用户名: 密码: 验证码:
高原深水湖泊磷污染源解析及控制技术研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
湖库富营养化已成为当今世界范围内的重大水环境问题,我国60%以上湖库已呈富营养化状态且大部分限制因子为磷。因此,要控制湖库富营养化现象的发生,非常有必要对磷等营养盐的来源做系统的研究,并有针对性地开展污染治理。近年来关于太湖等浅水湖泊磷污染研究较多,而对云贵高原喀斯特地区的深水型湖泊磷污染特别是源解析研究相对较少。本论文以云贵高原乌江水系的红枫湖为例,研究喀斯特地区高原深水型湖泊水体磷污染来源、磷的形态和时空分布特征,通过模拟计算水体的磷环境容量,进而在此基础上研究提出总量控制目标和相应的污染控制技术。
     通过对红枫湖流域进行现场布点和定期监测,研究了红枫湖水体磷污染来源特征,对红枫湖水体中磷污染源进行了解析。结果表明:(1)红枫湖水体中总磷通过4条主要入湖河流输入负荷为71.03t/a,羊昌河、后六河、麻线河和桃花源河输入总磷负荷比例分别为79.61%、9.97%、7.19%、3.22%。并且枯水期总磷负荷只有丰水期的44%,表明红枫湖磷的来源具有显著的季节性。4条河流中悬浮态磷与总磷比例范围为51.67%~81.63%,红枫湖外源磷输入以悬浮态磷为主。(2)红枫湖流域城镇居民生活污水总磷浓度为0.80mg/L,低于北方城镇。农村居民生活污水总磷为0.48mg/L远低于太湖流域。水田径流总磷浓度为0.10mg/L,各种类型用地径流总磷流失负荷范围为5.5kg/hm2·a~13.44kg/hm2.a,略高于太湖流域。(3)红枫湖湖区大气降水中总磷浓度为0.082mg/L,比我国南方均值高63.4%。红枫湖大气降水悬浮态磷占总磷比例为60.8%。比太湖流域高14.1个百分点。(4)红枫湖底泥总磷平均含量为1498.2mg/kg,远比太湖底泥含量高。底泥中各形态磷占总磷比例Orp-P为58.6%,NaOH-P为29.91%,Ca-P为11.48%,这种比例结构有利于制约底泥中磷的释放。(5)红枫湖总磷负荷为102.53t/a,贡献由高到低为底泥释放、农业非点源、工业点源、城镇生活污水、农村生活污水、大气降水等,占总负荷比例分别为28.14%、27.52%、10.86%、10.69%、3.9%、3.29%。
     其次,对红枫湖水体中磷的时空分布规律及特征进行了探讨,并对水体磷的环境容量进行了模拟计算,研究表明:(1)红枫湖水体底层、中层和表层各形态磷浓度枯水期最大,丰水期最小。(2)红枫湖表层水体磷主要形态为溶解态磷,底层主要为悬浮态磷,总磷和溶解态磷浓度垂直分布均呈底层>中层>表层规律。湖区水体总磷水平分布极为不均,南湖高于北湖,水平分布趋势从高到低与水流方向基本一致。(3)红枫湖水体N/P在16.3-665之间,平均为100.7,磷为富营养化主要限制性因子。(4)要使红枫湖水体完全达到规定的饮用水水源地Ⅱ类和Ⅲ类水质目标要求,则需分别削减总磷82.97t/a和63.42t/a。
     最后,根据红枫湖磷源解析结果,结合该流域高原气候和喀斯特地形地貌特点,针对典型污染源进行治理技术研究和示范工程绩效评估:(1)建设前置库和大型湿地生态系统可以有效拦截羊昌河等河流的磷输入,塔式蚯蚓生态滤池和土地处理系统适宜高原农村生活污水治理并有良好效果,建设生态缓冲带和生态沟渠是拦截、治理红枫湖农业面源磷污染的一种有效途径。(2)不同材料覆盖原位控制底泥磷释放模拟实验研究发现,在培养温度为20℃、覆盖材料用量为6.0kg/m2时,石灰石粉、粉煤灰、水泥对底泥中P043-的抑制率分别为34.7%、47.9%和52.0%。各种覆盖材料对P043-抑制率均随温度升高而降低。要达到50%的抑制率,石灰石粉、粉煤灰、水泥用量分别为9.3kg/m2、7.8kg/m2和5.5kg/m2。从实验结果看,采用水泥作为覆盖材料原位控制底泥释放效果最好。(3)红枫湖磷污染非工程治理措施主要为建立流域生态补偿机制。考核河流为羊昌河和桃花源河,考核指标为总磷、氨氮、化学需氧量,补偿标准中化学需氧量为0.4万元/吨,氨氮和总磷为2万元/吨。以2010年相关数据核算,若实施该机制,贵阳市政府应补偿安顺市政府2565.98万元。实施流域生态补偿机制,既可为治理污染筹措资金,又可促进当地政府加强污染防治。
Lakes and reservoirs eutrophication has become a major problem of water environment for a long time.60%of lakes and reservoirs in China has been in the situation of eutrophication and the limiting factor was phosphorus. So phosphorus sources should be found out for taking out measures to control the eutrophication. In recent years, a lot of researches were focusing on phosphorus pollution in shallow lakes, such as Taihu Lake and Dianchi Lake. While little attention was paid on the phosphorus pollution of deep-water lake. In this thesis, Hongfenghu Lake was taken as the example to study phosphorus sources of the deep-water lake. At the same time, phosphorus morphology and spatial and temporal distribution were obtained. The environmental capacity of phosphorus was also calculated by the simulation. Finally, the proposed pollution control technologies and total amount control objectives were put forward.
     By the field distribution and sample monitoring, phosphorus pollution sources of Hongfenghu Lake were studied. The results showed that total phosphorus input load by the four main inflow rivers was71.03t/a and the total phosphorus input load ratio of Yangchang River, Houliu River, Maxian River and Taohuayuan River were79.61%,9.97%,7.19%and3.22%, respectively. The total phosphorus load in dry season was only44%of that in wet season, indicating that phosphorus pollution source has a significant seasonal difference. The exogenous phosphorus input was mainly in the form of suspended phosphorus and the ratio of suspended phosphorus and TP for the four rivers ranged from51.67%to81.63%. Secondly, the average TP concentration of urban sewage was0.80mg/L, which was lower than that of the northern town sewage. The average TP concentration of rural sewage is0.48mg/L, which was far lower than that of rural sewage in Taihu Lake basin. The average TP concentration in paddy runoff was0.10mg/L and TP losses of various types of land varied from5.5kg/hm2.a to13.44kg/hm2.a, which was slightly higher than that in Taihu Lake basin. Thirdly, the average TP concentration in the atmosphere precipitation was0.082mg/L, which was higher than that in southern China by63.4%. Furthermore,60.8%of it was suspended phosphorus and was higher than that in Taihu Lake basin by14.1%.(4) The average phosphorus concentration of sediment was1498.2mg/kg, which was higher than that in Taihu Lake basin. The proportions of the various forms of total phosphorus in the sediment were58.6%Orp-P,29.91%NaOH-P and11.48%Ca-P, and this kind of structure proportion was in favor of restricting phosphorus release.(5) The TP load in Hongfenghu Lake was102.53t/a and the amounts of sediment release, agricultural non-point sources, industrial point sources, urban sewage, rural sewage and precipitation were28.14%,27.52%,10.86%,10.69%,3.9%and3.29%, respectively.
     Phosphorus morphology and spatial and temporal distribution of phosphorus were also tested and the environmental capacity of phosphorus was obtained. The results showed that phosphorus in surface water was mainly in the form of dissolved phosphorus and in the underlying water was in the form of suspension. TP and dissolved phosphorus concentrations in the vertical distribution obeyed the law of bottom> middle> surface. Phosphorus concentration distribution was extremely uneven and TP concentration in South Hongfenghu Lake was higher than that in North Hongfenghu Lake. Also, the horizontal phosphorus concentration distribution from high to low was consistent with the flow direction. The ratio of TN and TP concentration in Hongfenghu Lake was in the range of16.3to665and the mean was100.7. So phosphorus was the major limiting factor that caused the eutrophication. Both of TP reduction of82.97t/a and63.42t/a should be achieved in order to make the water quality to meet the standard of drinking water Grade II and III.
     According to the results of phosphorus sources study in Hongfenghu Lake, treatment technologies for typical pollution sources and performance evaluation on demonstration projects were carried out combined with the watershed plateau climate and karst topography characteristics.(1) Pre-dem system and large wetland ecosystem could effectively intercept phosphorus input from Yangchang Rive and other inflow rivers. Tower earthworm eco-filter and soil treatment system were suitable for plateau rural sewage treatment. Building ecological buffer zones and eco-ditches were the effective ways to intercept and control agricultural non-point sources.(2) Simulation study of the in situ control of sediment phosphorus release by different materials was carried out and the experimental results showed that when the cultivation temperature was20℃and the amount of covering material was6.0kg/m2, the inhibition rates of PO43-by the limestone powder, fly ash and cement were34.7%,47.9%and52.0%, respectively. PO43-inhibition rates by cover materials decreased with increasing temperature. If the inhibition rate of50%needed to be achieved, the amount of limestone powder, fly ash, cement were9.3kg/m2,7.8kg/m2kg and5.5kg/m2, respectively. Cement was more suitable to be used as the cover material for in situ treatment.(3) The non-structural measure for phosphorus pollution control was to establish the ecological compensation mechanism. The assessment of Yangchang River and Taohuayuan River and the assessment indicators of TP, NH3-N and COD were carried out. The compensation standard were4,000Yuan per ton for COD,20,000Yuan per ton for nitrogen and20,000Yuan per ton for phosphorous. If this mechanism was implemented, Guiyang city should compensate25.6598million Yuan to Anshun city according to the relevant data of2010. Implementation of ecological compensation mechanism could be used for pollution control financing and promote the local government to enhance pollution prevention.
引文
[11 Benndorf J, Pfitz K. Control of eutrophication of lakes and reservoirs by means of predams:Ⅰ. mode of operation and calculation of the nutrient elimination capacity. Wat. Res.1987,21:829-838.
    [2]Beuschold E. Entwicklungsz endenzen der wasserbeschafenheit inden ostharztalsperren.Wiss Zeitschr, Karl-Marx-Univ Leipzig, Math-Nat Reihe,1966,15:853-869.
    [3]Boers P. C. M. Nutrient emissions from agriculture in the Netherlands:causes and remedies. Water science and technology,1996,3(4-5),183-188.
    [4]Bortone G. et al. Biological anoxic phosphorus removal—the dephanox process. Water science and technology,1996,34(1-2):119-128.
    [5]Bulut E, Aksoy A. Impact of fertilizer usage on phosphorus loads to Lake Uluabat. Desalination,2008, 226(1-3):289-297.
    [6]Chapra S. C. and Canale R. P. Long-term phenomenological model of phosphorus and oxygen for stratified lakes. Water research,1991,25(6):707-715.
    [7]Dillon P.J. and Rigler F.H. The phosphorus-chlorophyll relationship in lakes. Limnol. Oceanogr. 1974,19:767-773.
    [8]Effler SW, O'Donnell SM. A long-term record of epilimnetic phosphorus patterns in recovering Onondaga Lake, New York. Fundamental and applied limnology,2010,177(1):1-18.
    [9]Holdren CW, Jones J. Managing Lakes and Reservoirs (3rd edition) by N Am. Lake Manage Soc. and Terrene Inst, U.S.EPA.,2001.
    [10]Hollinger E, Coinish PS, Eaginska B, et al. Fam scale storm water losses of sediment and nutrients from a market ganten near Sydney. Agricultural Water Management,2001,47(3):227-241.
    [11]House W. A. and Denison F. H. Phosphorus dynamics in a lowland river. Water research,1998, 32(6):1819-1830.
    [12]HuPher M., Gachter R., Giovanoli R. Transformation of Phosphorus species in settling seston and during early sediment diagenesis. Aquat.Sei.,1995,57:305-324.
    [13]Hutchinson G. E. A Treatise on Limnology, Geogra, Physics and Chemistry. New York:Wiley and SonsInc.1957.
    [14]Klapper H. Biologische untersuchungen an deneinlaufen und vorbeckendersaidenbach talsperre. Wiss Zeitschr, Karl-Marx-UnivLeipzig Math-Nat Reihe,1957,7:11-47.
    [15]Li RX, Zhu MY, Chen S, et al. Responses of phytoplankton on phosphate enrichment in mesocosms. Acta Ecologica Sinica,2001,21(4):603-607.
    [16]Mino T. et al. Microbiology and biochemistry of the enhanced biological phosphate removal process. Water research,1998,32(11):3193-3207.
    [17]Moore P. A., Reddy K. R., Graetz D. A. Nutrient transformations in sediment as influenced by oxygen supply. J. Environ. Qual.1992,21:387-393.
    [18]Oliver R. L, Ganf G. G. Freshwater blooms, In:Whitton, B. A. and M. Pottseds. The Ecology of Cyanobacteria, The Netherlands:Kluwer Academic Publishers,2000,149-194.
    [19]Otis M. J. New Bedford Harbor, Massachusetts Dredging/disposal of PCB Contaminated Sediments Dredging 94-Proceeding of the Second International Conference on Dredging and Dredged Material Placement. American Society of Civil Engineers,1994.
    [20]Pouris S. A. Fatal Microcystin Intoxication in Haemodialysis Unit in Caruaru[J]. Brazil Lancet. 1998,352(2):21-26.
    [21]Sugawara K.; Koyama T.; Kamata E. Recovery of precipitated phosphate from lake mud related to sulfate reduction. Journal of Earth Sciences,1957,5,60-67.
    [22]Taranu Z. E., Gregory-Eaves I. Quantifying relationships among phosphorus, agriculture, and lake depth at an inter-regional scale. Ecosystems,2008,11(5):715-725.
    [23]Tim U. S. and Jolly R. Evaluating Agricultural Nonpoint-Source Pollution Using Integrated Geographic Information Systems and Hydrologic/Water Quality Model. Journal of environmental quality,1994,23(1):25-35.
    [24]Watt W. D., Haryes E. R. Tracer study of the Phosphorus cycle in seawater.Limnol. Oeeanogr.,1963, 8(2):267-285.
    [25]Varjo E., Liikanen A. A new gypsum-based technique reduce methane and phophorus release from sediments of eutrophied lakes:Gypsum treatment to reduce internal loading.Wat. Res.,2003,37(1): 1-10.
    [26]Vollenweider R. A. Advances in defining critical loading levels for phosphorus in lake eutrophication. Mere,1st Ital. ldrobiol.1976,33:53-83.
    [27]Wafar, M. V. M. et al. Transport of carbon, nitrogen and phosphorus in a Brittany river, France. Estuarine, coastal and shelf science,1989,29(5):489-500.
    [28]Williams J. D. H., Syers J. K., Harris R. F., et al. Fractionation of inorganic phosphorus lake sediment. Soil Science Society of America Proceedings.1971,35:250-255.
    [29]边金钟,王建华.于桥水库富营养化防治前置库对策可行性研究.城市环境与城市生态,1994,7(3):5-9.
    [30]陈建刚,粉煤灰合成沸石固磷机制及固磷能力强化技术研究.上海交通大学,上海,2007,博士论文.
    [31]陈敬安,张润宇,等.红枫湖底泥污染物空间分布特征.红枫湖百花湖阿哈水库水资源环境保护研讨会论文集,2009:102-112.
    [32]丁雄军.贵州高原深水喀斯特型水库富营养化防治途径探讨.红枫湖百花湖阿哈水库水资源环境保护研讨会论文集,2009:26-32.
    [33]傅庆红,蒋新.湖泊沉积物中磷的形态分析及其释放研究.四川环境,1994,13(4):21-23.
    [34]龚春生.城市小型浅水湖泊内源污染及环保清淤深度研究-以南京玄武湖为例.江苏:河海大学,2007.
    [35]洪一平,叶闽,臧小平.三峡水库水体中氮磷影响研究.中国水利,2004,20:23-24.
    [36]胡俊.滇池的内源磷及其与蓝藻水华的关系研究.中国科学院水生生物研究所.2005.
    [37]黄清辉,王磊,王子健.中国湖泊水域中磷形态转化及其潜在生态效应研究动态.湖泊科学,2006,18(3):199-206.
    [38]何少林.高效藻类塘处理农村生活污水氮磷去除机理及工艺研究.同济大学,上海.2006,博士论文.
    [39]胡心亮,夏品华,胡继伟,等.农业面源污染现状及防治对策.贵州农业科学,2011,39(6):211-215.
    [40]江嘉荔.川南部分河流总磷污染现状分析及防治措施.四川水利,2001,3:34-35.
    [41]蒋茂贵,方芳,望志方.MCR技术在农业面源污染防治中的应用.环境科学与技术,2001,S1:4-5.
    [42]蒋鸿昆,高海鹰,张奇.农业面源污染最佳管理措施(BMPs)在我国的应用.农业环境与发展,2006,23(4):64-67.
    [43]金相灿,屠清瑛.湖泊富养化调查规范(第二版).北京:中国环境科学出版社,1990.
    [44]金相灿,孟凡德,姜霞,等.太湖东北部沉积物理化特征及磷赋存形态研究.长江流域资源与环境,2006,15(3):388-396.
    [45]可欣,于维坤,尹炜,等.小流域面源污染特征及其控制对策.环境科学与技术,2009(7):201-204.
    [46]刘浏,刘晓端,徐清.密云水库沉积物中磷的形态和分布特征.岩矿测试,2003,22(2):81-85.
    [47]刘震,金相灿,卢少勇,等.滇池湖滨带沉积物磷的空问分布,环境科学与技术,2009,32(8):1-4.
    [48]刘洪喜.农村生活污水处理技术的探讨.污染防治技术,2009,22(3):30-32.
    [49]李旗.红枫湖、百花湖近年来富营养化状况分析.贵州工业大学学报(自然科学版),2001,30(5):98-102.
    [50]李宝,范成新,丁士明,等.滇池福保湾沉积物磷的形态及其与间隙水磷的关系,湖泊科学,2008,20(1):27-32
    [51]李旗.红枫湖、百花湖近年来富营养化状况分析.贵州工业大学学报(自然科学版),2001,30(5):98-102.
    [52]李彬,吕锡武,宁平,等.河口前置库技术在面源污染控制中的研究进展.水处理技术,2008,34(9):2-6.
    [53]李国栋,胡正义,杨林章,等.太湖典型菜地土壤氮磷向水体径流输出与生态草带拦截控制.生态学杂志,2006,25(8):905-910.
    [54]李小英,滇池流域台地水土和氮磷流失及防控技术研究.北京林业大学,北京.2006,博士论文.
    [55]黎慧卉,刘丛强,汪福顺,等.张翅鹏.猫跳河流域梯级水库磷的夏季变化特征.长江流域资源与环境,2009,18(4):368-372.
    [56]林建伟,朱志良,赵建夫.天然沸石覆盖层控制底泥氮磷释放的影响因素.环境科学,2006,27(5):58-62.
    [57]梁小洁,付文军,张明时,等.百花湖、红枫湖营养元素及有机污染物初步调查.贵州科学,1998,16(4):311-315.
    [58]柳惠青.湖泊污染内源治理中的环保疏浚.水运工程,2000.11:21-27.
    [59]庞磊,庞增辁.红枫湖百花湖水体污染事件调查,环保科技,2007,13(3):44-48.
    [60]申德君,张曼华,刘燕,等.红枫湖水库富营养化现状分析.贵州大学学报(自然科学版),2006,23(2):175-179.
    [61]沙茜.龙阳湖地区磷污染来源分析及控制对策研究[D].华中科技大学,2004,硕士论文.
    [62]王晓燕,阎育梅,宋秀杰,等,谢宝元.密云水库流域面源污染类型特征分析及防治建议,北京水务,2009,(2)(增刊):78-81.
    [63]王凤英,李莹,杨小红.黄河典型地区沉积物中磷的赋存形态.2010.32(12):123-126.
    [64]王冬,张进忠.水体沉积物中磷释放的影响因素.内蒙古环境科学,2008,20(1):45-48.
    [65]王立鹏,微山湖湖东区入湖河流磷污染特征及生态控制技术研究.山东建筑大学,2010.
    [66]王雨春,马梅,万国江,等.贵州红枫湖沉积物磷赋存形态及沉积历史.湖泊科学,2004,16(1):21-27.
    [67]王雨春,万国江,尹澄清,等.红枫湖、百花湖沉积物全氮、可交换态氮和固定铵的赋存特征.湖泊科学,2002,14(4):301-309.
    [68]王雨春,万国江,王仕禄,等.红枫湖、百花湖沉积物中磷的存在形态研究.矿物学报,2000,20(3):273-278.
    [69]王雨春,万国江,黄荣贵,等,湖泊现代化沉积物中磷的地球化学作用及环境效应.重庆环境科学,2000,22(4):39-41,59.
    [70]王毛兰,周文斌,胡春华.枯水期赣江流域氮磷的分布特征.地球与环境,2007,35(2):166-170.
    [71]王毛兰,鄱阳湖流域氮磷时空分布及其地球化学模拟[D].中国科学院上海冶金研究所,上海.2007,博士论文.
    [72]王叁,龙胜兴,李磊,等.红枫湖水库叶绿素α分布特征与相关因子研究.红枫湖百花湖阿哈水库水资源环境保护研讨会论文集,2009:240-244.
    [73]吴红,严军.红枫湖特征污染物变化趋势分析.中国环境监测,2009,25(3):90-93.
    [74]王德永,张丽娟,陈明.农村生活污水处理模式的研究.中国西部科技,2010,9(28):30-32.
    [75]万国江,许义芳,李荪蓉,等.云贵高原湖泊水库水化学组分研究.环境科学丛刊,1988,9(3):37-51.
    [76]解清杰,马涛,王琳玲,等.六氯苯污染底泥的电修复的可行性分析.环境科学与技术,2005, 28(5).
    [77]肖化云,刘丛强.湖泊外源氮输人与内源氮释放辨析.中国科学,D辑,2003,33(6):576-582.
    [78]徐祖信,叶建锋.前置库技术在水库水源地面源污染控制中的应用.长江流域资源与环境,2005,6:792-795.
    [79]尹家元、杨继红、杨光宇,等.昆明滇池及盘龙江磷形态分布研究.岩矿测试,1999,18(1):7-10.
    [80]叶恒朋.广州市河涌磷污染及控制研究.中国科学院研究生院,2006.
    [81]叶锋,滕明德,杨家文,等.羊昌河流域水生植物调查.红枫湖百花湖阿哈水库水资源环境保护研讨会论文集,2009:245-248.
    [82]杨飞,支崇远.喀斯特高原地区人工湖泊富营养化治理初探.安徽农业科学,2009,37(9):4181-4183.
    [83]杨文龙,杜娟.前置库在滇池非点污染源控制中的应用研究.云南环境科学,1996,12(4):8-10.
    [84]阎自申.前置库在滇池流域运用研究.云南环境科学,1996,15(6):33-35.
    [85]张路,范成新,池俏俏,等.太湖及其主要入湖河流沉积磷形态分布研究.2004,33(4):423-432.
    [86]张永春,张毅敏,胡孟春,等.平原河网地区面源污染控制的前置库技术研究.中国水利,2006,17:15-18.
    [87]叶锋,张明时,刘汉林,李秋华.红枫湖水库底质污染物富集现状分析.2010,26(3):8-12.
    [88]张恩仁,张经.三峡水库对长江N、P营养盐截留效应的模型分析.湖泊科学,2003,15(1):41-48.
    [89]张刚,张乃明.农村生活污水土地处理技术研究进展.环境科学导刊,2010,29(4):67-71.
    [90]张维.红枫湖、百花湖环境特征及富营养化.贵阳:贵州科技出版社,1999.20-21.
    [91]张维.红枫湖富营养化特征及水质改善对策.贵州环保科技(增刊),2004,10:11-17.
    [92]曾桂华.我国农业面源污染现状与防治对策探讨.中国科技信息,2011(3):96-97.
    [93]吕明辉,王红亚,蔡运龙,等,贵州红枫湖HF1-2孔沉积物的磁性特征及其土壤侵蚀意义.湖泊科学,2008,20(3):298-305.
    [94]丰茂武,吴云海,冯仕训,等,不同氮磷比对藻类生长的影响.生态环境,2008,(5):1769-1703.
    [95]金相灿,刘鸿亮,屠清瑛,等.中国湖泊富氧化.北京:中国环境科学出版社,1990.
    [96]黄漪平.太湖水环境及其污染控制[M].北京:科学出版社,2001.
    [97]环境保护部.《2010年中国环境状况公报》.北京,2010.
    [98]金相灿.湖泊富养化控制和管理技术.北京:化学工业出版社,2001.
    [99]李晓铃,李爱农,刘国祥,等.云贵高原区湖泊空间分布格局.长江流域资源与环境,2010,19(z1):90-96.
    [100]王苏民,窦鸿身.中国湖泊志.北京:科学出版社,1998:1447.
    [101]王龙真.磷对环境的危害与治理.石油地质与工程,2006,(6):94-95.
    [102]蔡明,李怀恩,庄咏涛.估算流域非点源污染负荷的降雨量差值法.西北农林科技大学学报(自然科学版),2005,33(4):102-106.
    [103]黄国如,姚锡良,胡海英.农业非点源污染负荷核算方法研究.水电能源科学,2011,29(11):28-32.周国逸,闫俊华.鼎湖山区域大气降水特征和物质元素输入对森林生态系统存在和发育的影响.生态学报,2001,21(12):2002-2012.
    [104]黄东风,李卫华,邱孝煊,等.水口库区流域农业面源污染评价及其防治对策.中国生态农业学报,2008,16(4):1031-1036.
    [105]王小治,尹微琴,单玉华,等.太湖地区湿沉降中氮磷输入量—以常熟生态站为例.应用生态学报,2009,20(10):2487-2492.
    [106]陈启慧,郝振纯,崔广柏,等.太湖底泥总磷含量特征分析.水利水电技术,2005,36(3):13-16.
    [107]刘峰.复合式人工湿地处理小城镇生活污水的研究,北京林业大学硕士学位论文,2011.
    [108]徐洪斌,吕锡武,李先宁,等.农村生活污水(太湖流域)水质水量调查研究.河南科学,2008,26(7):854-857.
    [109]王振旗,沈根祥,钱晓雍,等.淀山湖区域茭白种植模式氮、磷流失规律及负荷特征.生态与农村环境学报,2011,27(1):34-38.
    [110]汪家权,孙亚敏,钱家忠,等.巢湖底泥磷的释放模拟实验研究.环境科学学报,2002,22(6):738-742.
    [111]蔡龙炎,李颖,郑子航.我国湖泊系统氮磷时空变化及对富营养化影响研究.地球与环境2010(2):235-241.
    [112]金相灿,屠清瑛,湖泊富营养化调查规范.北京:中国环境科学出版社,1999.
    [113]张琳,董泽琴,杨再荣.贵州省红枫湖饮用水源地微囊藻毒素含量与水体中氮、磷含量,等的相关性.环保科技,2009,15(3):1-7.
    [114]吴根福,吴雪昌,金承涛,等.杭州西湖底泥释磷的初步研究.中国环境科学,1998,18(2):107-110.
    [115]隋少峰,罗启芳.武汉东湖底泥释磷特点.环境科学,2001,22(1):102-105.
    [116]李勇,王超.城市浅水型湖泊底泥磷释放特性实验研究.环境科学与技术,2003,26(1):26-28.
    [117]孙阳,王里奥,袁辉.三峡水库氮磷污染贡献率估算.重庆大学学报,2004,27(10):138-141.
    [118]张远,郑丙辉,刘鸿亮.三峡水库蓄水后氮、磷营养盐的特征分析.水资源保护,2005,21(6):23-26.
    [119]郑丙辉,曹承进,秦延文.三峡水库主要入库河流氮营养盐特征及其来源分析.环境科学,2008,29(1):1-6.
    [120]曹承进,秦延文,郑丙辉.环三峡水库主要入库河流磷营养盐特征及其来源分析.环境科学,29(2):310-315.
    [121]刘敏,侯立军,许世远,等.长江河口潮滩表层沉积物对磷酸盐的吸附特征.地理学报,2002,2:37-40.
    [122]孙刚,王振堂.利用生态工程降低湖体含磷量的研究.云南环境科学,2000,19(增刊):127-129.
    [123]张明时,杨家文,滕明德,等.红枫湖、百花湖、阿哈水库流域污染负荷汇总.红枫湖百花湖阿哈水库水资源环境保护研讨会论文集,2009:93-101.
    [124]吴红,严军.红枫湖特征污染物变化趋势分析.中国环境监测,2009,25(3):90-93.
    [125]龙健,齐瑞环,李娟,等.贵州高原喀斯特深水水库水质变化与趋势分析.红枫湖百花湖阿哈水库水资源环境保护研讨会论文集,2009:186-191.
    [126]李旗.红枫湖、百花湖近年来富营养化状况分析.贵州工业大学学报(自然科学版),2001,30(5):98-102.
    [127]张维.红枫湖水体中营养物质含量及其特征.贵州环保科技,2000,6(2):26-30.
    [128]申德君,张曼华,刘燕,等.红枫湖水库富营养化现状分析.贵州大学学报(自然科学版)2006,23(2):175-179.
    [129]卢同新.红枫湖饮用水源地富营养化现状及水质改善对策.环境保护,2008,18:48-50.
    [130]杨飞,支崇远.喀斯特高原地区人工湖泊富营养化治理初探-以红枫湖、百花湖为例[J].安徽农业科学,2009,37(9):4181-4183.
    [131]夏品华.阿哈水库死鱼事件调查分析及其引发的思考.中国水产,2009,8:54.
    [132]陈椽,胡晓红,刘美珊.红枫湖浮游植物分布(1995-1996)与水质污染评价初步研究.贵州师范大学学报(自然科学版),1998,16(2):5-10.
    [133]孙嘉龙,刘永霞,钟晓.红枫湖夏季浮游植物初步研究.贵州农业科学,2005,33(3):73-75.
    [134]陈作州,陈椽,晏妮.红枫湖水库浮游植物演变(1980-2006年)和富营养化趋势研究.贵州师范大学学报(自然科学版),2007,25(3):5-10.
    [135]谢海深.贵州高原湖泊-红枫湖浮游藻类和有毒藻类的初步研究.铜仁学院学报,2008,10(6):140-143.
    [136]夏品华,李秋华.红枫湖·百花湖入库河流水环境状况及生态修复措施.安徽农业科学,2011,39(12):7344-7346.
    [137]商立海,李秋华,邱华北,等.贵州红枫湖水体叶绿素a的分布与磷循环.生态学杂志,2011,30(5):1023-1030.
    [138]魏中青,刘丛强,梁小兵.贵州红枫湖地区水稻土多氯联苯和有机氯农药的残留.环境科学,2007,28(2):255-260.
    [139]王长娥,张明时.红枫湖、百花湖流域范围内居民含磷洗涤剂使用情况的调查与分析.贵州师范大学学报(自然科学版),2008,26(2):48-51.
    [140]周贻兵,林野,滕明德,等.红枫湖、百花湖重要点源排污现状调查.贵州师范大学学报(自然科学版),2009,(4):34-36.
    [141]韩爽,叶锋,张明时.“两湖”流域农业非点源污染现状与对策.贵州师范大学学报(自然科学版)2010,28(1):49-52.
    [142]袁惠民,陈文生.红枫湖沉积物中主要重金属潜在生态危害性评价.贵州环保科技,1997,3:12-17.
    [143]汪福顺,刘丛强,梁小兵.湖泊沉积物-水界面铁的微生物地球化学循环及其与微量金属元素的关系.地质地球化学,2003,31(3):63-69.
    [144]汪福顺,刘丛强,梁小兵.铁锰在贵州阿哈湖沉积物中的分离.环境科学,2005,26(1):135-140.
    [145]黄先飞,秦樊鑫,胡继伟.红枫湖沉积物中重金属污染特征与生态危害风险评价.环境科学研究,2008,21(2):18-23.
    [146]连国奇,黄先飞,胡继伟.贵阳红枫湖沉积物汞污染现状初步研究.贵州师范大学学报(自然科学版)2008,26(2):45-47.
    [147]刘峰,秦樊鑫,胡继伟.红枫湖沉积物中酸可挥发硫化物及重金属生物有效性.环境科学学报,2009,29(10):2215-2223.
    [148]王雨春,万国江,黄荣贵,等,湖泊现代化沉积物中磷的地球化学作用及环境效应.重庆环境科学,2000,22(4):39-41,59.
    [149]王雨春,万国江,尹澄清,等.红枫湖、百花湖沉积物全氮、可交换态氮和固定铵的赋存特征.湖泊科学,2002,14(4):301-309.
    [150]肖化云刘丛强.贵州红枫湖现代沉积物氮同位素组成反映的废水输人状况.科学通报,51(9):1091-1096.
    [151]孟忠常,杨琼,张明时,等.红枫湖、百花湖水库底质总磷负荷及其对湖泊富营养化贡献.贵州师范大学学报(自然科学版),2009,27(3):44-47.
    [152]陈敬安,张润雨,李健,等.红枫湖底泥污染物空间分布特征.红枫湖百花湖阿哈水库水资源环境保护研讨会论文集,2009:102-112.
    [153]连国奇,胡继伟,仝双梅,等.百花湖表层沉积物中磷的赋存形态及分布特征.红枫湖百花湖阿哈水库水资源环境保护研讨会论文集,2009:150-155.
    [154]杨加文,林野,方志清,等.百花湖、啊哈水库底泥分布及底泥中氮、磷、COD蓄积量的估算.红枫湖百花湖阿哈水库水资源环境保护研讨会论文集,2009:160-163.
    [155]魏中青刘丛强,梁小兵,等.贵州红枫湖沉积物中有机质的降解与微生物作用.科学通报,2005,50(14):1486-1489.
    [156]王超英,李碧芳,郝金声.红枫湖及其污染源中邻苯二甲酸酯类化合物的测定.贵州教育学院学报(自然科学),2006,17(4):42-44.
    [157]宋柳霆,刘丛强,王中良.贵州红枫湖硫酸盐来源及循环过程的硫同位素地球化学研究.地球化学,2008,37(6):556-564.
    [158]罗世霞,朱淮武,张笑一,等.红枫湖表层沉积物中多环芳烃的分布及来源分析.江西师范大学学报(自然科学版),2009,1:32-36.
    [159]陈蓓蓓,高乃云,鲁文敏.水源水中典型化学品突发污染的应急处理.环境科学,2009,30(6):1632-1638.
    [160]孟忠常,杨琼,张明时,等.红枫湖、百花湖水库底质总磷负荷及其对湖泊富营养化贡献.贵州师范大学学报(自然科学版),2009,27(3):44-47.
    [161]姚俊杰,沈昆根,安苗.红枫湖、百花湖水体的生态修复.贵州科学,2007,25/S:144-149.
    [162]濮培民,李正魁,马永兵.保障红枫湖水质安全的难度与可操作的快捷途径.红枫湖百花湖阿哈水库水资源环境保护研讨会论文集,2009:181-185.
    [163]李秋华,何伟添,陈椽.澳门湿地浮游植物群落特征.植物生态学报,2009,33(4)689-697.
    [164]张喜.贵州喀斯特山地森林生态系统服务功能监测与评价网络布局研究.安徽农业科学,2009,37(23):11289-11292.
    [165]杨飞,支崇远.喀斯特高原地区人工湖泊富营养化治理初探—以红枫湖、百花湖为例[J].安徽农业科学,2009,37(9):4181-4183,4194.
    [166]庞增辁,廖国华.深水水库——红枫湖、百花湖水环境研究——再论喀斯特区河流水库化后水环境质量变异.红枫湖百花湖阿哈水库水资源环境保护研讨会论文集,2009:33-35.
    [167]夏品华,林陶,李存雄.贵州高原红枫湖水库季节性分层的水环境质量响应.中国环境科学2011,31(9):1477-1485.
    [168]周贻兵,林野,滕明德,等.红枫湖、百花湖重要点源排污现状调查.贵州师范大学学报(自然科学版),2009,(4):34-36.
    [169]韩爽,叶锋,张明时.“两湖”流域农业非点源污染现状与对策.贵州师范大学学报(自然科学版)2010,28(1):49-52.
    [170]孟忠常,杨琼,张明时,等.红枫湖、百花湖水库底质总磷负荷及其对湖泊富营养化贡献.贵州师范大学学报(自然科学版),2009,27(3):44-47.
    [171]陈敬安,张润雨,李健,等.红枫湖底泥污染物空间分布特征.红枫湖百花湖阿哈水库水资源环境保护研讨会论文集,2009:102-112.
    [172]包锡南.美国非点污染源及其治理对策.农业环境与发展,1992,33(3):3-6.
    [173]张润宇,吴丰昌,王立英.太湖北部沉积物不同形态磷提取液中有机质的特征.环境科学,2009,30(3):733-739.
    [174]王晓燕,阎恩松,欧洋.基于物质流分析的密云水库上游流域磷循环特征.环境科学学报,2009,29(7):1549-1560.
    [175]吴红,严军.红枫湖特征污染物变化趋势分析.中国环境监测,2009,25(3):90-93.
    [176]国家环境保护局水和废水监测分析方法编委会.水和废水监测分析方法(第四版).北京:中国环境科学出版社,2002.
    [177]董树军,何风鸣,尹连庆,等.粉蝶灰吸附水中磷的研究.粉煤灰综合利用,1996,3:60-62.
    [178]王士龙,张虹,孙作洁.用沸石处理含磷废水的试验研究.材料保护,2003,36(3):55-56.
    [179]梁小洁,张明时,王爱民.红枫湖、百花湖水源、污染源主要营养元素及污染物调查.贵州师范大学学报(自然科学版),1999,17(2):38-40.
    [180]廖国华,钟晓,庞增铨.红枫湖、百花湖水污染趋势分析及控制对策.地球与环境,2004,32(3-4):49-52.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700