用户名: 密码: 验证码:
催化型微粒捕集器NO_2高效利用及铈基复合再生机理研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着我国柴油车保有量的日益提高以及汽车排放污染法规的日趋严峻,柴油机尾气微粒排放控制已经成为目前防治汽车排放污染物的一个主要课题。微粒捕集器是一种公认的最为有效的控制柴油机微粒排放的排气后处理装置,特别是在中小排量的柴油轿车和轻型商用车领域,微粒捕集器与其他后处理净化装置相比优势明显。传统的微粒捕集器热再生过程需要外热源和复杂的控制系统,增加了柴油车的油耗和成本,尤其是采用车载电源作为外热源时,还对车载电池有较高要求。催化型微粒捕集器不需要外热源与控制系统,但柴油中的硫含量对其性能影响很大,在我国实施新的燃油标准后,柴油中的硫含量得到了控制,使用催化型微粒捕集器代替传统的微粒捕集器对柴油车的节能与减排以具有重要意义。
     催化型微粒捕集器由于没有外热源,再生过程中主要通过强氧化剂NO2进行再生,而柴油机排气中的NO2浓度很低,并且是一种污染物。因此,在控制柴油机NOx排放的基础上提高NO2的浓度和再生过程中的NO2利用效率以及提高再生反应的反应活性是催化型微粒捕集器亟待解决的问题。本文以国家自然科学基金“车用柴油机微粒捕集多孔介质的微波及铈-锰添加剂复合再生机理研究”(50876027)、“微粒捕集器过滤体复合再生与多场协同机理及其优化研究”(51176045)等项目为课题来源,对催化型微粒捕集器NO2高效利用和铈基辅助复合再生的过程与机理开展研究,以期得到一种再生温度窗口宽,排气背压损失小,再生可靠的催化型微粒捕集器。论文的主要研究工作如下:
     (1)基于质量、动量和能量守恒定律,在DPF的入口孔道、出口孔道、过滤壁和微粒层选取控制体,推导得到了DPF的流场模型,并基于化学反应动力学理论建立了DPF再生过程的化学动力学模型。通过耦合求解,得到了排气流量、排气温度、排气中NO2和O2浓度以及排气中NO2微粒质量比对NO2氧化再生性能的影响,并对各影响因素的权重进行了灰色关联分析,提出了从NO2高效利用和复合再生两个方面提高催化型微粒捕集器再生性能。
     (2)采用DOC提高催化型微粒捕集器的NO2浓度,推导得到了DOC的流场模型和化学动力学模型,通过数值研究,对影响DOC提高NO2浓度的因素进行了分析,DOC对NO转化的最佳温度窗口为30O~400℃,不同转速下,中等负荷工况时排气中NO的转化效率最高,而高转速高负荷工况下NO的转化效率迅速降低。
     (3)对催化型微粒捕集器再生过程中NO2浓度不足的状况,采用贵金属催化涂层强化NO2利用效率,实现了中大负荷工况下催化型微粒捕集器的正常再生。通过分析微粒在催化型微粒捕集器中的捕集机理与沉积过程,将微粒在催化涂层作用下的再生过程分成两个阶段,采用新的再生机理建立了深床部分微粒的再生模型,并通过台架试验验证了新模型。考虑了催化涂层对催化型微粒捕集器压降特性的影响,将入口孔道压降与出口孔道压降单独计算,建立了新的压降模型,计算结果显示新模型深床捕集阶段的压降与试验值吻合得更好,滤饼捕集阶段压降与原模型趋势相同。
     (4)定义了催化型微粒捕集器的N02循环系数,通过与未涂覆催化涂层时的微粒沉积质量对比,研究各工况下催化涂层对NO2利用效率的的影响。在低负荷工况下,NO2循环系数随着再生进行达到最大值后保持稳定;在中等负荷工况下,NO2循环系数随着再生进行达到最大值后逐渐减小;大负荷工况下,NO2循环系数在再生过程中基本保持稳定。
     (5)基于宏观反应建立了铈基添加剂辅助催化复合再生模型,通过数值计算与试验验证研究铈基添加剂对各工况下催化型微粒捕集器再生性能的影响,实现了中小负荷工况下催化型微粒捕集器的正常再生。通过试验研究了不同配比和添加量的铈基添加剂对催化型微粒捕集器再生性能的影响,确定了铈基添加剂的优选配比与合理添加量。
     本文的研究为催化型微粒捕集器N02的高效利用提供了理论依据,揭示了铈基添加剂辅助催化复合再生的机理,实现了中小负荷以上工况下催化型微粒捕集器的正常再生,为其实用化奠定了基础。本文的一些研究方法与结论也能够为其他类型的微粒捕集器提供一定参考。
As the quantity of the diesel vehicle in our country become more and more, diesel exhaust particulate emission control has become the main task to prevent the automotive pollution due to increasingly stringent emission regulations. Diesel particulate filter(DPF) is an accepted most effective aftertreatment device for diesel particulate emission control, especially in medium and small displacement diesel vehicles and light commercial diesel vehicles. An extra heat source and complicated control systems are needed for traditional DPF, thus the oil consumpation and the cost was increased. It also needs a high-performance battery when using vehicle power as an extra heat source. Catalytic DPF can work without extra heat sources and contral systems, but it is sensitive to impurities in fuels, such as sulfur. In the new fuel standard of our country, the sulfur content of diesel oil is lower than50mg/kg, catalytic DPF can work normally in this sulfur content level. Using catalytic DPF instead of traditional DPF is significance to energy-saving and emission reduction for diesel vehicles.
     Because of no extra heat sources were needed, the regeneration of catalytic DPF was mainly processed by NO2, which is a strong oxidizing medium. NO2is a pollutant, and its concentration is very low in diesel exhaust gas. Thus, increasing the concentration of NO2and enhancing NO2utilization efficiency of the regenerating process based on control the overall NOX emission is a problem to be solved. Enhancing the activity of the regenerating reactions is another problem to be solved. The research is supported by the project of National Natural Science Foundation of China "Research on Compostie Regeneration Mechanism of Diesel Particulate Trapped Porous Medium Based on Microwave and Ce-Mn Fuel Additive(50876027)" and"Research on Compostite Regeneration and Multi-Field Synergy Mechanism of Diesel Particulate Filter Medium(51176045)". This article has mainly researched on NO2high efficiency utilization and ceria-based additive assisted composite regeneration for catalytic diesel particulate filter. It is designed to obtain a wide regerneration temperature window, low pressure drop loss and reliable catalytic diesel particulate filter. The main research work of this article is summarized as follows:
     (1) Based on the law of conservation of mass, momentum and energy, using the control volume of inlet channel, outlet channel, filter medium and soot layer in diesel particulate filter, a fluid field model was derived. Based on the chemical kinetics theory, a chemical kinetic model was derived. The effects of exhaust flow rate, exhaust temperature, NO2and O2concentration, NO2and soot mass ratio on NO2oxidation regeneration were considered in these models. The weight of these facors on regeneration performance was analysed using the grey relational analysis method, the result indicates the key factor of regeneration process in catalytic diesel particulate filter, and ways on high efficiency NO2utilization and composite regeneration for improving regenerating performance was proposed.
     (2) Using diesel oxidation converter to increase NO2concentration for catalytic DPF. A fluid field model and a chemical kinetic model for diesel oxidation converter were derived. This model indicates NO2concentration improving mechanism for catalytic particulate filter with diesel oxidation converter, the optimum working temperature window is300~400℃for NO convertion in DOC. the maximum conversion efficiency is in mid-load condition for various engine speed, and the conversion efficiency is rapidly decreased in high engine speed and high-load condition.
     (3) While the NO2concentration is insufficient in the regeneration process, noble metal catalytic coating was developed to enhance NO2utilization efficiency. Soot trap mechanism and deposition process in catalytic diesel particulate filter was analyzed. The results showed that regeneration process in catalytic coat is divided into two stages. A regeneration model was developed in each stage with new regeneration mechanisms, NO2utilization efficiency enhancement mechanism in catalytic diesel particulate filter with catalytic coating was studied. By using catalytic coating, catalytic diesel particulate filter regenerates normally in heavy load conditions. A pressure drop model was improved by considering the effect of catalytic coat, inlet channel pressure drop and outlet channel pressure drop was computed respectively. In order to assess the regeneration model, a bench experiment was established, it indicated that the result of regeneration model and the pressure drop model is approximately consistent with experimental data.
     (4) The NO2circulatory coefficient of catalytic diesel particulate filter was difined. The effect of condition on NO2utilization efficiency was studied by comparison of particulate deposit mass. the result indicated the effect of regenerating time on NO2circulatory coefficient in various conditions. The NO2circulatory coefficient reaches maximum and remains the same in low-load conditions, it reaches maximum and reduces gradually in mid-load conditions, it remains a steady value in high-load conditions.
     (5) Based on macroscopic reactions, a Ceria-based additive assist catalytic composite regeneration model was developed. The effect of Ceria-based additive on regeneration performance in various conditions was studied by numerical and experimental. The effective factor and the changing law of the soot oxidation rate of catalytic diesel particulate filter in various conditions were analyzed. The component ratio and the adding dosages of the Ceria-based additive were studied by experimental. By using Ceria-based additive, catalytic diesel particulate filter regenerates normally in low-load condition.
     The research work in this article provides theoretical basis of NO2high efficiency utilization in catalytic diesel particulate filter. And it also indicates the Ceria-based additive assist catalytic composite regeneration mechanism of catalytic diesel particulate filter. With these technologies, catalytic diesel particulate filter regenerates normally in low-load conditions, it is important for practicability of the catalytic diesel particulate filter. Some of research methods and results of this article can also be used as a reference for other diesel particulate filters.
引文
[1]Asmus T. A Manufacturer's Perspective on IC Engine Technology at Century's End. In:Proceedings of the 1999 ICE Fall Technical Conference.1999, ICE33-1,1-7
    [2]龚金科.汽车排放及控制技术.北京:人民交通出版社,2007,23-29
    [3]王桂华,陆家祥,陆辰,等.WD615.67型柴油机常态排气微粒成分试验测定及分析.内燃机学报,2000,18(4):161-164
    [4]谭丕强,胡志远,楼狄明,柴油机捕集器结构参数对不同粒径微粒过滤特性的影响.机械工程学报,2008,44(2):175-181
    [5]刘巽俊,内燃机的排放与控制.北京:机械工业出版社,2005,6-10
    [6]Michael P W. Worldwide Development in Motor Vehicle Diesel Particulate Control. SAE Paper 890168
    [7]王天友,Song E L,林漫群,等.燃油催化微粒捕集器微粒捕集与强制再生特性的研究.内燃机学报,2007,25(6):527-531
    [8]刘明安,Cheung C S,潘克煜,含氧燃料添加剂对柴油机微粒排放的影响.空军工程大学学报(自然科学版),2006,5(3):71-74
    [9]孙跃东,周萍,邹敏,等.含氧添加剂对单缸柴油机性能影响的研究.武汉理工大学学报,2007,29(2):33-36
    [10]闫淑芳,宫长明,刘巽俊.喷油压力对直喷式柴油机性能和排放的影响.吉林大学学报(工学版),2002,32(7):53-56
    [11]汪洋,苏万华,谢辉,等.共轨蓄压式电控喷射系统的喷油规律对发动机燃烧特性及排放性能的影响.内燃机学报,2002,20(3):200-204
    [12]张艳.高压共轨柴油机电控系统的研究.[北京交通大学硕士学位论文],北京:北京交通大学机械与电子控制工程学院,2006,5-9
    [13]胡朝阳.电控共轨喷射系统降低柴油机排放的试验研究.[大连理工大学硕士学位论文],大连:大连理工大学能源与动力学院,2008,50-54
    [14]李金武.4102BZLQ型增压中冷柴油机颗粒排放的研究.[天津大学硕士学位论文],天津:天津大学机械工程学院,2003,26-53
    [15]赵昌普,宋崇林,李晓娟,等.喷油定时和燃烧室形状对柴油机燃烧及排放的影响.燃烧科学与技术,2009,15(5):393-398
    [16]焦运景,张惠明,田远,等.直喷式柴油机燃烧室几何形状对排放影响的多维数值模拟研究.内燃机工程,2007,28(4):11-15
    [17]郑乃金.汽车排放控制发展趋势,汽车技术,1996,(4):47-49
    [18]龚金科.汽车排放污染及控制.北京:人民交通出版社,2005:80-81
    [19]Gharahbaghi S, Wilson T S, Xu H, et al. Modelling and experimental investigations of supercharged HCCI Engines. SAE Paper 2006-10-0634
    [20]Shi L, Cui Y, Deng K, et al. Study of low emission homogeneous charge compression ignition(HCCI) engine using combined internal and external exhaust gas recirculation(EGR). Energy,2006,31 (14):2665-2676
    [21]Kim D S, Lee C S. Improved emission characteristics of HCCI engine by various premixed fuels and cooled EGR. Fuel,2006,85 (5-6):695-704
    [22]尧命发,张波,郑尊清,等.废气再循环与燃料辛烷值对均质压燃发动机性能和排放影响的试验研究.2006,24(1):15-21
    [23]侯玉春.燃料设计控制HCCI燃烧与排放的试验研究.[上海交通大学博士学位论文],上海:上海交通大学机械与动力工程学院,2007,50-86
    [24]曾文,解茂昭,贾明.催化燃烧对均质压燃发动机排放影响的数值模拟.燃烧科学与技术,2007,13(1):55-62
    [25]Kalghatgi G T, Risberg P, Angstrom H E. Partially pre-mixed auto-ignition of gasoline to attain low smoke and low NOx at high load in compression ignition engine and comparison with a diesel fuel. SAE Paper 2007-01-0006
    [26]刘永志.柴油HCCI燃烧微粒形成、演化及物理特性研究,[天津大学硕士学位论文],天津:天津大学机械工程学院,2009,31-41
    [27]肖福明,刘巽俊,肖宗成.袋滤技术用于柴油机微粒排放控制.天津大学学报,1995,28(2):282-285
    [28]肖福明,刘丽萍,陆辰,等.电控柴油机微粒袋滤系统的研究与开发.内燃机学报,1999年,17(1):32-35
    [29]高松,肖福明,王立柱,等.柴油机排气微粒袋滤系统的改进与试验.农业机械学报,2003,34(1):35-37
    [30]董素荣,宋崇林,张国彬,等.柴油机缸内微粒粒数粒径分布规律研究.内燃机学报,2008,26(1):24-28
    [31]宁智,陆勇.柴油机排气微粒静电捕集的理论分析.北方交通大学学报,2000,24(4):66-69
    [32]王宪成,宁智,高希彦,等.柴油机排气微粒静电金属丝网捕集器的试验研究.内燃机学报,2000,18(2):123-126
    [33]Saiyasitpanich P, Keener T C, Khang S J, et al. Removal of diesel particulate matter (DPM) in a tubular wet electrostatic precipitator. Journal of Electrostatics,2007,65 (10-11):618-624
    [34]Faarnoud A, Huang C, Armendariz A J. Using electrostatic precipitation to control diesel exhaust particulate emissions. In:12th US/North American mine ventilation symposium,2008:515-519
    [35]周韬,谷传纲,王彤.微粒在旋风分离器中的分离特性与数值模拟.煤矿机械,2007,28(5):45-47
    [36]刘双喜,宁智.利用旋风分离方法捕集柴油机微粒的研究.小型内燃机,2000,29(1):17-21
    [37]魏名山,马朝臣,鲍捷,等.多管静电旋风捕集器的研究.内燃机学报,2001,19(1):36-38
    [38]Mukhopadhyay N, Chakrabarti R K, Bose P K A new theoretical approach of designing cyclone separator for controlling diesel soot particulate emission. SAE Paper 2006-01-1978
    [39]Bose P K, Roy K, Mukhopadhyay N, et al. Improved theoretical modeling of a cyclone separator as a diesel soot particulate emission arrester. International Journal of automotive technology,2010,11 (1):1-10
    [40]Shimoda. Back washing and regenerating apparatus for diesel particulate filter. US Patent.5725618,1998-03-10
    [41]Okubo M, Miyashita T, Kuroki T, et al. Regeneration of diesel particulate filter using nonthermal plasma without catalyst. Industry Applications,2004, 40 (6):1451-1458
    [42]姜东峰,范国梁,宋崇林,等.介质阻挡放电低温等离子体对柴油机排放物的影响.燃烧科学与技术,2005,11(2):131-136
    [43]蔡忆昔,王军,赵卫东,等.低温等离子体技术在降低柴油机排放中的作用.中国机械工程,2005,16(24):2238-2241
    [44]Kim Y H, Naito K, Fujikawa H, et al. Innovative approach of PM removal system for a light-duty diesel vehicle using non-thermal plasma. SAE Paper, 2007-04-16
    [45]Holub M, Kalisiak S, Borkowski T, et al. The influence of direct non-thermal plasma treatment on particulate matter(PM) and NOx in the exhaust of marine diesel engines. Polish Journal of Environmental Studies,2010,19(6): 1199-1211
    [46]赖天贵.柴油机微粒捕集器流场研究及其优化设计.[湖南大学硕士学位论文],长沙:湖南大学机械与运载工程学院,2005,40-43
    [47]王劲.柴油机微粒捕集器捕集再生机理及模型研究.[湖南大学硕士学位论文],长沙:湖南大学机械与运载工程学院,2005,21-35
    [48]Koebel M, Elsener M, Kleemann M. Urea-SCR:a promising technique to reduce NOx emissions from automotive diesel engines. Catalysis Today, 2000,59 (3-4):335-345
    [49]Tronconi E, Nova I, Ciardelli C, et al. Modelling of an SCR catalytic converter for diesel exhaust after treatment:dynamic effects at low temperature. Catalysis Today,2005,105 (3-4):529-536
    [50]张文娟,帅石金,董红义,等.尿素SCR-NOx催化器流动、还原剂喷雾及表面化学反应三维数值模拟.内燃机学报,2007,25(5):433-438
    [51]姜磊,葛蕴珊,李璞,等.柴油机尿素SCR喷射特性的试验研究.内燃机工程,2010,31(4):30-34
    [52]龚金科.汽车排放污染及控制.北京:人民交通出版社,2005,134-137
    [53]Sharma M, Harold M P, Balakotaiah V. Analysis of storage and reaction phases of LNT for diesel engine exhaust treatment. SAE Paper,2005-01-3882
    [54]Di-Penta D, Bencherif K, Le-Morvan P. System approach for NOx reduction: double LNT diesel after-treatment architecture. SAE Paper,2011-01-1300
    [55]蒋德明.内燃机燃烧与排放学.西安:西安交通大学出版社,2002,566-570
    [56]Zelenka P, Tel ford C, Pye D, et al. Development of a full-flow burner DPF system for heavy-duty diesel engines. SAE Paper,2002-01-2787
    [57]Nixdorf R D, Green J J, Story J M, et al. Microwave regenerated diesel exhaust particulate filter. SAE Paper 2001-01-0903
    [58]Steenwinkel Y Z, Zande L M, Castricum H L, et al. Microwave-assisted in-situ regeneration of a perovskite coated diesel soot filter. Chemical Engineering Science,2005,60 (3):797-804
    [59]段家修,龚晓辉,许斯都,等.柴油机微粒过滤器电加热再生技术的实验研究.内燃机学报,1999,17(1):22-26
    [60]Arai M, Saito M, Mitsuyama Y. Continuous regeneration of an electrically heated diesel particulate trap. International Journal of Engine Research, 2007,8 (6):477-486
    [61]王宪成,郭猛超,高希彦,等.柴油机微粒捕集器红外再生性能试验研究.装甲兵工程学院学报,2009,23(5):25-29
    [62]Persiko H, Sher E. Evaluation of various strategies for continuous regeneration of particulate filters. SAE Paper,2001-01-1945
    [63]Haralampous O A, Koltsakis G C. Back-diffusion modeling of NO2 in catalyzed diesel particulate filters. Ind. Eng. Chem. Res.,2004,43 (4): 875-883
    [64]Bissett E J. Mathematical model of the termal regeneration of a wall-flow monolith diesel particulate filter. Chem. Eng. Sci,1984,39(7-8):1233-1244
    [65]Bissett E J. Thermal regeneration of particle filters with large conduction. Mathematical Modelling,1985,6(1):1-18
    [66]Konstandopoulos A G, Johnson J H. Wall-flow diesel particulate filter-their pressure drop and collection efficiency. SAE Paper,890405
    [67]Tan J C, Opris C N, et al. A study of the regeneration process in diesel particulate traps using a copper fuel additive. SAE Paper,960136
    [68]Opris C N, Johnson H J. A 2-D computational model describing the flow and filtration characteristics of a ceramic diesel particulate trap. SAE Paper, 980545
    [69]Opris C N, Johnson H J. A 2-D computational model describing the heat transfer, reaction kinetics and regeneration characteristics of a ceramic diesel particulate trap. SAE Paper,980546
    [70]Konstandopoulos A G, Kostoglou M. Periodically reversed flow regeneration of diesel particulate traps. SAE Paper,1999-01-0469
    [71]Konstandopoulos A G, Kostoglou M. Reciprocating flow regeneration of soot filters. Combustion and Flame,2000,121 (3):488-500
    [72]Suresh A, Khan A, Johnson J H. An experimental and modeling study of cordierite traps-pressure drop and permeability of clean and particulate loaded traps. SAE Paper,2000-01-0476
    [73]Konstandopoulos A G, Kostoglou M, Skaperdas E, et al. Fundamental studies of diesel particulate filters:transient loading, regeneration and aging. SAE Paper,2000-01-1016
    [74]宁智,路勇.柴油机位里捕捉器捕集效率模型的研究.北方交通大学学报,2001,25(1):57-60
    [75]蔡忆昔,朱明健.利用等离子体和DPF综合降低车用柴油机有害排放的理论研究.见:中国内燃机学会第六届学术年会,2002,356-361
    [76]蔡忆昔,王军,赵卫东,等.低温等离子体技术在降低柴油机排放中的应用.中国机械工程,2005,16(24):2238-2241
    [77]Zhang Z, Yang L, Johnson J H, et al. Modeling and numerical simulation of diesel particulate trap performance during loading and regeneration. SAE Paper,2002-01-1019
    [78]Kandylas I P, Haralampous O A, et al. Diesel soot oxidation with NO2: engine experiments and simulations. Ind.Eng.Chem.Res,2002,41(22): 5372-5384
    [79]Kandylas I P, Koltssakis G C. NO2-assisted regeneration of diesel particulate filters:a modeling study. Ind.Eng.Chem.Res,2002,41(9):2115-2123.
    [80]徐晓光,高希彦,张延辉,等.柴油机微粒过滤器的红外加热再生.内燃机工程,2002,23(1):60-62
    [81]姜大海,张春润,资新运,等.柴油机排气微粒捕集器燃气再生可行性研究.车用发动机,2002,40(4):51-53
    [82]Yezerets A, Currier N W, Eadler H A, et al. Experimental determination of the kinetics of diesel soot oxidation by O2 - modeling consequences. SAE Paper,2003-01-0833
    [83]Hanamura K, Suzuki T, Tanaka T, et al. Visualization of combustion phenomena in trgeneration of diesel particulate filter. SAE Paper, 2003-01-0836
    [84]Huynh C T, Johnson J H, Yang S L, et al. A one-dimensional computational model for studying the filtration and regeneration characteristics of a catalyzed wall-flow diesel particulate filter. SAE Paper,2003-01-0841
    [85]Haralampous O A, Koltsakis G C, Samaras Z C. Partial regenerations in diesel particulate filters. SAE Paper,2003-01-1881
    [86]姚春德,邵玉平,张春润,等.柴油机壁流式过滤体内的流动分析及模拟计算.内燃机学报,2004,22(6):504-509
    [87]Haralampous O A, Dardiotis C K, Koltsakis G C, et al. Study of catalytic regeneration mechanisms in diesel particulate filters using coupled reaction-diffusion modeling. SAE Paper,2004-01-1941
    [88]Setiabudi A, Chen J, Mul G, et al. CeO2 catalysed soot oxidation:the role of active oxygen to accelerate the oxidation conversion. Applied Catalysis B: Environmental,2004,51 (1):9-19
    [89]邵玉平,张春润,资新运,等.柴油机过滤体逆向喷气再生系统的模拟与实验研究.高技术通讯,2005,15(10):73-76
    [90]Konstandopoulos A G, Vlachos N, Stavropoulos I, et al. Study of a sintered metal diesel particulate trap. SAE Paper,205-01-0968
    [91]Yamamoto K, Stake S, Yamashita H, et al. Lattice Boltzmann simulation on porous structure and soot accumulation. Mathematics and Computers in Simulation,2006,72 (2-6):257-263
    [92]Mohammed H, Lakkireddy V R, Johnson J H, et al. An experimental and modeling study of a diesel oxidation catalyst and a catalyzed diesel particulate filter using a 1-D 2-layer model. SAE Paper,2006-01-0466
    [93]Guo Z, Zhang Z. Multi-dimensional modeling and simulation of wall-flow diesel particulate filter during loading and regeneration, SAE Paper, 2006-01-0265
    [94]Dardiotis C K, Haralampous O A, Koltsakis G C. Catalytic oxidation performance of wall-flow versus flow-through monoliths for diesel emissions control. Ind. Eng. Chem. Res,2006,45 (10):3520-3530
    [95]Triana A P, Johnson J H, Yang S L, et al. An experimental and computational study of the pressure drop and regeneration characteristics of a diesel oxidation catalyst and a particulate filter, SAE Paper,2006-01-0266
    [96]龚金科,赖天贵,董喜俊,等.车用柴油机微粒捕集器流场的数值模拟与分析.汽车工程,2006,28(2):129-133
    [97]Benjamin S F, Roberts C A. Three-dimensional modeling of NOx and particulate traps using CFD:a porous medium approach. Applied Mathematical Modelling,2007,31 (11):2446-2460
    [98]Frey M, Wenninger G, Krutzsch B, et al.2D simulation of the regeneration performance of a catalysed DPF for heavy-duty applications. Topics in Catalysis,2007,42-43 (1-4):237-245
    [99]刘云卿.柴油机微粒捕集器内气粒两相流东特性的数值研究.[湖南大学硕士学位论文],长沙:湖南大学机械与运载工程学院,2007,39-52
    [100]Piscaglia F, Onorati A, Rutland C J, et al. Multi-dimensional modeling of the soot deposition mechanism in diesel particulate filters. SAE Paper, 2008-01-0444
    [101]Issa M, Petit C, Brillard A, et al. Oxidation of carbon by CeO2:effect of the contact between carbon and catalyst particles. Fuel,2008,87 (6): 740-750
    [102]Dabhoiwala R H, Johnson J H, Naber J D, et al. Experimental and modeling results comparing two diesel oxidation catalyst-catalyzed particulate filter systems. SAE Paper,2008-01-0484
    [103]Gurupatham A, He Y. Architecture design and analysis of diesel engine exhaust aftertreatment system and comparative study with close-coupled DOC-DPF system. SAE Paper,2008-01-1756
    [104]龚金科,王曙辉,李林科,等.气流特征对柴油机微粒捕集器微波再生的影响研究.内燃机学报,2008,26(3):248-254
    [105]Peck R, Becker C. Experimental investigations and dynamic simulation of diesel particulate filter systems. Chem. Eng. Technol.2009,32 (9): 1411-1422
    [106]Zheng M, Banerjee S. Diesel oxidation catalyst and particulate filter modeling in active-flow configurations. Applied Thermal Engineering, 2009,29 (14-15):3021-3035
    [107]Premchand K C, Johnson J H, Yang S. Development of a 1-D CPF model to simulate active regeneration of a diesel particulate filter. SAE Paper, 2009-01-1283
    [108]Schejbal M, Stepanek J, Marek M, et al. Modelling of soot oxidation by NO2 in various types of diesel particulate filters. Fuel,2010,89 (9): 2365-2375
    [109]资新运,郭猛超,张伟,等.采用燃烧起+氧化催化器的柴油机微粒捕集器复合再生控制策略的研究.汽车工程,2010,32(1):31-36
    [110]侯献军,马义,彭辅明,等.基于GT-Power的DPF喷油催化燃烧再生仿真技术.北京理工大学学报,2011,31(1):19-23
    [111]刘云卿,龚金科,鄂加强.过滤体结构对柴油机微粒捕集器加热再生过程影响的数值研究.中南大学学报(自然科学版),2007,38(2):314-319
    [112]Frank Van Haren. Diesel particulate emission reduction strategy for Washington state, http://www.ecy.wa.gov/biblio/0602022,2006-12
    [113]Chalgren R D. The modeling of exhaust gas recirculation in the vehicle engine cooling system simulation for designing a controlled EGR cooling system. [dissertation], Michigan:Michigan Technological University,2000, 77-79
    [114]Konstandopoulos A G., Skaperdas E., Masoudi M. Inertial contributions to the pressure drop of diesel particulate filters. SAE Paper,2001-01-0909
    [115]Konstandopoulos A G. Flow resistance descriptors for diesel particulate filters:definitions, measurements and testing. SAE Paper,2003-01-0846
    [116]Kandylas I P, Koltssakis G C. Simulation of continuously regenerating diesel particulate filters in transient driving cycles. Proc Instn Mech Engrs, Part D:Journal of Automobile Engineering,2002, (216):591-606
    [117]刘思峰,党耀国,方志耕,等.灰色系统理论及其应用(第五版).北京:科学出版社,2010,49-57
    [118]邓聚龙.灰理论基础.武汉:华中科技大学出版社,2002,82-86
    [119]郭鹏江,高希彦,王浩,等.柴油机EGR和微粒过滤器的试验研究.现代车用动力,2008,130(2):26-30
    [120]龚金科,尤丽,王曙辉,等.三效催化转化器老化过程预测及数值仿真.环境工程学报,2007,1(12):100-104
    [121]Hinds W C. Aerosol Technology:Properties, Behavior, and Measurement of Airbone Particles. New York:John Wiley and Sons.1999,277-279
    [122]岑可法,倪明江,严建华,等.气固分离理论及技术.杭州:浙江大学出版社,1999,34-35
    [123]孔祥言.高等渗流力学.合肥:中国科技大学出版社,1997
    [124]刘云卿,龚金科,蔡隆玉,等.柴油机壁流式过滤体非稳态捕集过程的计算模型.内燃机学报,2009,27(2):171-179
    [125]刘云卿.壁流式柴油机微粒捕集器捕集及微波再生机理研究.[湖南大学博士学位论文],长沙:湖南大学机械与运载工程学院,2009,43-48
    [126]Konstandopoulos A G, John H J. Wall-flow diesel particulate filters-their pressure drop and collection efficiency. SAE Paper,890405
    [127]Orr C. Filtration. Principles and Practices. Part I. Marcel Dekker, INC, New York,1977,112-117
    [128]Lee K, Gieseke J. Collection of aerosol particles by packed beds. Environment Science Technology,1979,13 (4):466-470
    [129]Mohammed H., Triana A., Yang S., et al. An advanced 1D 2-layer catalyzed diesel particulate filter model to simulate:filtration by the wall and particulate cake, oxidation in the wall and particulate cake by NO2 and O2, and regeneration by heat addition. SAE Paper 2006-01-0467
    [130]Jeguirim M., Tschamber V., Brilhac J., et al. Oxidation mechanism of carbon black by NO2:effect of water vapour. Fuel,2005,84 (14-15): 1949-1956
    [131]Tschamber V., Jeguirim M., Villani K., et al. Comparison of the activity of Ru and Pt catalysts for the oxidation of carbon by NO2. Applied Catalysis B: Environmental,2007,72 (3-4):299-303
    [132]Voltz S., Morgan C., Liederman D., et al. Kinetic study of carbon monoxide and propylene oxidation on platinum catalysts. Ind. Eng. Chem. Prod. Res. Dev,1973,12 (4):294-301
    [133]龚金科,刘云卿,龙罡,等.柴油机壁流式过滤体捕集与流阻性能影响规律.农业机械学报,2009,40(12):1-7
    [134]Agus S., Jiuling C., Guido M., et al. CeO2 Catalysed Soot Oxidation the Role of Active Oxygen to Accelerate the Oxidation Conversion. Applied Catalysis B:Environmental,2004,51 (1):9-19
    [135]龚金科,蔡皓,耿玉鹤,等.改进型汽油机三效催化转化器反应模型及试验研究.内燃机学报,2009,27(5):430-434
    [136]Konstandopoulos A G. An experimental and theoretical study of ceramic monolith traps in conjunction with a manganese-copper fuel additive for diesel particulate emissions control. [dissertation], Michigan:Michigan Technological University,1987,32-37
    [137]Pattas K N., Michalopoulou C C. Catalytic activity in the regeneration of the ceramic diesel particulate trap. SAE Paper 920362
    [138]Johnson J., Bagley S T., Gratz L., et al. A review of diesel particulate control technology and emissions effects. SAE Paper 940233
    [139]Koltsakis G C., Stamatelos A M. Modeling catalytic regeneration of wall-flow particulate filters. Ind. Eng. Chem. Res,1996,35 (1):2-13
    [140]Blanchard G., Colignon C., Griard C., et al. Passenger car series application of a new diesel particulate filter system using a new ceria-based fuel-borne catalyst:from the engine test bench to European vehicle certification. SAE Paper 2002-01-2781
    [141]Jelles S J., Makkee M., Moulijn J A. Ultra low dosage of platinum and cerium fuel additives in diesel particulate control. Topics in Catalysis,2001, 16-17 (1-4):269-273
    [142]陈俊杰,王谦.微尺度催化研究的进展.应用化工,2008,37(11):1376-1380
    [143]Christos K D., Onoufrios A H., Grigorios C K. Catalytic Oxidation Performance of Wall-Flow Versus Flow-Through Monoliths for Diesel Emissions Contral. Ind. Eng. Chem. Res,2006,45 (10):3520-3530
    [144]Herz R K. Dynamic behavior of automotive catalysts:1. Catalyst oxidation and reduction. Ind. Eng. Chem. Prod. Res. Dev,1981,20(3):451-457
    [145]Herz R K., Kiela J B., Sell J A. Dynamic behavior of automotive catalysts: 2. Carbon monoxide conversion under transient air fuel ratio conditions. Ind. Eng. Chem. Prod. Res. Dev,1983,22(3):387-396
    [146]McKee D W. Mechanisms of the alkali metal catalysed gasification of carbon. Fuel,1983,62 (2):170-175
    [147]Krishna K., Makkee M. Pt-Ce-soot Generated from fuel-borne Catalysts: Soot Oxidation Mechanism. Topics in Catalysis,2007,42-43 (1):229-236.
    [148]Morugan B., Ramaswamy A V., Srinivas D., et al. Effect of fuel and its concentration on the nature of Mn in Mn/CeO2 solid solutions prepared by solution combustion synthesis. Acta Materialia,2008,56(7):1461-1472

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700