悦.锰与心血管疾病.国外医学医学地理分册.2003,23(1):26-27.
    [81]周济桂,魏春山,喇万英.临床微量元素学[M].石家庄:河北科学技术出版社,1994.123-134.
    [82]赵德山主编,微量元素与心脑血管疾病[M].哈尔滨:黑龙江科学技术出版社,1995.216-228.
    [83]Salonen JT, Seppanen K, Nyssonen K, Korpela H. Intake of Mercury From Fish, Lipid Peroxidation, and the Risk of Myocardial Infarction and Coronary, Cardiovascular, and Any Death in Eastern Finnish Men. Circulation.1995:91(3):645-655.
    [84]Pirkle JL, Schwartz J, Landis JR, et al. The relationship between blood lead levels and blood pressure and its cardiovascular risk implications. Am J Epidemiol,1985,121:246-258.
    [85]戴继舫.铅的心血管毒理及与高血压的关系.中国公共卫生,2002,18(3):377-378.
    [86]Robles HV, Romo E, Sanchez Mendoza A, et al. Lead exposure effect on angiotensin Ⅱ renal vasocon striction. Hum Exp Toxicol.2007,26(6):499-507.
    [87]杨志清.21世纪水资源展望.水资源保护.2004,20(4):66-68.
    [88]钱佐国.海水中溶解有机物的化学组成.海洋科学.1978,6(4):21-34.
    [89]Bade JL, Lee C. Decomposition and alteration of organic compounds dissolved in seawater. Mar Chem.1977,5 (4):523-534.
    [90]Broecker WS, Peteet DM, and Rind D. Does the ocean-atmosphere system have more than one stable mode of operation? Nature.1985,315(2),21-25.
    [1]张正斌,刘莲生.海洋化学(上卷)[M].济南:山东教育出版社,2004.60-61.
    [2]中华人民共和国国家技术监督局.GB17378.4-1998.海洋监测规范.北京:中国标准出版社,1998-6-22.
    [3]刘莹,翟世奎,张爱滨,王蓓.ICP-MS测定海水中溶解态痕量重金属-直接稀释法.海洋学报.2008,30(5):151-158.
    [4]钱佐国.海水中溶解有机物的化学组成.海洋科学.1978,(4):21-34.
    [5]Clark ME, Jackson GA, North WJ. Dissolved free amino acids in southern California coastal waters. Limnol. Oceanogr.1972,17(5):749-758.
    [6]姜双城,郑爱榕,权有强.冬季北部湾海水溶解游离氨基酸分布及与环境因子关系.厦门大学学报(自然科学版).2007,46(1):43-47.
    [7]王玉君,李烈英,陆田生HPLC柱前衍生法测定海水中的溶解态游离氨基酸.海洋科学.1989,2:43-47.
    [8]杨桂朋,李静,高先池,陆小兰.高效液相色谱法测定海水中溶解态游离氨基酸.中国海洋大学学报.2007,37(1):125-128.
    [9]张艳萍,杨桂朋.分光光度法测定海水中溶解单糖和多糖.中国海洋大学学报,2009,39(2):327-332.
    [10]Johnson KM, Sieburth JM. Dissolved carbohydrates in seawater. I, A precise spectrophotometric analysis for monosaccharides. Mar Chem.1977,5(1):12-13.
    [11]Burney CM, Sieburth JM. Dissolved carbohydrates in seawater. II, A spectrophotomet ric procedure for total carbohydrate analysis and polysaccharide estimation. Mar Chem.1977,5(1): 15-28.
    [12]Myklestad SM, Skanoy E, Hestmann S. A sensitive and rapid method for analysis of dissolved mono- and polysaccharides in seawater. Mar Chem.1997,56:279-286.
    [13]张国荣,刘有志,刘安军,陈伟伟,曹东旭.鹅肝酱中脂肪酸检测方法的研究.农业工程学报.2007,2(3):236-239.
    [14]Dittmar T, Koch B, Hertkorn N, Kattner G. A simple and efficient method for the solid-phase extraction of dissolved organic matter (SPE-DOM) from seawater.2008, Limnol. Oceanogr. Methods.2008,102(6),230-235.
    [15]Koch BP, Ludwichowski KU, Kattner G, Dittmar T, Witt M. Advanced characterization of marine dissolved organic matter by combining reversed-phase liquid chromatography and FT-ICR-MS. Mar Chem.2008,111 (6) 233-241.
    [16]朱凌.新型酪氨酸酶抑制剂UP302临床前药代动力学研究:[硕士学位论文].北京:中国药品生物制品检定所,2011.
    [17]郝桂明,唐素芳.超高效液相色谱在药物分析中的应用.天津药学,2009,21(6):64-69.
    [18]Masson P, Spagou K, Nicholson JK, Want EJ. Technical and Biological Variation in UPLC- MS-Based Untargeted Metabolic Profiling of Liver Extracts:Application in an Experimental Toxicity Study on Galactosamine. Analytical Chemistry.2011,83 (3):1116-1123.
    [19]史永刚,冯新泸,李子存.化学计量学[M].北京:中国石化出版社,2003:5-6.
    [20]马存花,代斌,徐彩霞,肖芙蓉,周娜,吴建宁.新疆甘草中无机元素的聚类分析及其指纹特征研究.安徽农业科学.2010,38(14):7299-7335.
    [21]黎先春,王小如.中药材GAP实施过程中的关健分析技术[M].厦门:厦门大学出版社,2002:296-298.
    [22]Bhosle NB, Bhaskar PV, Ramachandran S. Abundance of dissolved polysaccharides in the oxygen minimum layer of the Northern Indian Ocean. Mar Chem.1998,63(1-2):171-182.
    [23]Witter AE, Luther III G W. Spectrophotometric measurement of seawater carbohydrate concentrations in neritic and oceanic waters from the U. S. Middle Atlantic Bight and the Delaware estuary. Mar Chem.2002,77:143-156.
    [24]E.K.德斯马,R.道森.海洋有机化学(纪明侯,钱佐国译).北京海洋出版社,1992,610-611.
    [25]郑燕玲,严小军,徐继林,金海晓,陈娟娟.海洋活性生物碱fascaplysin对肝癌细胞BeL-7402代谢物的影响.中国药学杂志2010,45(18):1393-1399.
    [26]Masson P, Alves AC, Ebbels TMD, Nicholson JK, Want EJ. Optimization and Evaluation of Metabolite Extraction Protocols for Untargeted Metabolic Profiling of Liver Samples by UPLC-MS. Analytical. Chemistry,2010,82 (18):7779-7786.
    [27]阮国玲,解利昕,张耀江.发展海水淡化产业,缓解淡水危机,海岸工程.2001,1(20):1-9.
    [28]解利听,李凭力,王世昌.海水淡化技术现状及各种淡化方法评述.化工进展.2003,22(10):1081-1095.
    [29]冯逸仙.海水淡化的技术方向及经济性.水处理技术.2010,36(9):1-5.
    [30]胡玲.海水淡化高效预处理及其联用工艺研究:[硕士学位论文].上海:同济大学,2008.
    [31]高从.我国海水资源化和脱盐技术发展述要.中国建设报,2003.1121,012.
    [32]张宁.高盐度浓海水的冷冻脱盐技术研究:[硕士学位论文].山东青岛:中国科学院海洋研究所.2008.
    [33]冯逸仙.海水淡化的技术方向及经济性.水处理技术.2010,36(9):1-5.
    [34]卢彦越.反渗透膜法海水淡化过程最优化设计的研究:[博士学位论文].山东青岛:中国海洋大学,2007.
    [35]黄昌硕,徐澎波.我国海水资源的利用模式与发展趋势.中国资源综合利用.2008,126(5):3-5.
    [36]Hwang HS, Kim HA, Lee SH, Yun JW. Anti-obesity and antidiabetic effects of deep sea water on ob/ob mice. Mar Biotechnol.2009,11 (4):531-539.
    [37]Katsuda S, Yasukawa T, Nakagawa K, Miyake M, Yamasaki M, Katahira K, Mohri M, Shimizu T, Hazama A. Deep-sea water improves cardiovascular hemodynamics in Kurosawa and Kusanagi-Hypercholesterolemic (KHC) rabbits. Biol Pharm Bull.2008,31(1):38-44.
    [38]Miyamura M, Yoshioka S, Hamada A, Takuma D, Yokota J, Kusunose M, Kyotani S, Kawakita H, Odani K, Tsutsui Y, Nishioka Y. Difference between deep seawater and surface seawater in the preventive effect of atherosclerosis. Biol Pharm Bull.2004,27(11):1784-1787.
    [39]Yoshioka S, Hamada A, Cui T, Yokota J, Yamamoto S, Kusunose M, Miyamura M, Kyotani S, Kaneda R, Tsutsui Y, Odani K, Odani I, Nishioka Y. Pharmacological activity of deep-sea water: examination of hyperlipemia prevention and medical treatment effect. Biol Pharm Bull. 2003,26(11):1552-1559.
    [40]Tsuchiya Y, Watanabe A, Fujisawa N, Kaneko T, Ishizu T, Fujimoto T, Nakamura K, Yamamoto M. Effects of desalted deep seawater on hematologic and blood chemical values in mice. Tohoku J Exp Med.2004,203(3):175-182.
    [41]Machira F, Iinuma Y. Effects of soluble silicon compound and deep-sea water on biochemical and mechanical properties of bone and the related gene expression in mice. J Bone Miner Metab,2008,26 (2):446-452.
    [1]王文,陈伟伟,王增武,刘力生.1995年至2005年我国城乡居民主要疾病死亡率及构成比变化.中国循证心血管医学杂志.2009,1(3):129-134.
    [2]张永欢,李枝杰.高脂血症的中西医治疗[M].上海:上海医药大学出版社.2001,2-5.
    [3]Rich MW. Aggressive Risk Factor Management in the Elderly: Are You Ever Too Old? Am J Geriatr Cardiol.1999,8(2):72-79.
    [4]Jain KS, Kathiravan MK, Somani RS, et al. The biology and chemistry of hyperlipidemia. Bioorg Med Chem.2007,15(14):4674-4699.
    [5]Aikawa M, Libby P. Lipid lowering therapy in atherosclerosis. Semin Vasc Med.2004, 4(4):357-366.
    [6]Shepherd J, Cobbe SM, Ford I, Isles CG. Prevention of coronary heart disease with pravastatin in men with hypercholesterolemia. West of Scotland Coronary Prevention Study Group. N Engl J Med.1995,333(6):1301-1307.
    [7]Fielding CJ, Fielding PE. Intracellular cholesterol transport. J Lipid Res.1997,38(2): 1503-1521.
    [8]张蔚.他汀类药物治疗高脂血症的临床应用.新医学.2007,38(5):330-331.
    [9]刘先锋.重庆市高脂血症患病率及影响因素研究:[硕士学位论文].重庆,重庆医科大学,2007.
    [10]Rehm J, Sempos C, Kohlmeier L, Myers G. A comparison of serum total cholesterol levels and their determinants between the Federal Republic of Germany and the United States. European Journal of Epidemiology.2000,16(7):669-675.
    [11]Katsuda S, Yasukawa T, Nakagawa K, Miyake M, Yamasaki M, Katahira K, Mohri M, Shimizu T, Hazama A. Deep-sea water improves cardiovascular hemodynamics in Kurosawa and Kusanagi-Hypercholesterolemic (KHC) rabbits. Biol Pharm Bull.2008,31(1):38-44.
    [12]Yoshioka S, Hamada A, Cui T, Yokota J, Yamamoto S, Kusunose M, Miyamura M, Kyotani S, Kaneda R, Tsutsui Y, Odani K, Odani I, Nishioka Y. Pharmacological activity of deep-sea water: examination of hyperlipemia prevention and medical treatment effect. Biol Pharm Bull. 2003,26(11):1552-1559.
    [13]Miyamura M, Yoshioka S, Hamada A, Takuma D, Yokota J, Kusunose M, Kyotani S, Kawakita H, Odani K, Tsutsui Y, Nishioka Y. Difference between deep seawater and surface seawater in the preventive effect of atherosclerosis. Biol Pharm Bull.2004,27(11):1784-1787.
    [14]Kimura M. The effects on health status by drinking water made from deep sea water without salt-the decline effect on plasma cholesterol by drinking water made from deep sea water without salt. Magnesium Research,2004,23 (2):79-85.
    [15]Ueshima S, Fukao H. Suppression of the release of type-1 plasminogen activator inhibitor from human vascular endothelial cells by Hawaii deep sea water. Pathophysiology,2003,9(2): 103-106.
    [16]倪鸿昌,李俊,金涌.大鼠实验性高脂血症和高脂血症性脂肪肝模型研究.中国药理学通报.2004,20(6):703-706.
    [17]赵清,舒为裙,高京生,饮用纯净水对大鼠脂代谢酶及载脂蛋白的影响.第四军医大学学报.2004,25(10):945-947.
    [18]Shao BH, Cavigiolio G, Brot N, Heinecke JW. Methionine oxidation impairs reverse cholesterol transport by apolipoprotein A-I. Pharmacy Association of Nova Scotia. 2008,105(34):12224-12229
    [19]Martin SS, Qasim AN, Mehta NN and Reilly MP. Apolipoprotein B but not LDL cholesterol is associated with coronary artery calcification in Type 2 diabetic whites. Diabetes.2009,58 (8):1887-1982
    [20]张华峰,高征,罗亚飞,周肖,张莉.海蒿子活性多糖降血脂作用的研究.中成药.2009,3(12):1925-1927.
    [21]张华.野山杏及其提取物对实验性动物高脂血症的干预及其对非酒精性脂肪肝的预防作用:[硕士学位论文].新疆:新疆农业大学,2011.
    [22]Ezzet F, Wexler D, Statkevich P, and Barra V. The plasma concentration and LDL-C relationship in patients receiving ezetimibe. Journal of clinial pharmacology.2001,41(9):943-949.
    [23]董晓霞.芝麻素对高血脂大鼠胆固醇代谢与相关基因表的的影响:[硕士学位论文].山西:山西医科大学,2010.
    [24]Wu ZP, Gogonea V, LEE X, Wagner MA, and Hazen SL. The Double Super Helix model of high density lipoprotein.2009,284(52):36605-36619.
    [25]尹博英,席志梅,陈首英,魏若晶.血脂综合指数对冠心病危险因素的研究.临床内科杂志.2004,21(9):16-17.
    [26]苏慧,李兰荪,贾国良.LPL基因多态性与血浆TG水平及冠脉病变严重度的关系.第四军医大学学报.2001,22(21):1992-1995.
    [27]吴芳洲,双花颗粒的调脂作用及其机制研究:[硕士学位论文].重庆:西南大学,2011.
    [28]肖军霞,彭光华,张声华.大豆皂甙预防小鼠高脂血症的作用及其分子机制研究.营养学报.2005.2:147-150.
    [29]张蓉,刘宇,刘秉文.血浆脂蛋白酯酶及肝酯酶的比色测定法.华西医大学报.1996,27(1):106-110.
    [30]沃兴德,崔小强,唐利华.姜黄素对食饵性高脂血症大鼠血浆脂蛋白代谢相关酶活性的影响.中国动脉硬化杂志.2003,11(3):223-226.
    [31]刘超,张学武.黄芪对高脂血症小鼠血脂及脂质过氧化的影响.时珍国医国药.2007,18(7):1648-1649.
    [32]王尊文,华玉琴,李国平,李月芬.羊栖菜多糖对高脂血模型大鼠血脂和抗氧化功能的影响. 中国海洋药物.2008,27(6):13-15.
    [33]Rayssiguier Y. Magnesium, lipids and vascular diseases. Experimental evidence in animal models. Magnesium.1986;5(3-4):182-190.
    [34]秦爱平,章慧双,王志强.老年高脂血症与头发微量元素的关系.湖南医学.1993,29(1):38-39.
    [35]陈涛,王家翠,黄深等.脑梗塞患者血清中五种元素的改变.中华微量元素科学.1996,3(33):2-3.
    [36]余飞苑,刘浩宇,刘锡仪.微量元素与血脂代谢及心血管疾病的关系.微量元素与健康研究.2005,22(5):10-12.
    [37]Abraham AS, Brooks BA, Eylath U. The effects of chromium supplementation on serum glucose and lipids in patients with and without non-insulin-dependent diabetes. Metabolism.1992, 41(3):768-771.
    [38]Bahijiri SM, Mira SA, Mufti AM, Ajabnoor MA. The effects of inorganic chromium and brewer's yeast supplementation on glucose tolerance, serum lipids and drug dosage in individuals with type 2 diabetes. Saud i Med J.2000,21(2):831-837.
    [39]廖自基.环境中微量重金属的污染危害与迁移转化[M].北京:科学出版社,1989.209-211.
    [40]曹丹阳.硒与心血管疾病.广东微量元素科学.2005,12(7):1-4.
    [41]Rayman MP, Stranges S, Griffin BA, Guallar E. Summaries for patients, The Effects of Selenium Supplements on Blood Cholesterol Levels. Ann Intern Med 2011,154(6):656-665.
    [42]苗青,朱晓悦.锰与心血管疾病.国外医学医学地理分册.2003,23(1):26-27.
    [43]C(?)rran GL, Costello RL. Reduction of excess cholesterol in the rabbit aorta by inhibition of endogenous cholesterol synthesis. J Exp Med.1956,103(1):49-56.
    [44]Salonen JT, Seppanen K, Nyssonen K, Korpela H. Intake of Mercury From Fish, Lipid Peroxidation, and the Risk of Myocardial Infarction and Coronary, Cardiovascular, and Any Death in Eastern Finnish Men. Circulation.1995:91(3):645-655.
    [45]Pirkle JL, Schwartz J, Landis JR et al. The relationship between blood lead levels and blood pressure and its cardiovascular risk implications. Am J Epidemiol.1985,121:246-258.
    [47]戴继舫.铅的心血管毒理及与高血压的关系.中国公共卫生.2002,18(3):377-378.
    [48]Robles HV, Rom o E, Sanchez -Mendoza A, et al. Lead exposure effect on angiotensin Ⅱ renal vasocon striction. Hum Exp Toxicol.2007,26(6):499-507.
    [1]徐淑云,卞入濂,陈修.药理实验方法学[M].北京:人民卫生出版社,2001,231-234.
    [2]钟正贤,周桂芬,陈学芬,覃洁萍.广西藤茶总黄酮的长期毒性试验.2003,14(4):193-195.
    [3]潘洪平,危华玲,陈英,钟正贤.复方银杏叶片对大鼠的长期毒性研究.时珍国医国药.2007,18(7):1572-1574.
    [4]Tsuchiya Y, Watanabe A, Fujisawa N, Kaneko T, Ishizu T, Fujimoto T, Nakamura K, Yamamoto M. Effects of desalted deep seawater on hematologic and blood chemical values in mice. Tohoku J Exp Med.2004,203(3):175-182.
    [1]刘明贤,朱慧学.脂质代谢异常与脑卒中研究现状.临沂医专学报.2000,22(3):207-208.
    [2]Viollet B, Foretz M, Guigas B, Horman S, Dentin R, Bertrand L, Hue L, Andreelli F. Activation of AMP-activated protein kinase in the liver: a new strategy for the management of metabolic hepatic disorders. J Physiol.2006,574(l):41-53.
    [3]程静屏.姜黄素对人肝L-02细胞胆固醇合成及转运蛋白表达的影响:[硕士学位论文].南华大学,2006.
    [4]Ferrieres J. Effects on coronary atheroselerosis by targeting low-density lipoprotein cholesterol with statins. American Journal of Cardiovascular Drugs.2009,9(2):109-115.
    [5]董祝斌,张学农.他汀类药物的研究进展.中国新医药.2003,2(10):481-485.
    [6]Viollet B, Foretz M, Guigas B, Horman S. Activation of AMP-activated protein kinase in the liver, a new strategy for the management of metabolic hepatic disorders. The Journal of Physiology.2006,574(1):41-53
    [7]Zang MW, Zuccollo A, Hou XY, Nagata D, Walsh K, Herscovitz H, Brecher P, Ruderman NB, Cohen RA. AMP-activated Protein Kinase Is Required for the Lipid-lowering Effect of metformin in Insulin-resistant Human HepG2 Cells. J Biol Chem.2004,279(46),47898-47905.
    [8]Park SH, Gammon SR, Knippers JD, Paulsen SR, Rubink DS, Winder WW. Phosphorylation-activity relationships of AMPK and acetyl-CoA carboxylase in muscle. J Appl Physiol.2002,92(6):2475-82.
    [9]Boright AP, Connelly PW, Brunt JH, Morgan K, Hegele RA. Association and linkage of LDLR gene variation with variation in plasma low density lipoprotein cholesterol. J Hum Genet. 1998;43(3):153-159.
    [10]庞栋.实验性兔肝脏SR-BI、LDLR表达及药物干预研究:[硕士学位论文].山东济南:山东大学,2007.
    [11]葛喜珍,田平芳,林强,霍清.大豆异黄酮对卵巢切除大鼠低密度脂蛋白受体(LDLR) mRNA表达的影响.中药材.2006,29(4):349-351.
    [12]张芬芳.柴苓归芪汤对实验性肾病综合征大鼠脂代谢的影响:硕士学位论文.河北:河北医科大学,2005.
    [13]罗先钦,黄崇刚,伍小波,刘剑毅,胡荣,兰波,徐嘉红.山楂总黄酮对复合因素致大鼠脂肪肝模型脂质代谢与低密度脂蛋白受体表达的影响.中草药.2011,42(7):1367-1374.
    [14]Brown MS, Goldstein JL. The SREBP Pathway: Regulation of cholesterol metabolism by proteolysis of membrane-bound transcription factor. Cell.1997,89(3):331-340.
    [15]Rideout TC, Yuan Z, Bakovic M, Liu Q, Li RK, Mine Y, Fan MZ. Guar gum consumption increases hepatic nuclear SREBP2 and LDL receptor expression in pigs fed an atherogenic diet. J Nutr.2007,137(3):568-572.
    [16]Mcpherson R, Gauthier A. Molecular regulation of SREBP function: the Insig-SCAP connection and isoform specific modulation of lipid sythesis. Biochem Cell Biol.2004,82(1): 201-211.
    [17]Yang TT, Koo, MW. Chinese green tea lowers cholesterol level through an increase in fecal lipid excretion.Life Science.2000,66 (5):411-423.
    [18]冯学冠,钱士匀,郑辅佑等.血脂正常的冠心病患者血清载脂蛋白AI、B100检测的临床意义.现代诊断与治疗.1996,7(4):200-201.
    [19]赵改霞.固醇调节元件结合蛋白(SREBPs)的研究进展[硕士学位论文].山东济南:山东大学,2005.
    [20]Chen YX, Huan AL, Ruan XZ. Nuclear transcription factors and lipid homeostasis in liver. Chin Med J.2007,120 (24):2290-2296.
    [21]Yokoyama C, Wang X, Briggs MR, et al. SREBP-1, a, basic-helix-loop-helix- leucine zipper protein that control trranscription of the low density lipoprotein receptor gene. Cell.1993, 75(1):187-197.
    [22]Goldstein JL, Rawson RB, Brown MS. Mutant mammalian cells as tools to declincate the sterol regulatory element-binding Protein Pathway for feedback regulation of lipids ynihesis.Arch Biochem Biophys.2002,397(2):139-148.
    [23]Shimomura I, Shimano H, Horton JD, Goldstein JL, et al. Differential expression of exons la and lc in the mRNAs of sterol regulatory element binding protein-1 in human and mouse organs and cultured cells.J Clin Invest.1997,99(5):838-845.
    [24]Sheng Z, Otani H, Brown MS, Goldstein JL. Independent regulation of sterol regulatory element-bingding protein 1 and 2 in hamster liver. Proc Natl Acad Sci USA.1995,92:935-938.
    [25]解雪芬,朱毅.AMPK与代谢综合征.基础医学与临床.2006,26(1):27-34.
    [26]Hardie DG, Hawley S A, Scott J W. AMP-activated protein kinase-development of the energy sensor concept. Journal of Physiology.2006,574 (1):7-15.
    [27]Hardie DG. The AMP-activated protein kinase pathways new players upstream and downstream. J Cell Sci.2004,117(23):5479-5487
    [28]Schimmack G, Defronzo RA, Musi N. AMP-activated protein kinase:role in metabolism and therapeutic implication. Diabetes Obes Metab.2006,8(6):591-602.
    [29]Shao RJ, Lamia KA, Vasquez D and Cantley LC.The Kinase LKB1 Mediates Glucose Homeostasis in Liver and Therapeutic Effects of Metformin.Science.2005,310(5754):1642-1646.
    [30]Momcilovic M, Hong SP, Carlson M. Mammalian TAK1 activates Snfl protein kinase in yeast and phosphorylates AMP-activated protein kinase in vitro. J Bio Chem.2006,81(35):25336-25343.
    [31]Gormand A, Henriksson E, Strom K, Jensen TE, Sakamoto K, Goransson O. Regulation of AMP-activated protein kinase by LKB1 and CaMKK in adipocytes. J Cell Biochem.2011,112 (5): 1364-1375.
    [32]Viollet B, Foretz M, Guigas B, Horman S, Dentin R, Bertrand L, Hue L, Andreelli F. Activation of AMP-activated protein kinase in the liver, a new strategy for the management of metabolic hepatic disorders. J Physio.2006,574(1):41-53.
    [33]Javitt, NB. HepG2 cells as a resource for metabolic studies:lipoprotein, cholesterol and bile acids. FASEB J.1990,4(2):161-168.
    [34]郭丽民.地黄寡糖对HepG2细胞(人肝癌细胞株)胰岛素抵抗的改善作用及机制研究:[硕士学位论文].甘肃,兰州大学,2007.
    [35]Alesiani D, Canini A, Abrosea BD, et al. Antioxidant and antiproliferative activitiesc of phytochemicals from Quince (Cydonia vulgaris) peels. Food Chemistry.2009,118(2):199-207.
    [36]Lian Z, Li Y, Gao J, Qu K, Li J, Hao L, Wu S, Zhu H. A novel AMPK activator, WS070117, improves lipid metabolism discords in hamsters and HepG2 cells. Lipids Health Dis.2011,10: 67-75.
    [37]Shin ES, Lee HH, Cho SY, Park HW, Lee SJ, Lee TR. Genistein downregulates SREBP-1 regulated gene expression by inhibiting site-1 protease expression in HepG2 cells. J Nutr. 2007,137(5):1127-1131.
    [38]Wang YX, Lee CH, Tiep S, Yu RT. Peroxisome-proliferator-activated receptor delta activates fat metabolism to prevent obesity. Cell.2003,113(2):159-170.
    [39]Gerber R, Ryan JD, Clark DS. Cell-based screen of HMG-CoA reductase inhibitors and expression regulators using LC-MS. Anal Biochem.2004,329(1):28-34.
    [40]Kim DY, Yuan HD, Chung IK, Chung SH.Compound K, Intestinal metabolite of Ginsenoside, attenuates hepatic lipid accumulation via AMPK activation in human hepatoma cells. J Agric Food Chem.2009,57(6):1532-1537.
    [41]Giller, TU, Hennes, and Kempen HJ. Regulation of human apolipoprotein A-I expression in Caco-2 and HepG2 cells by all-trans and 9-cis retinoic acids. J. Lipid Res, 1995,36(5):1021-1028.
    [42]Funatsu T, Suzuki K, Goto M, et al. Prolonged inhibition of cholesterol synthesis by atorvastatin inhibits apoB-100 and triglyceride secretion from HepG2 cells. Atherosclerosis,2001, 157(1):107.
    [43]Rosanoff A, Seelig MS. Comparison of Mechanism and Functional Effects of Magnesium and Statin Pharmaceuticals. J Am Coll Nutr.2004,23(5):501S-505S.
    [44]Woods A, Dickerson K, Heath R, Hong SP, Momcilovic M, Johnstone SR, Carlson M, Carling D. Ca2+/calmodulin-dependent protein kinase kinase-beta acts upstream of AMP-activated protein kinase in mammalian cells. Cell Metab.2005,2(1):21-33.
    [45]Cefalu WT,Wang ZQ,Zhang XH, Baldor LC. Oral chromium picolinate improves carbohydrate and lipid metabolism and enhances skeletal muscle Glut-4 translocation in obese, hyperinsulinemic (JCR-LA corpulent) rats. J Nutr.2002,132(6):1107-1114.
    [46]Xu G, Pan LX, Li H, et al. Dietary cholesterol stimulates CYP7AI in rats because farnesoid X receptor is not activated.Am J Physiol Gastrointest LiverPhysiol.2004,286(5):G730-G735.
    [47]Hill SA, Mcqueen MJ. Reverse cholesterol transport-a review of the process and its clinical implications. Clin Biochem.1997,30:517-552.
    [48]Carling D, Clarke PR, Zammit VA, Hardie DG. Purification and characterization of the AMP-activated protein kinase. Co purification of acetyl-CoA carboxylase kinase and 3-hydroxy-3-methylglutaryl-CoA reductase kinase activities. Eur J Biochem.1989,186 (1-2):129-36.
    [49]Pullinger CR, Eng C, Salen G, Shefer S. Human cholesterol 7a-hydroxylase (CYP7A1) deficiency has a hypercholesterolemic phenotype. J Clin Invest.2002,110(1):109-117.
    [50]Dueland S, Drisko J, Graf L, Machleder D. Effect of dietary cholesterol and taurocholate on cholesterol 7a-hydroxylase and hepatic LDLRs in inbred mice. J Lipid Res.1993,34(6):923-931.
    [51]Ditscheid B, Keller S, Jahreis G. Cholesterol metabolism is affected by calcium phosphate supplementation in humans. J Nutr.2005,135(7):1678-1682.
    [52]张卓,徐超,郭连营,周波,王晓红,曹咏.钙摄入量对高胆固醇血症模型大鼠肝脏胆固醇代谢关键酶基因表达量的影响.《中国营养学会第十次全国营养学术会议暨第七届会员代表大会论文摘要汇编》2008年.
    [53]张照英,舒为群.长期饮用纯净水对血脂、钙镁离子、丙二醛、一氧化氮和血浆内皮素含量的影响.中国动脉硬化杂志,2003,11(4):367-368.
    [54]Ravn HB, Korsholm TL, Falk E. Oral magnesium supplementation induces favorable antiatherogenic changes in ApoE-deficient mice. Arterioscler Thromb Vasc Biol.2001,21(5): 858-862
    [55]Rayssiguier Y. Magnesium, lipids and vascular diseases. Experimental evidence in animal models. Magnesium.1986,5(3-4):182-190.
    [56]Singh RB. Effect of dietary magnesium supplementation in the prevention of coronary heart disease and sudden cardiac death. Magnes Trace Elem.1990,9(3):143-151.
    [57]Wiles ME, Wagner TL, Weglicki WB. Dietary magnesium affects susceptibility of lipoproteins and tissues to peroxidation in rats. Life Science.1997,60 (3):221-236.
    [58]Lal J, Vasudev K, Kela AK, Jain SK. Effect of oral magnesium supplementation on the lipid profile and blood glucose of patients with type 2 diabetes mellitus. J Assoc Physicians India. 2003,51:37-42.
    [59]Sherer Y, Shaish A, Levkovitz H, Keren P, Janackovic Z, Shoenfeld Y, Harats D. Magnesium fortification of drinking water suppresses atherogenesis in male LDL-receptor-deficient mice. Pathobiology,1999.67(4):207-213.
    [60]Abraham AS, Brooks BA, Eylath U.The effects of chromium supplementation on serum glucose and lipids in patients with and without non-insulin-dependent diabetes. Metabolism.1992, 41(7):768-771.
    [61]Bahijiri SM, Mira SA, Mufti AM, Ajabnoor MA.The effects of inorganic chromium and brewer's yeast supplementation on glucose tolerance, serum lipids and drug dosage in individuals with type 2 diabetes. Saud i Med J.2000,21(9):831-837.
    [62]Rayman MP, Stranges S, Griffin BA, Guallar E. Summaries for patients, The Effects of Selenium Supplements on Blood Cholesterol Levels. Ann Intern Med.2011,154(10):656-665.
    [63]陈涛,王家翠,黄深等.脑梗塞患者血清中五种元素的改变.中华微量元素科学。1996,3(33):2-3.
    [64]乔爱国,曹颖莉.微量元素锌铁与高血脂和动脉粥样硬化关系的实验研究.中国医疗前沿.2007,2(22):17-19.
    [65]苗青,朱晓悦.锰与心血管疾病.国外医学医学地理分册.2003,23(1):26-27.
    [66]Curran GL, Costello RL. Reduction of excess cholesterol in the rabbit aorta by inhibition of endogenous cholesterol synthesis. J Exp Med.1956,103(1):49-56.
    [1]张震巍.我国糖尿病疾病负担研究:[博士学位论文].上海,复旦大学,2007.
    [2]中华医学会糖尿病分会.中国2型糖尿病防治指南(2007版).中华医学杂志,2008,88(18):145-167.
    [3]Manuel DG, Schultz SE.Health-related quality of life and health-adjusted life expectancy of people with diabetes in Ontario, Canada,1996-1997.Diabetes Care.2004,27(2):407-414.
    [4]葛海波,朱雄,王尔华.噻唑烷二酮类胰岛素增敏剂的研究进展.药学进展.2001,25(1):31-35.
    [5]Ralph A. DeFronzo. Pathogenesis of type 2 diabetes mellitus.The medical clinics of north America.2004,88:787-835.
    [6]Saad MF, Knowler WC, Pettitt DJ, Nelson RG, Mott DM, Bennett PH. Sequential changes in serum insulin concentration during development of non-insulin-dependent diabetes.Lancet.1989,1(8651):1356-1359.
    [7]李光伟,张景玲.胰岛素抵抗是糖耐量正常人群糖耐量恶化的重要危险因素.中华内分泌代谢杂志.2000,16(2):74-77.
    [8]Lebovitz HE. Insulin resistance: definition and consequences. Experimental and Clinical Endocrinology & Diabetes.2001,109(Suppl 2):135-148.
    [9]Reaven GM. Role of insulin in human disease.Diabetes.1988;37(12):1595-1607.
    [10]DeFronzo RA, Ferrannini E. Insulin resistance:a multifaceted syndrome responsible for NIDDM, obesity, hypertension, dyslipidemia, and ASCVD. Diabetes Care.1991.14:173-194.
    [11]Anderson PJ, Critchley JA, Chan JC, Cockram CS, Lee ZS,Thomas GN, et al. Factor analysis of the metabolic syndrome:obesity vs insulin resistance as the central abnormality. Int JObes Relat Metab Disord.2001,25:1782-1788.
    [12]Acibucu F, Kayatas M, Candan F. The association of insulin resistance and metabolic syndrome in early androgenetic alopecia. Singapore Med J.2010,51(12):931-936.
    []3]杨义生.胰岛素抵抗:信号转导的缺陷.国外医学内分泌学分册.2002,22(1):5-8
    [14]盛波.西洋参改善IR的作用及其机制研究:[博士学位论文].黑龙江:黑龙江中医药大学,2008.
    [15]靳西凤,冉志华.EGCG和染料木黄酮在肿瘤细胞信号传导中的作用.世界华人消化杂志.2006,14(15):1507-1511.
    [16]Yang MJ, Wang F, Wang JH, Wu MN, Hu ZL, Cheng J, Yu DF, Long LH. PI3K integrates the effects of insulin and leptin on large-conductance Ca2+-activated K+ channels in neuropeptide Y neurons of the hypothalamic arcuate nucleus. Am J Physilo Endocrnol Metab.2010,298 (2):193-201.
    [17]Mukherjee S, Maitra A. Molecular & genetic factors contributing to insulin resistance in polycystic ovary syndrome. Indian J Med Res.2010,131,743-760
    [18]Taira M, Hashimoto N. Insulin receptor abnormality and its clinical aspect. Nippon Rinsho.1998,56 (7):1866-1870.
    [19]窦梅.预防性补充维生素E和镁对糖尿病大鼠糖脂代谢的影响及机制研究:[博士学位论文].山东青岛:中国海洋大学,2009.
    [20]黄冬梅,陆付耳.胰岛素信号转导障碍与胰岛素抵抗的形成.生理科学进展.2003,34(3):212-216.
    [21]Wellen KE, Hotamisligil GS. Inflammation, stress, and diabetes. J Clin Invest.2005,115: 1111-1119.
    [22]Saltiel AR, Kahn CR. Insulin signaling and the regulation of glucose and lipid metabolism. Nature.2001,414(6865):799-806
    [23]Tsuruzoe K, Emkey R, Kriauciunas KM Ueki K, Kahn CR. Insulin receptor substrate 3(IRS-3) and IRS-4 impair IRS-1 and IRS-2 mediated signaling. Mol Cell Biol.2001,21 (1):26-38.
    [24]杨义生.胰岛素抵抗:信号转导的缺陷.国外医学内分泌学分册.2002,2(1):5-8.
    [25]Valverde AM, Burks DJ, Fabregat I, Fisher TL, Carretero J, White MF, Benito M. Molecular mechanisms of insulin resistance in IRS-2-deficient hepatocytes. Diabetes.2003,52(9):2239-2248.
    [26]Vanhaesebroeck B, Watedfield MD. Signaling by distinct classes of phos-phoinositide 3-kinase. Exp Cell Res.1999,253(1):239-254.
    [27]Wymann MP, Pirola L. Structure and function of phospho-inositide 3-kinases. Biochim Biophys Acta. 1998,1436:127-150.
    [28]Kupriyanova TA, Konstantin V. Akt-2 bind to GLU4-containing vesicles and phosphorylates their component proteins in response to insulin. J Bio Chem.1999,274(3):1458-1464.
    [29]Huang JP, Huang SS, Deng JY, Hung LM. Impairment of insulin-stimulated Akt/GLUT4 signaling is associated with cardiac contractile dysfunction and aggravates I/R injury in STZ-diabetic Rats. J Biomed Sci.2009,16(77):1123-1135.
    [30]Daitoku H, Yamagata K, Matsuzaki H, Hatta M, Fukamizu A. Regulation of PGC-1 promoter activity by protein kinase B and the forkhead transcription factor FKHR. Diabetes. 2003,52(3):642-9.
    [31]Tan JH, Geng L, Yazlovistkaya EM, Hallahan DE. P rotein kinase B/Akt-dependent phosphorylation of glycogen synthase kinase-3β in irradiated vascular endothelium. Cancer Res. 2006,15(66):2320-2327.
    [32]Kellett GL, Brot-Laroche E, Mace OJ, Leturque A. Sugar absorption in the intestine: the role of GLUT2. Annu Rev Nutr.2008,28:35-54.
    [33]宋春宇,毕会民.高脂饮食喂养对大鼠骨骼肌细胞膜GLUT4含量的影响.中国病理生理杂志.2004,20(10):1866-1870.
    [34]Seraphim PM, Nunes MT, Machado UF. GLUT4 protein expression in obese and lean 12-month-old rats:insights from different types of data analysis. Braz J Med Biol Res. 2001,34(10):1363-1362.
    [35]刘晓倩,巫冠中,皋聪,等.磺酰脲类化合物G004体内外糖代谢的实验研究.中国新药杂 志.2007,16(19):1581-1584.
    [36]韩向晖,季光.肝脏糖异生的分子机制研究进展.世界华人消化杂志.2008,16(32):3659-3665.
    [37]杨升华,尹卫东.氧化应激与糖尿病研究进展,微量元素与健康研究.2011,28(3):54-57.
    [38]Meigs JB, Larson MG, Fox CS, Keaney JF Jr, Vasan RS, Benjamin EJ. Association of oxidative stress, insulin resistance, and diabetes risk phenotypes. Diabetes Care.2007,30(10): 2529-2535.
    [39]Ceriello A, Motz E. Is oxidative stress the pathogenic mechanism underlying insulin resistance, diabetes, and cardiovascular disease? The common soil hypothesis revisited. Arterioscler Thromb Vasc Biol.2004,24(5):816-23.
    [40]Park K, Gross M, Lee DH, Holvoet P, Himes JH, Shikany JM, Jacobs DR Jr. Oxidative stress and insulin resistance: the coronary artery risk development in young adults study. Diabetes Care. 2009,32(7):1302-7.
    [41]Li G, Barrett EJ, Barrett MO, Cao W, Liu Z. Tumor necrosis factor-alpha induces insulin resistance in endothelial cells via a p38 mitogen-activated protein kinase-dependent pathway. Endocrinology.2007,148(7):3356-3363.
    [42]Meigs JB, Larson MG, Fox CS, Keaney JF Jr, Vasan RS, Benjamin EJ. Association of oxidative stress, insulin resistance, and diabetes risk phenotypes:the Framingham Offspring Study. Diabetes Care.2007,30(10):2529-2235.
    [43]Wilson C, Vereshchagina N, Reynolds B, Meredith D, Boyd CA, Goberdhan DC. Extracellular and subcellular regulation of the PI3K/Akt cassette: new mechanisms for controlling insulin and growth factor signalling. Biochem Soc Trans.2007,35(2):219-221.
    [44]Kaneto H, Nakatani Y, Kawamori D, Miyatsuka T, Matsuoka TA. Involvement of oxidative stress and the JNK pathway in glucose toxicity. Rev Diabet Stud.2004,1(4):165-74.
    [45]王慧敏,都健.JNK信号转导通路与2型糖尿病.国外内科学杂志.2009,36(3):128-131.
    [46]Nakatani Y, Kaneto H, Kawamori D, Hatazaki M, Miyatsuka T, Matsuoka TA, Kajimoto Y, Matsuhisa M, Yamasaki Y, Hori M. Modulation of the JNK pathway in liver affects insulin resistance status. J Biol Chem.2004,279(44):45803-45809.
    [47]Kaneto H, Matsuoka TA, Nakatani Y, Kawamori D, Matsuhisa M, Yamasaki Y. Oxidative stress and the JNK pathway in diabetes. Curr Diabetes Rev.2005,1 (1):65-72.
    [48]Wang J, Ma H, Tong C, Zhang H, Lawlis GB, Li Y, Zang M, Ren J, Nijland MJ, Ford SP, Nathanielsz PW, Li J. Overnutrition and maternal obesity in sheep pregnancy alter the JNK-IRS-1 signaling cascades and cardiac function in the fetal heart. FASEB J.2010,24(6):2066-2076.
    [49]Sharfi H, Eldar-Finkelman H. Sequential phosphorylation of insulin receptor substrate-2 by glycogen synthase kinase-3 and c-Jun NH2-terminal kinase plays a role in hepatic insulin signaling. Am J Physiol Endocrinol Metab.2008,294(2):E307-E315.
    [50]Carling D, The AMP-activated protein kinase cascade--a unifying system for energy control. Trends Biochem Sci.2004,29(1):18-24.
    [51]Hardie DG. The AMP-activated protein kinase pathway--new players upstream and downstream. J Cell Sci.2004,117(23):5479-5487.
    [52]Schimmack G, Defronzo RA, Musi N. AMP-activated protein kinase:Role in metabolism and therapeutic implications. Diabetes Obes Metab.2006,8(6):591-602.
    [53]解雪芬,朱毅.AMPK与代谢综合征.基础医学与临床.2006,26(1):27-34.
    [54]Carling D. The AMP-activated protein kinase cascade--a unifying system for energy control. Trends Biochem Sci.2004,29(1):18-24.
    [55]Viollet B, Foretz M, Guigas B, Horman S, Dentin R, Bertrand L, Hue L, Andreelli F. Activation of AMP-activated protein kinase in the liver: a new strategy for the management of metabolic hepatic disorders. J Physiol.2006,574(1):41-53.
    [56]Kraczek EJ, Hirshman MF, Goodyear LJ, Winder WW. 5'AMP-activated protein kinase activation causes GLUT4 translocation in skeletal muscle. Diabetes.1999,48(8):1667-1671.
    [57]Wang P, Zhang RY, Song J, Guan YF, Xu TY, Du H, Viollet B, Miao CY. Loss of AMP-Activated Protein Kinase-a2 Impairs the Insulin-Sensitizing Effect of Calorie Restriction in Skeletal Muscle.Diabetes.2012,61(5):1051-1061.
    [58]Jakobsen SN, Hardie DG, Morrice N, Tomqvist HE.5'-AMP-activated protein kinase phosphorylates IRS-1 on Ser-789 in mouse C2C12 myotubes in response to 5-aminoimidazole-4-carboxamide riboside. J Biol Chem.2001,276(50):46912-6.
    [59]Yamauchi T, Kamon J, Minokoshi Y, Ito Y, Waki H, Uchida S, Yamashita S, Noda M, Kita S, Ueki K, Eto K, Akanuma Y, Froguel P, Foufelle F, Ferre P, Carling D, Kimura S, Nagai R, Kahn BB, Kadowaki T. Adiponectin stimulates glucose utilization and fatty-acid oxidation by activating AMP-activated protein kinase. Nat Med.2002,8(11):1288-95.
    [60]Moller DE. New drug target for type 2 diabetes and the metabolism syndrome. Nature,2001, 414:821-827.
    [61]李士颖,肝胰岛素抵抗发病机制的研究进展.中华中西医杂志.2007,8(10):893-896.
    [62]Valverde AM, Fabreat I, Burks D, White MF, Benito M. IRS-2 Mediates the Antiapoptotic Effect of Insulin in Neonatal Hepatocytes. Hepatology.2004,40(6):1285-1294.
    [63]Li Y, Ziegler R, Hamann A. Metformin modulates insulin post-receptor signaling transduction in chronically insulin-treated HepG2 cells. Acta Pharmacol Sin.2003,24 (1):55-60.
    [64]Tappy L, Randin D, Vollenweider P, Vollenweider L, Paquot N, Scherrer U, Schneiter P, Nicod P, Jequier E. Mechanisms of dexamethasone-induced insulin resistance in healthy humans. J Clin Endocrinol Metab.1994,79(4):1063-1069.
    [65]Lorenzo M, Fernandez-Veledo S, Vila-Bedmar R, Garcia-Guerra L, De Alvaro C, Nieto-Vazquez I. Insulin resistance induced by tumor necrosis factor-alpha in myocytes and brown adipocytes. J Anim Sci.2008,86(14 Suppl):E94-E104.
    [66]Zang M, Zuccollo A, Hou X, Nagata D, Walsh K, Herscovitz H, Brecher P, Ruderman NB, Cohen RA. AMP-activated protein kinase is required for the lipid-lowering effect of metformin in insulin-resistant human HepG2 cells. J Biol Chem.2004,279(46):47898-47905.
    [67]Skepner JE, Shelly LD, Ji C, Reidich B, Luo Y. Chronic treatment with epoxyeicosatrienoic acids modulates insulin signaling and prevents insulin resistance in hepatocytes. Prostaglandins Other Lipid Mediat.2011,94(1-2):3-8.
    [68]Nakajima K, Yamauchi K, Shigematsu S, Ikeo S, Komatsu M, Aizawa T, Hashizume K. Selective attenuation of metabolic branch of insulin receptor down-signaling by high glucose in a hepatoma cell line, HepG2 cells. J Biol Chem.2000,275(27):20880-20886.
    [69]Lin CL, Lin JK. Epigallocatechin gallate (EGCG) attenuates high glucose-induced insulin signaling blockade in human hepG2 hepatoma cells. Mol Nutr Food Res.2008,52(8):930-939.
    [70]Gupta D, Varma S, Khandelwal RL. Long-term effects of tumor necrosis factor-alpha treatment on insulin signaling pathway in HepG2 cells and HepG2 cells overexpressing constitutively active Akt/PKB. J Cell Biochem.2007,100(3):593-607.
    [71]Hwang HS, Kim HA, Lee SH, Yun JW. Anti-obesity and antidiabetic effects of deep sea water on ob/ob mice. Mar Biotechnol (NY).2009,11(4):531-539.
    [72]Peng CH, Chyau CC, Chan KC, Chan TH, Wang CJ, Huang CN. Hibiscus sabdariffa polyphenolic extract inhibits hyperglycemia, hyperlipidemia, and glycation-oxidative stress while improving insulin resistance. J Agric Food Chem.2011,59(18):9901-9909.
    [73]Alesiani D, Canini A, Abrosea BD, et al.Antioxidant and antiproliferative activitiesc of phytochemicals from Quince (Cydonia vulgaris) peels. Food Chemistry.2009,118:199-207.
    [74]Gao D, Nong S, Huang X, Lu Y, Zhao H, Lin Y, Man Y, Wang S, Yang J, Li J. The effects of palmitate on hepatic insulin resistance are mediated by NADPH Oxidase 3-derived reactive oxygen species through JNK and p38MAPK pathways.J Biol Chem.2010,285(39):29965-29973.
    [75]Chun Y, Yin ZD. J Clin Microbiol. Glyco-en assay for diagnosis of female genital Chlamydia trachomatis infection.1998,36(4):1081-1092.
    [76]Wang YX, Lee CH, Tiep S, Yu RT, Ham J, Kang H, Evans RM. Peroxisome-proliferator-activated receptor delta activates fat metabolism to prevent obesity. Cell. 2003,113(2):159-170.
    [77]Tian YY, An LJ, Jiang L, Duan YL, Chen J, Jiang B. Catalpol protects dopaminergic neurons from LPS-induced neurotoxicity in mesencephalic neuron-glia cultures. Life Sci.2006,80 (3):193-199.
    [78]Ciaraldi TP, Oh DK, Christiansen L, Nikoulina SE, Kong AP, Baxi S, Mudaliar S, Henry RR. Tissue-specific expression and regulation of GSK-3 in human skeletal muscle and adipose tissue. Am J Physiol Endocrinol Metab.2006,291(5):E891-E898.
    [79]Doble BW, Woodgett JR. GSK-3:tricks of the trade for a multi-tasking kinase. J Cell Sci, 2003,116(7):1175-1186.
    [80]Wang MY, Unger RH. Role of PP2C in carciac lipid accumulation in obese rodents and its prevention by troglitazone.Am J Physiol Endocrinol Metab.2005,288(1):216-221.
    [81]Yki-Jarvinen H. Fat in the liver and insulin resistance. Ann Med.2005,37(5):347-356.
    [82]Voshol PJ, Haemmerle G, Ouwens DM, Zimmermann R, Zechner R, Teusink B, Maassen JA, Havekes LM, Romijn JA.Endocrinology. Increased hepatic insulin sensitivity together with decreased hepatic triglyceride stores in hormone-sensitive lipase-deficient mice.2003,144 (8):3456-62.
    [83]Rosanoff A, Seelig MS. Comparison of mechanism and functional effects of magnesium and statin pharmaceuticals.J Am Coll Nutr.2004,23(5):501S-505S.
    [84]Woods A, Dickerson K, Heath R, Hong SP, Momcilovic M, Johnstone SR, Carlson M, Carling D. Ca2+/calmodulin-dependent protein kinase kinase-beta acts upstream of AMP-activated protein kinase in mammalian cells. Cell Metab.2005,2(1):21-33.
    [85]Cefalu WT,Wang ZQ,Zhang XH, Baldor LC. Oral chromium picolinate improves carbohydrate and lipid metabolism and enhances skeletal muscle Glut-4 translocation in obese, hyperinsulinemic (JCR-LA corpulent) rats. J Nutr.2002,132(6):1107-1114.
    [86]秦俊法.微量元素与糖尿病.广东微量元素科学.2000,7(2):1-15.
    [87]张照英,舒为群.长期饮用纯净水对血脂、钙镁离子、丙二醛、一氧化氮和血浆内皮素含量的影响.中国动脉硬化杂志.2003,11(4):367-368.
    [88]Barbagallo M, Dominguez LJ, Galioto A, Ferlisi A, Cani C, Malfa L, Pineo A, Busardo' A, Paolisso G. Mol Aspects Med. Role of magnesium in insulin action, diabetes and cardio-metabolic syndrome X.2003,24(1-3):39-52.
    [89]Huerta MG, Roemmich JN, Kington ML, Bovbjerg VE, Weltman AL, Holmes VF, Patrie JT, Rogol AD, Nadler JL. Magnesium deficiency is associated with insulin resistance in obese children. Diabetes Care.2005,28(5):1175-81.
    [90]Ferrara N, Abete P, Longobardi G, Leosco D, Caccese P, Leonarda De Rosa M, Orlando M, Fittipaldi R, Rengo F. Action of magnesium salts on the toxic effects of calcium overload in the isolated and perfused rat heart. G Ital Cardiol.1988,18(7):605-614.
    [91]高海思,肖诗亮,杨辰垣.硫酸镁对低氧性肺动脉高压大鼠血中丙二醛和超氧化物歧化酶的影响.临床心血管病杂志.2002,18(2):72-73.
    [92]Rosanoff A, Seelig MS. Comparison of mechanism and functional effects of magnesium and statin pharmaceuticals. J Am Coll Nutr.2004,23(5):501S-505S.
    [93]Anderson RA. Chromium, glucose intolerance and diabetes. J Am Coll Nutr. 1998,17(6):548-55.
    [94]Zhao P, Wang J, Ma H, Xiao Y, He L, Tong C, Wang Z, Zheng Q, Dolence EK, Nair S, Ren J, Li J. Biochem Pharmacol. A newly synthetic chromium complex-chromium (D-phenylalanine)3 activates AMP-activated protein kinase and stimulates glucose transport.2009,15;77(6):1002-10.
    [95]Vladeva SV, Terzieva DD, Arabadjiiska DT. Effect of chromium on the insulin resistance in patients with type Ⅱ diabetes mellitus. Folia Med (Plovdiv).2005,47(3-4):59-62.
    [96]Sφndergaard LG, Stoltenberg M, Flyvbjerg A, Brock B, Schmitz O, Danscher G, Rungby J. Zinc ions in beta-cells of obese, insulin-resistant, and type 2 diabetic rats traced by autometallography. APMIS.2003,111(12):1147-54.
    [97]Hill KE, Burk RF, Lane JM. Effect of selenium depletion and repletion on plasma glutathione and glutathione-dependent enzymes in the rat. J Nutr.1987,117(1):99-104.
    [98]Stapleton SR. Selenium: an insulin-mimetic .Cell Mol Life Sci.2000,57(3):1874-1879.
    [99]Worrall DS, Olefsky JM. The effects of intracellular calcium depletion on insulin signaling in 3T3-L1 adipocytes. Mol Endocrinol.2002,16(2):378-389.
    [100]Choi HK, Willett WC, Stampfer MJ, Rimm E, Hu FB. airy consumption and risk of type 2 diabetes mellitus in men: a prospective study. Arch Intern Med.2005,165(9):997-1003. D
    [101]Barba G, Russo P. Dairy foods, dietary calcium and obesity: a short review of the evidence. Nutr Metab Cardiovasc Dis.2006,16(6):445-451.
    [102]王艳林,余斌杰,袁敏生,张怡坚,肖亦斌.过氧钒烟酸对糖尿病鼠磷酸烯醇型丙酮酸羧化酶的影响.中山医科大学学报.1997,18(1):13-15.
    [103]李艳.钒抗糖尿病作用分子机制的研究进展.国外医学药学分册.2006,33(2):114-116.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700