用户名: 密码: 验证码:
山区机场高填方工后沉降变形研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
我国西部山区机场建设的迅猛发展导致高填方地基日益增多,填方体量大、高度高,且存在软弱原地基是此类填方地基的主要特点。如何准确计算其沉降特别是工后沉降已成为类似工程中亟待解决的问题,但目前有关工后沉降的计算模型及计算分析方法还有待完善。本文从大型侧限压缩试验、现场实测、简化算法、本构模型以及有限元数值模拟等多个方面入手,系统地研究了粗粒土的力学特性以及以其为主要填料的高填方地基的长期变形特性,提出了较为合理、实用的长期沉降变形简化算法,同时建立了能较好地反映粗粒土典型力学特性的本构模型。本文完成的创新性工作如下:
     1、利用大型侧限固结仪进行了不同混合比土石混合料的室内压缩试验,深入研究了土石混合料的应力应变特性和湿化变形特性,探讨了最优土石混合比的确定方法;同时还针对碎石粗粒土进行了流变变形试验和干湿循环变形试验,深入分析了粗粒土流变和干湿循环变形发生机理及发展规律。
     2、通过分析现场实测首次揭示了对于实际分层填筑的粗粒料高填方体,其长期工后沉降变形主要来自于较晚填筑的中上部土层,而较早填筑的下部土层虽然应力水平较高,但由于已经历过多次压缩和较长时间流变的发展,密实度较高,对工后沉降变形的贡献很小。在此基础上合理地解释了一般室内试验所得出的结论与实测规律之间出现差异的原因。
     3、提出了适用于大面积填筑的高填方地基工后沉降变形计算的简化算法,具体包括:(1)荷载变化条件下粗粒土流变变形的简化算法;(2)能够考虑给定降雨情况的流变与干湿循环变形的简化耦合算法;(3)可以考虑施工加载过程的软弱地基沉降变形简化算法。在此基础上,集合所提方法编制了高填方地基沉降计算软件,并对工程实例进行了计算分析,探讨了高填方地基工后沉降的发展规律。
     4、建立了能较全面反映粗粒土典型力学特性的本构模型,其不仅能反映应力水平对粗粒土应力应变关系、体变特性、强度特性的影响,同时也能反映应力路径相关性及流变特性。在与室内试验结果进行对比验证后,利用上述模型对工程实例进行了模拟分析,进一步探讨了高填方工后沉降变形的发展规律,同时也再次验证了所提本构模型的有效性、合理性和优越性。
The rapid development of airport construction in the mountainous areas in westernChina leads to increasing number of hill-fill foundations, which usually have large fillvolume, high height and original soft foundation below filler. It is an important topic topredict the settlement, especially post construction settlement, of high-fill foundations,which are encountered more and more often in the high-fill engineering in mountainousareas. However, both the calculation model and calculation method are to be studiedfurther. Presented in this study are large-scale laboratory tests, field data analysis,simplified formula calculation, numerical analysis that were systematically and deeplymade for the purpose of investigating the mechanical properties of coarse-grained soiland long-term deformation behaviors of high-fill foundation. As a result, severalreasonable simplified calculation methods are proposed for simulating the long-termdeformation of high-fill foundation. Besides, a strain hardening constitutive model thatcan well reflect classical mechanical properties of coarse-grained soil is also proposed.The rationality and feasibility of above methods and model are demonstrated bycomparisons with test results and field data. Through this thesis the followinginnovative conclusions or results are made:
     1. With the specially designed large-scale oedometer, compression experimentshave been conducted on specimens with different broken rock contents to investigatethe compression, rheological and wetting deformation of broken rock-soil mixture. Onthis basis, method for determining the optimal mixing ratio of broken rock-soil mixtureis seriously studied. Furthermore, the routine rheological and dry-wet cycle experimentshave been also conducted on specimens to investigate the rheological and dry-wet cycledeformation mechanism and properties of rockfills, which has been widely used inairport construction in the mountainous areas in western China.
     2. Through analyzing the field observed data, it is revealed for the first time thatthe post-construction settlement of high-fill foundation is mainly from the rheologicaldeformation of later filling rockfills, while the early filling rockfills, even if which havea higher level of stress after filling, have little contribution on the settlement. This ismainly because the early filling rockfills have been compressed many times and its rheological deformation has also experienced many long intermission periods duringconstruction. On this basis, the reason for differences between above observedphenomena of actual high-fill engineering and laboratory test results is reasonableexplained.
     3. According to composition characteristic of hill-fill foundations in the airport inmountainous areas, several distinctive simplified calculation methods are well proposed,mainly including:1) a simplified method is proposed to calculate the rheologicaldeformation of coarse-grained filler, in which load variations during rheologicaldeformation can be properly considered;2) the other simplified coupling calculationmethod, which can consider a given rainfall situation and the interaction between abovetwo deformations, is well proposed;3) another simplified method applied to calculatelong-term deformation of original soft foundation, in which construction process canalso be properly considered, is proposed. After that, a user-oriented software especiallyapplied to calculate the deformation of high-fill foundation is programmed via VBlanguage, in which above proposed simplified calculation methods are integrated, andthen using this software the practical high-fill engineering is calculated and analyzed toinvestigate the post construction settlement behaviors.
     4. A strain hardening model is proposed in this thesis, which can well reflectclassical mechanical properties of coarse-grained soil. Not only the nonlineardeformation behavior, nonlinear strength property, confining stress dependence ofstiffness, dilatancy of coarse grained soil, but also stress path dependence andrheological properties can well be reflected via this model. After that the rationality andfeasibility of the proposed models is demonstrated through comparison with testingresults, it is applied to the simulation analysis of practical engineering boundaryproblems, and the post construction settlement behaviors of high-fill foundations aredeeply studied again. The new models are also shown to be reasonable, effective andadvanced.
引文
[1]徐则民,张倬元,许强,等.九寨黄龙机场填方高边坡动力稳定性分析[J].岩石力学与工程学报,2004,23(11):1883-1890.
    [2]中国民用航空局.中国民用航空发展第十一个五年规划[EB/OL]. http://www.caac.gov.cn.2006,12.
    [3]甘厚义,焦景有,金幸初,等.贵阳龙洞堡机场大块石填筑地基的强夯处理技术[J].建筑科学,1995,1:17-26.
    [4]谢春庆,丘延俊.粗巨粒土填筑地基性状及变形研究[M].成都:西南交通大学出版社,2003.
    [5]中国建筑西南勘察设计研究院.昆明新机场飞行区填方区岩土工程详细勘察报告(总报告)[R].2008.
    [6]尹基德,王延中,罗金标.广元机场大型石方洞室松动控制爆破设计与施工[J].路基工程,1996,5:50-55.
    [7]傅代正,赵正旺.大理机场石渣料强夯压实试验[J].铁道建筑技术,1994,9(5):29-32.
    [8]闵卫鲸.绵阳机场高填方强夯加固工程实践[J].路基工程,2006,1:34-36.
    [9]龚志红,李天斌,龚习炜,等.攀枝花机场北东角滑坡整治措施研究[J].工程地质学报,2007,15(2):237-243.
    [10]重庆交通学院.万州五桥机场高填方强夯地基处理应用研究[R].2002,12.
    [11]周虎鑫,刘武杰,黄晓波,等.兴义机场红粘土地基强夯处理试验研究[J].公路,2003,2(2):112-116.
    [12]李秀珍,许强,孔纪名,等.九寨黄龙机场高填方地基沉降的数值模拟分析[J].岩石力学与工程学报,2005,24(12):2188-2193.
    [13]赵电宇,蒋忠信.黎平机场软塑红粘土地基的碎石桩处理[J].路基工程,2005,5:83-86.
    [14]昆明新机场建设指挥部.全场地基处理与土石方工程施工图设计说明及施工技术要求
    [R].2008,8.
    [15]谢春庆.机场工程地质与勘察[M].成都:西南交通大学出版社,2003.
    [16]中国建筑科学研究院地基基础研究所.高填方工程地基处理的试验研究[R].北京:1998.
    [17]韩世莲,周虎鑫,陈荣生.土和碎石混合料的蠕变试验研究[J].岩土工程学报,1999,21(2):196-199.
    [18]刘宏,张倬元.四川九寨黄龙机场高填方地基变形与稳定性系统研究[M].成都:西南交通大学出版社,2006.
    [19]焦景有.贵阳龙洞堡机场块(碎)石填筑地基分层强夯试验与工程实践[J].建筑科学,1997,4:22-25.
    [20]宋广平.三明民用机场填筑体沉降观测及数据处理[J].城市勘测,2007,4:54-56.
    [21]任德记,何薪基,姚成焕,等.三峡机场第一沉降区观测成果分析[J].岩土工程技术,1998,1:55-58.
    [22]刘桂琴,王子玉,高振鲲.贵州某高填方滑塌变形监测分析[J].人民长江,2007,38(11):155-157.
    [23]左名麒,朱树森.强夯法地基加固[M].北京:中国铁道出版社.1990.
    [24]张庆国,毕秀丽.强夯法加固机理与应用[M].济南:山东科学技术出版社,1996.
    [25] Mitchell J K. Soil Improvement state of the art report[R].10th ICSMFE, Stockholm,1981.
    [26]杨世基.冲击压实技术在路基工程中的应用[J].公路,1999,7(7):1-5.
    [27]中华人民共和国建设部. GB50007-2002建筑地基基础设计规范[S].北京:中国建筑工业出版社,2002.
    [28]梁军.高面板堆石坝流变特性研究[博士学位论文D].南京:河海大学,2003.
    [29]杨广庆,刘树山,等.高速铁路路基设计与施工[M].北京:中国铁道出版社,1999.
    [30]殷宗泽.土工原理[M].北京:中国水利水电出版社,2007.
    [31]石宜生,姚成焕,江诚.机场高填方土基沉降计算方法的探讨[J].土工基础,2001,15(3):22-25.
    [32] Sowers G F, Williams R C, Wallace T S. Compressibility of broken rock and the settlementof rockfills [C]//Proc6th Int Conf on Soil Mechanics and Foundation Eng, Montreal,1965,2:561-565.
    [33]朱志铎,周礼红.软土路基全过程沉降预测的Logistic模型应用研究[J].岩土工程学报,2009,31(6):965-969.
    [34]宰金珉,梅国雄.成长曲线在地基沉降预测中的应用[J].南京建筑工程学院学报,2000,2:8-13.
    [35] Asaoka A. Observational procedure of settlement prediction [J]. Soils and Foundations,1978,18(4):87-92
    [36]邓聚龙.灰色理论基础[M].武汉:华中科技大学出版社,2002.
    [37]唐朝晖,刘晓,等.软基沉降的经验曲线非线性回归分析预测方法研究[J].地质科技情报,2005,24(7):106-108.
    [38]王志亮,黄景忠,等.沉降预测中的Asaoka法应用研究[J].岩土力学,2006,27(11):2025-2028.
    [39]孙海忠,黄茂松.粗粒土的本构模型及其展望[C]//第一届全国岩土本构理论研讨会论文集.北京:北京航空航天大学出版社,2008:286-292.
    [40]岑威钧,王修信.堆石料本构建模新途径[J].河海大学学报(自然科学版),2008,36(1):102-105.
    [41]张学言. Janbu土力学体系述评[J].力学进展,1986,16(1):40-53.
    [42]秦红玉,刘汉龙,高玉峰,等.粗粒料强度和变形的大型三轴试验研究[J].岩土力学,2004,25(10):1575-1580.
    [43]沈珠江.理论土力学[M].北京:中国水利水电出版社,2000.
    [44]刘祖德,陆士强,杨天林,李柏乔.应力路径对填土应力应变关系的影响及其应用[J].岩土工程学报,1982,4(4):45-55.
    [45]孙岳崧,濮家骝,李广信.不同应力路径对砂土应力-应变关系的影响[J].岩土工程学报,1987,9(6):78-88.
    [46]杨光,孙逊,于玉贞,等.不同应力路径下粗粒料力学特性试验研究[J].岩土力学,2010,31(4):1118-1122.
    [47]陈金锋,徐明,宋二祥.不同应力路径下石灰岩碎石大型三轴试验研究[J].工程力学(已录用).
    [48] Duncan, Chang. Nonlinear Analysis of Stress and Strain in Soil [J]. Journal of the SoilMechanics and Foundations Division, ASCE,1970,96(SM5):1629-1653.
    [49]李广信.高等土力学[M].北京:清华大学出版社,2004.
    [50] Roscoe K H, Schofield A N, Wroth C P. On Yielding of Soils [J]. Geotechnique,1958,(8):22-53.
    [51] Roscoe K H, Burland J B. On the Generalized Stress-strain Behavior of Wet Clay[C]∥Engineering Plasticity, HEYMAN J and LECKIE F A (eds), Cam-bridge, England:Cambridge University Press,1968:535-609.
    [52]沈珠江.土体应力应变分析中的一种新模型.第五届土力学及基础工程学术讨论会论文集[C]//北京:中国建筑工业出版社,1990:101-105.
    [53]张宗亮,贾延安,张丙印.复杂应力路径下堆石体本构模型比较验证[J].岩土力学,2008,29(5):1147-1151.
    [54]殷宗泽.一个土体的双屈服面应力-应变模型[J].岩土工程学报,1988,10(4):64-71.
    [55] Schanz T, Vermeer P A, BONNIER P G. The hardening soil model: Formulation andverification [J]. Beyond2000in Computational Geotechnics-10Years of PLAXIS,1999.
    [56]徐明,宋二祥.粗粒土的一种应变硬化模型[J].岩土力学,2010,31(9):2967-2972.
    [57]陈仲颐,叶书麟.基础工程学[M].北京:中国建筑工业出版社,1990.
    [58] Clayton C R I, Milititsky J, Woods R I. Earth pressure and earth-retaining structures [M].UK:Blackie Academic&Professional,1993.
    [59]岑威钧.堆石料亚塑性本构模型及面板堆石坝数值分析[博士学位论文D].南京:河海大学,2005.
    [60]沈珠江,赵魁芝.堆石坝流变变形的反馈分析[J].水利学报,1998,6(6):1-6.
    [61]王海俊,殷宗泽.堆石料长期变形的室内试验研究[J].水利学报,2007,38(8):914-919.
    [62]孙钧.岩土材料流变及其工程应用[M].北京:中国建筑工业出版社,1999.
    [63] Fitzpatrick M D, Liggins T B, Barnett R H W. Ten Years Surveillance of Cethana Dam[C]//14th ICOLD Congress, Rio de Janeiro,1982.
    [64]傅志安,凤家骥.混凝土面板堆石坝[M].武汉:华中理工大学出版社,1993.
    [65]许仲生.天生桥一级水电站面板坝坝体变形特征[J].水力发电,2000,3:18-22.
    [66] Wahls H E. Analysis of primary and secondary consolidation [J]. Journal of the SoilMechanics and Foundations,1962.
    [67] Parkin A K. Settlement rate behavior of some fill dams in Australia[C]//Pro.11th ICSMFE,San Francisco,1985,4:2007-2010.
    [68] Girod K. Evaluation of safety of a rockfill dam with concrete core on the basis ofmeasurement test and calculation results[R]. Eighteenth Congress on Large Dams.1994:Q.68R.6,65-89.
    [69]沈珠江,左元明.堆石料的流变特性试验研究[C]//第六届土力学及基础工程学术会议论文集,北京:中国建筑工业出版社,1991.
    [70]蒋鹏,杨淑碧.成都地区卵石土流变特性及长期强度研究[J].地质灾害与环境保护,1998,9(1):38-42.
    [71]梁军,刘汉龙.面板坝堆石料的蠕变试验研究[J].岩土工程学报,2002,24(2):257-259.
    [72]李国英,米占宽,傅华.混凝土面板堆石坝堆石料流变特性试验研究[J].岩土力学,2004,25(11):1712-1716.
    [73]程展林,丁红顺,吴良平.粗粒土试验研究[J].岩土工程学报,2007,29(8):1151-1158.
    [74]汪明元,何晓民,程展林.粗粒料流变研究的现状与展望[J].岩土力学,2003,24(suppl):451-454.
    [75] Chavez C, Romero E, Alonso E E. A rockfill triaxial cell with suction control [J].Geotechnical Testing Journal,2009,32(3):219-231.
    [76] Keedwell M J. Rheology and soil mechanics [M]. London: Elsevier Applied Science,Aug.1984.
    [77] Bazant Z P, Krizek R J.Endochronic constitutive law for liquefaction of sand [M]. JEMD,ASCE,1976.
    [78] Valanis K C, Read H E. A new endochronic plasticity model for soils [A]. In: Pande G N,Zienkiewicz O C, ed. Soil mechanics, transient and cyclic loads [M]. America: John Wiley&Sons Inc,1982.
    [79] Bdaren L. Consolidation of clay with non-linear viscosity [J]. Geotechnique,1965,15(4):345-362.
    [80]杨挺青.粘弹性力学[M].武汉:华中理工大学出版社,1990.
    [81] Perzyna. Fundamental problems in viscoplasticity [J]. Advances in Applied Mechanics.1966,9:243-377.
    [82] Zienkiewicz O C and Hampheson C. Viscoplasticity: a generalized model for description ofsoil behavior [A]. Numerical Methods in Geotechnical Engineering [M]. New York: McGrawHill,1979:116-147.
    [83] Oka F. Prediction of time dependent behavior of clay[C]//Proceedings,10th InternationalConference on soil Mechanics and Foundation Engineering, San Francisco,1981, Vol.I:215-218.
    [84] Adachi T, Oka F. Constitutive equation for normally consolidated clay based onelasto-viscoplasticity [J]. Soils and Foundations,1982,22(4):57-70.
    [85] Katona M G. Evaluation of viscoplastic cap model [J]. Journal of Geotechnical Engineering,ASCE,1984,110(8):1106-1125.
    [86] Bjerrum L. Engineering geology of Norwegian normally consolidates marine clays as relatedto the settlement of buildings [J]. Geotechnique,1967,17(2):83-118.
    [87]朱百里,沈珠江.计算土力学[M].上海:上海科技出版社,1990.
    [88] Chen hui fa, A K.Sa lipu. Elasticity and plasticity [M]. Beijing: China Architecture&Building Press,2004.
    [89]王勇,殷宗泽.一个用于面板坝流变分析的堆石流变模型[J].岩土力学,2000,21(3):227-230.
    [90]蒋彭年.非饱和土工程性质简论[J].岩土工程学报,1989,11(6):39-59.
    [91]郦能惠.密云水库走马莊副坝裂缝原因分析[R].北京:清华大学,1965.
    [92]米占宽.高面板坝坝体流变性状研究[硕士学位论文D].南京:南京水利科学研究院,2001.
    [93]华东水利学院.土石坝工程[M].北京:水利电力出版社,1978.
    [94]陈明致,金来契.堆石坝设计[M].北京:水利出版社,1982.
    [95] Terzaghi K. Discussion on Salt Springs and Lower Bear River Dams [J]. Trans.of ASCE,1960,125(2):139-159.
    [96]张金富.土石坝材料湿化试验研究[硕士学位论文D].南京:河海大学,1989.
    [97]魏松.粗粒料浸水湿化变形特性试验及其数值模型研究[博士学位论文D].南京:河海大学,2006.
    [98] Ordemir L. Compression of alluvial deposits due to wetting[C]//Proceeding of the11thInternational Conference on Soil Mechanics and Foundation Engineering, San Francisco,1985,VoI.4:50-54.
    [99] E.Marnha Das Neves, A.Veiga Pinto. Collapse of rockfill[C]//12th Int.Conf. Soil Mechanics&Foundation Eng. Rio de Janeiro,1989:735-738.
    [100]李广信.堆石料的湿化试验和数学模型[J].岩土工程学报,1990,12(5):58-64.
    [101]殷宗泽,费余绮,等.小浪底土坝坝料土的湿化变形试验研究[J].河海科技进展,1993,4(13):73-76.
    [102]保华富,屈智炯.粗粒料的湿化特性研究[J].成都科技大学学报,1989,1:23-30.
    [103]左元明,沈珠江.坝壳砂砾料浸水变形特性的测定[J].水利水运科学研究,1989, l:108-113.
    [104]方绪顺.砂砾石料浸水变形特性研究及砂砾石坝蓄水变形的数值模拟[硕士学位论文D].南京:河海大学,2005.
    [105]张智.粗粒料在湿化及等应力比下的特性研究[硕士学位论文D].成都:成都科技大学,1989.
    [106]李广信.高土石坝初次蓄水及水位骤降情况应力变形分析计算总报告[R].北京:清华大学水电系,1990.
    [107]殷宗泽.高土石坝的应力与变形[J].岩土工程学报,2009,31(1):1-14.
    [108]张丙印,孙国亮,张宗亮.堆石料的劣化变形和本构模型[J].岩土工程学报,2010,32(1):1-14.
    [109] Nobari E S, Duncan J M. Movements in Dams due to Reservior Filling[C]//Performance ofEarth and Earth-Support Structures,1973, Vol.l, Part l.
    [110]殷宗泽,赵航.土坝浸水变形分析[J].岩土工程学报,1990,12(2):2-8.
    [111]刘祖德.土石坝变形计算的若干问题[J].岩土工程学报,1983,51(1):1-13.
    [112]陈慧远,施群,唐仁杰.沥青混凝土心墙土石坝的应力应变分析[J].岩土工程学报,1982,4(4):146-157.
    [113]左元明,沈珠江.坝料土的浸水变形特性研究[R].南京:南京水利科学研究院土工研究所,1989.
    [114]刘萌成,高玉峰,刘汉龙,等.粗粒料大三轴试验研究进展[J].岩土力学,2002,23(2):217-221.
    [115]孟莉敏,周宏益,刘宏.山区机场工程高填方碎石土压缩蠕变试验研究[J].铁道勘察,2008,1(5):46-49.
    [116]张丙印,吕明治,高莲士.粗粒料大型三轴试验中橡皮膜嵌入量对体变的影响及校正[J].水利水电技术,2003,34(2):30-33.
    [117]中华人民共和国水利部.SL237-1999土工试验规程[S].北京:中国水利水电出版社,1999.
    [118]郭庆国.粗粒土的工程特性及应用[M].郑州:黄河水利出版社,1998.
    [119]翁厚洋,朱俊高,余挺,等.粗粒料缩尺效应研究现状与趋势[J].河海大学学报(自然科学版),2009,37(4):425-429.
    [120]王继庄.粗粒料的变形特性和缩尺效应[J].岩土工程学报,1994,16(4):89-95.
    [121]董槐三,尹承瑶.天生桥一级水电站面板堆石坝筑坝材料性质研究[J].红水河,1996,15(4):7-13.
    [122]郦能惠.高混凝土面板堆石坝新技术[M].北京:中国水利水电出版社,2007.
    [123]陈仲颐,周景星,王洪瑾.土力学[M].北京:清华大学出版社,1994.
    [124] Cheng C M., Yin J H. An improved method for estimating the time and strain at the end of the"primary" consolidation of a clayey soil with non-linear creep [J]. Geotechnical Engineering,2007,38(2):105-109.
    [125]谈云志,孔令伟,郭爱国,等.压实红黏土的湿化变形试验研究[J].岩土工程学报,2011,33(3):483-489.
    [126]左永振,丁红顺,赵娜.粗粒料三轴湿化研究的进展与展望[J].中国水运,2007,5(12):56-57.
    [127]梁军,刘汉龙,高玉峰.堆石蠕变机理分析与颗粒破碎特性研究[J].岩土力学,2003,24(3):479-483.
    [128] McDowell G R. Micromechanics of creep of granular materials [J]. Geotechnique,2003,53(10):915-916.
    [129] Leung C F, Lee F H, Yet N S. The role of particle breakage in pile creep in sand [J]. CanadianGeotechnical Journal,1996,33(6):888-898.
    [130]程展林,丁红顺.堆石料蠕变特性试验研究[J].岩土工程学报,2004,26(4):473-476.
    [131]王华俊,韩文喜,赵其华.高填方地基沉降回归参数模型探讨[J].土工基础,2004,18(3):43-45.
    [132]程展林,丁红顺.堆石料工程特性试验研究[J].人民长江,2007,38(7):110-114.
    [133]曹光栩,宋二祥,徐明.碎石料干湿循环变形试验及计算方法[J].哈尔滨工业大学学报,2011,43(10):98-104.
    [134] Coop M R, Sorensen K K, Bodas Freitas T. Particle breakage during shearing of a carbonatesand [J]. Geotechnique,2004,54(3):157-163.
    [135]中国民航机场建设集团公司.昆明新机场工程地基处理与土石方工程设计说明及施工技术要求[R].2008.
    [136]昆明新机场建设指挥部.昆明新机场项目简介[EB/OL]. http://www.newkma.com.2010,5.
    [137]陈军,章庆华,李春宇,等.昆明新机场飞行区变形监测报告[R].昆明:中国水电顾问集团昆明勘测设计研究院,2010.
    [138]龚晓南.复合地基理论及工程应用[M].北京:中国建筑工业出版社,2002.
    [139]章根德.土的本构模型及其工程应用[M].北京:科学出版社,1995.
    [140] Biot M A. General theory of three-dimensional consolidation [J]. Journal of Applied Physics,1941,12(2):155-164.
    [141]常士骠,张苏民.工程地质手册(第四版)[M].北京:中国建筑工业出版社,2006.
    [142] Terzaghi K. Erdbaumechanik auf bodenphysikalischer grundlage [M]. California: F. Deuticke,1925.
    [143]傅华,凌华,蔡正银.粗颗粒土颗粒破碎影响因素试验研究[J].河海大学学报(自然科学版),2009,37(1):75-78.
    [144]昆明市气象局.昆明小哨国际机场场址航空气象条件分析研究报告[R].2009.
    [145]高国瑞.中国红土的微结构和工程性质[J].岩土工程学报,1985,7(5):10-21.
    [146]林宗元.岩土工程勘察设计手册[M].沈阳:辽宁科学技术出版社,1996.
    [147]林在贯,高大钊.岩土工程手册[M].北京:中国建筑工业出版社,1994.
    [148]王栋. Visual Basic程序开发实例教程[M].北京:清华大学出版社,2006.
    [149] Barron R A. Consolidation of fine grained soils by drain wells [J]. Transactions of ASCE,1948,113:718-742.
    [150]谢康和,曾国熙.等应变条件下的砂井地基固结解析理论[J].岩土工程学报,1989,(2):3-17.
    [151]杨启贵,刘宁,孙役,等.水布垭面板堆石坝筑坝技术[M].北京:中国水利水电出版社,2010.
    [152]郭熙灵,胡辉,包承纲.堆石料颗粒破碎对剪胀性及抗剪强度的影响[J].岩土工程学报,1997,19(3):83-88.
    [153] Rowe P W. The stress-dilatancy relation for static equilibrium of an assembly of particles incontact [J]. Proc. Roy. Soc. A.,1962,269:500-527.
    [154]徐舜华,徐光黎,程瑶.土的剑桥模型发展综述[J].长江科学院院报,2007,24(3):27-32.
    [155]曹光栩,徐明,宋二祥.土石混合料压缩特性的试验研究[J].华南理工大学学报(自然科学版),2010,38(11):32-39.
    [156] Borja R I, Kavazanjian E. A constitutive model for the stress-strain-time behavior of‘wet’clays [J]. Geotechnique,1985,35(3):283-298.
    [157] Morsy M M, Chan D H, Morgenstern N R. An erective stress model for creep of clay [J].Canadian Geotechnical Journal.,1995,32(5):819-834.
    [158]陈晓斌.高速公路粗粒土路堤填料流变性质研究[博士学位论文D].长沙:中南大学,2007.
    [159]周德培.流变力学原理及其在岩土工程中的应用[M].成都:西南交通大学出版社,1995.
    [160]宋二祥.土工结构安全系数的有限元计算[J].岩土工程学报,1997,19(2):1-7.
    [161] Grlffiths D V,Lane P A. Slope stability analysis by finite elements [J]. Geotechnique,1999,49(3):387-403.
    [162]林鹏,许镇鸿,徐鹏,等.软土压缩过程中固结系数的研究[J].岩土力学,2003,24(1):106-108.
    [163] Olson, Roy E. Settlement of embankment on soft clays [J]. Journal of Geotechnical andGeoenvironmental Engineering, ASCE,1998,124(4):278-288.
    [164]许兆义,王连俊,杨成永.工程地质基础[M].北京:中国铁道出版社,2003.
    [165]甘厚义,周虎鑫,林本銮,等.关于山区高填方工程地基处理问题[J].建筑科学,1998,14(6):16-22.
    [166] Vyalov S S. Rheological Fundamentals of Soi1Mechanics [M]. Amsterdam: Elsevier,1986.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700