用户名: 密码: 验证码:
活性炭—超滤复合工艺去除水中典型PPCPs的效能与机理
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
饮用水中药品与个人护理品(PPCPs)正受到世界范围的广泛关注,而国内尚未见报道。本文采用高效液相色谱串联质谱法,调查了珠三角地区典型城市饮用水系统中39种PPCPs的分布、归宿和影响。结合气候和水源水质特征,提出了活性炭-超滤复合工艺,研究了典型PPCPs在复合工艺中的行为与机理。评价了复合工艺对典型PPCPs与其他污染物的去除效能,研究成果应用于规模为4万m~3·d~(-1)的示范工程。
     水源中16种PPCPs的检出浓度为ND~27ng·L~(-1)。出厂水中12种PPCPs的检出浓度为ND~5ng·L~(-1),深度处理工艺对大多数PPCPs的去除效果优于常规处理工艺。管网水和龙头水分别有15种和17种PPCPs检出,浓度均为1ng·L~(-1)左右。典型PPCPs混合物对斑马鱼胚胎发育的影响浓度为ng·L~(-1)水平,与水源中PPCPs的检出浓度相当,有潜在的生态和健康风险。
     活性炭去除PPCPs的机理包括活性炭吸附与有机物竞争吸附。活性炭对典型PPCPs的吸附符合指数衰减模型,其动力学吸附系数(Kd)为0.0067~0.0133min~(-1)。溶液pH降低,Kd会不断增加;腐殖酸存在时,Kd会降低20~47%。典型PPCPs吸附行为受其物化性质与活性炭的结构特征等影响。在典型PPCPs胁迫下,微生物种群结构会明显变化,有机会致病菌出现。
     超滤去除PPCPs的机理包括超滤膜吸附以及有机物或颗粒物协同吸附。溶液pH值降低会提高超滤膜对典型PPCPs的去除率。腐殖酸和颗粒物能改善超滤膜对典型PPCPs的去除效果,其去除率随腐殖酸和颗粒物浓度的升高而增加,而受颗粒物粒径的影响较小。有机碳分配系数(Koc)对典型PPCPs吸附行为有重要影响,而酸度系数(pKa)的影响与否则与溶液pH等有关。
     活性炭-超滤复合工艺对典型PPCPs的去除率为30~100%,其中,活性炭工艺占75~90%。在活性炭工艺中,活性炭吸附和微生物降解分别占94%和6%。典型PPCPs的去除效果受进水PPCPs浓度、滤速、pH、有机物、炭层高、活性炭性能、超滤膜特性和臭氧等影响。
     活性炭-超滤复合工艺对浊度、颗粒数、有机物和微生物等去除效果较好。炭层厚和滤速对活性炭工艺的运行有重要影响。进水水质、运行参数、超滤膜类型和膜性能变化等会影响超滤运行。超滤膜污染由有机物、金属和微生物等综合所致。
Pharmaceuticals and personal care products (PPCPs) in drinking water havebeen receiving extensive attention all over the world. However, no paper hasbeen reported about them in China. In this study, occurrence, fate and effect of39PPCPs in drinking water were investigated in southern China by highperformance liquid chromatography and tandem mass spectrometry(HPLC/MS/MS). Hybrid processes with granular activated carbon (GAC) andultrafiltration (UF) was developed based on the characteristics of climate andsource water quality. Performance of the hybrid processes in the removal oftypical PPCPs and other pollutants was evaluated. Behaviors and mechanisms oftypical PPCPs removal by the hybrid processes were investigated. A full-scalewater treatment plant was established on basis of the experimental results, withthe capacity of400000m~3·d~(-1).
     The concentrations of sixteen PPCPs detected in source water were ND~27ng·L~(-1). Twelve PPCPs were detected in treated water, with concentration ofND~5ng·L~(-1). Advanced treatment processes were more efficient in the removalof most PPCPs than conventional treatment processes. Fifteen and seventeenPPCPs were detected in pipeline and tap water, respectively, with concentrationof1ng·L~(-1). Typical PPCPs mixture had an influence on zebrafish embryodevelopment at the level of ng·L~(-1). Some potential ecological and health riskscaused by PPCPs existed for water sources in southern China.
     Removal mechanisms of typical PPCPs by GAC included GAC adsorptionand organic competition. Adsorption kinetics of typical PPCPs to GAC fittedexponential decay model. Adsorption coefficients (Kd) of the PPCPs were0.0067~0.0133min~(-1). Kdincreased with decreasing pH values, but decreased by20~47%in humic acid (HA) solution. Adsorption behaviors of the PPCPs wereinfluenced by their physiochemical properties and GAC structure characteristics.Population structure of microorganisms changed obviously under the typicalPPCPs stress, with a lot of opportunity bacteria detected.
     Removal mechanisms of typical PPCPs by UF included UF membraneadsorption and cooperative adsorption by HA or particles. The PPCPs removals by UF increased with decreasing pH values. HA and particles improved theremovals of the PPCPs by UF. The removals increased with increasingconcentration of HA and particles, but changed little with particle size. Organiccarbon partition coefficient (Koc) had an important influence on adsorptionbehaviors of typical PPCPs. The influence of acidity coefficient (pKa) wasrelated to the solution pH.
     The hybrid processes removed typical PPCPs by30~100%, with75~90%ofthem removed by GAC. GAC adsorption and biodegradation accounted for94%and6%, respectively during GAC treatment. The removal efficiencies of thePPCPs were affected by PPCPs concentration in the influent, filtration velocity,pH, organic matter, GAC media height, GAC characteristic, membraneproperties and ozonation.
     The hybrid processes removed turbidity, particles, organic matter andmicroorganisms effectively. The height of GAC media layer and filtrationvelocity of GAC process had an important effect on the performance of GACprocess. UF performance was affected by water quality, operation parameters,membrane types and the changes of membrane properties. UF membrane foulingwas caused by organic matter, metal ions and microorganisms.
引文
[1] Heberer T. Tracking persistent pharmaceutical residues from municipal sewage to drinkingwater. Journal of Hydrology,2002,266(3-4):175-189.
    [2] Kolpin D W, Furlong E T, Meyer M T, et al. Pharmaceuticals, hormones and other organicwastewater contaminants in U.S. streams,1999-2000. Environmental Science&Technology,2002,36(6):1202-1211.
    [3] Hilton M J, Thomas K V. Determination of selected human pharmaceutical compounds ineffluent and surface water samples by high-performance liquid chromatography–electrospraytandem mass spectrometry. Journal of Chromatography A,2003,1015(1-2):129-141.
    [4] Richardson B J, Lam P K, Martin M. Emerging chemicals of concern: pharmaceuticals andpersonal care products (PPCPs) in Asia, with particular reference to Southern China. MarinePollution Bulletin,2005,50(9):913-920.
    [5] Nakada N, Komori K, Suzuki Y, et al. Occurrence of70pharmaceutical and personal careproducts in Tone River basin in Japan. Water Science&Technology,2007,56(12):133-140.
    [6] Heberer T. Occurrence, fate, and removal of pharmaceutical residues in the aquaticenvironment: a review of recent research data. Toxicology Letters,2002,131:5-17.
    [7] Fent K, Weston A A, Caminada D. Ecotoxicology of human pharmaceuticals. AquaticToxicology,2006,76(2):122-129.
    [8] Ternes T A, Joss A, Siegrist J, et al. Scrutinizing pharmaceuticals and personal care productsin wastewater treatment. Environmental Science&Technology,2004,38(20):393-398.
    [9] Jones O A, Voulvoulis N, Lester J N. Aquatic environmental assessment of the top25Englishprescription pharmaceuticals. Water Research,2002,36(20):5013-5022.
    [10] Huschek G, Hansen P D, Maurer H H, et al. Environmental risk assessment of medicinalproducts for human use according to European Commission recommendations. EnvironmentalToxicology,2004,19(3):226-240.
    [11] Khan S J, Ongerth J E. Modelling of pharmaceutical residues in Australian sewage byquantities of use and fugacity calculations. Chemosphere,2004,54(3):355-367.
    [12] Thaker. Pharmaceutical data elude researchers. Environmental Science&Technology,2005,139(9):193A-194A.
    [13]赵春杰.关爱生命,合理使用抗生素.中国医药报,2011-07-25(07).
    [14]程锦泉,刘少础.超级细菌的警示与滥用抗生素潜在公共卫生问题.中国公共卫生,2010,26(12):1521-1522.
    [15] Loraine G A, Pettigrove M E. Seasonal variations in concentrations of pharmaceuticals andpersonal care products in drinking water and reclaimed wastewater in southern California.Environmental Science&Technology,2006,40(3):687-695.
    [16] Boyd G R, Reemtsma H, Grimm D A, et al. Pharmaceuticals and personal care products(PPCPs) in surface and treated waters of Louisiana, USA and Ontario, Canada. Science of theTotal Environment,2003,311(1-3):135-149.
    [17] Wiegel S, Aulinger A, Brockmeyer R, et al. Pharmaceuticals in the river Elbe and itstributaries. Chemosphere,2004,57(2):107-126.
    [18] Kasprzyk-Hordern B, Dinsdale R M, Guwy A J. The effect of signal suppression and mobilephase composition on the simultaneous analysis of multiple classes of acidic/neutralpharmaceuticals and personal care products in surface water by solid-phase extraction andultra performance liquid chromatography-negative electrospray tandem mass spectrometry.Talanta,2008,74(5):1299-1312.
    [19] Rabiet M, Togola A, Brissaud F, et al. Consequences of treated water recycling as regardspharmaceuticals and drugs in surface and ground waters of a medium-sized mediterraneancatchment. Environmental Science&Technology,2006,40(17):5282-5288.
    [20] Vieno N, Harkki H, Tuhkanen T, et al. Occurrence of pharmaceuticals in river water and theirelimination in a pilot-scale drinking water treatment plant. Environmental Science&Technology,2007,41(14):5077-5084.
    [21] Heberer T, Schmidt-Baumler K, Stan H J. Occurrence and distribution of organiccontaminants in the aquatic system in Berlin. Part I: Drug residues and other polarcontaminants in Berlin surface and ground water. Acta Hydrochimica et Hydrobiologica,1998,26(5):272-278.
    [22] Bruchet A, Hochereau C, Picard C, et al. Analysis of drugs and personal care products inFrench source and drinking waters: the analytical challenge and examples of application.Water Science&Technology,2005,52(8):53-61.
    [23] Reddersen K, Heberer T, Dünnbier U. Identification and significance of phenazone drugs andtheir metabolites in ground-and drinking water. Chemosphere,2002,49(6):539-544.
    [24] Heberer T, Reddersen K, Mechlinski A. From municipal sewage to drinking water: fate andremoval of pharmaceutical residues in the aquatic environment in urban areas. Water Science&Technology,2002,46(3):81-88.
    [25] Ternes T, Meisenheimer M, Mcdowel L, et al. Removal of pharmaceuticals during drinkingwater treatment. Environmental Science&Technology,2002,36(17):3855-3863.
    [26] Richter D, Massmann G D, Dunnbier U. Behaviour and biodegradation of sulfonamides(p-TSA, o-TSA, BSA) during drinking water treatment. Chemosphere,2008,71(8):1574-1581.
    [27] Lin W, Chen H, Ding W. Determination of pharmaceutical residues in waters by solid-phaseextraction and large-volume on-line derivatization with gas chromatographymassspectrometry. Journal of Chromatography A,2005,1065(2):279-285.
    [28] Stackelberg P, Furlong E, Meyer M, et al. Persistence of pharmaceutical compounds and otherorganic wastewater contaminants in a conventional drinking water treatment plant. Science ofthe Total Environment,2004,329(1-3):99-113.
    [29] Perret D, Gentili A, Marchese S, et al. Sulphonamide residues in Italian surface and drinkingwaters: A small scale reconnaissance. Chromatographia,2006,63(5-6):225-232.
    [30]郭美婷,胡洪营,王超.城市污水中的PPCPs及其去除特性.中国给水排水,2005,21(10):31-33.
    [31]周海东,黄霞,文湘华.城市污水中有关新型微污染物PPCPs归趋研究的进展.环境工程学报,2007,1(12):1-9.
    [32]渠志华.马永民.城市再生水生产工艺中典型紫外防晒剂的去除.生态毒理学报,2006,1(3):278-282.
    [33]黄满红,陈亮,陈东辉.污水处理系统中PPCPs的迁移转化研究.工业水处理,2009,29(07):15-17.
    [34]徐维海,张干,邹世春,等.香港维多利亚港和珠江广州河段水体中抗生素的含量特征及其季节变化.环境科学,2006,27(12):2458-2462.
    [35]王朋华.几种头孢类抗生素在污水处理过程中的分布特征及其环境行为研究[硕士学位论文].上海交通大学上海交通大学环境科学,2009.
    [36] Sui Q, Huang J, Deng S, et al. Occurrence and removal of pharmaceuticals, caffeine andDEET in wastewater treatment plants of Beijing, China. Water Research,2010,44(2):417-426.
    [37]喻峥嵘,乔铁军,张锡辉.某市饮用水系统中药品和个人护理用品的调查研究.给水排水,2010,36(09):24-28.
    [38] Velagaleti R. Behavior of pharmaceutical drugs (human and animal health) in theenvironment. Drug Information Journal,1997,31(3):715-722.
    [39] Daughton C G, Ternes T A. Pharmaceuticals and Personal Care Products in the Environment:Agents of Subtle Change? Environmental Health Perspectives,1999,107(s6):907-938.
    [40] Holm J V, Rugge K, Bjerg P L, et al. Occurrence and distribution of pharmaceuticalorganic-compounds in the groundwater downgradient of a landfill (Grindsted, Denmark).Environmental Science&Technology,1995,29(5):1415-1420.
    [41] Rogers H R. Sources behaviour and fate of organic contaminants during sewage treatment andin sewage sludges. Science of the Total Environment,1996,185(1-3):3-26.
    [42] Halling-Sorenson B, Nielsen S, Lanzky P, et al. Occurrence fate and effects of pharmaceuticalsubstances in the environment-a review. Chemosphere,1998,36(2):357-393.
    [43] Ikehata K, Jodeiri N N, Gamal E D. Degradation of aqueous pharmaceuticals by ozonationand advanced oxidation processes: A review. Ozone: Science&Engineering,2006,28(6):353-414.
    [44] Esplugas S, Bila D M, Krause L G T, et al. Ozonation and advanced oxidation technologies toremove endocrine disrupting chemicals (EDCs) and pharmaceuticals and personal careproducts (PPCPs) in water effluents. Journal of Hazardous Materials,2007,149(3):631-642.
    [45] Sanderson H, Johnson D J, Reitsma T, et al. Ranking and prioritization of environmental risksof pharmaceuticals in surface waters. Regulatory Toxicology&Pharmacology,2004,39(2):158-183.
    [46] Cleuvers M. Initial risk assessment for three [beta]-blockers found in the aquatic environment.Chemosphere,2005,59(2):199-205.
    [47] Laville N, Ait-Aissa S, Gomez E, et al. Effects of human pharmaceuticals on cytotoxicity,EROD activity and ROS production in fish hepatocytes. Toxicology,2004,196(1/2):41-55.
    [48] Henschel K P, Wenzel A, Diedrich M, et al. Environmental hazard assessment ofpharmaceuticals. Regulatory Toxicology&Pharmacology,1997,25(3):220-225.
    [49] Webb S F. A data based perspective on the environmental risk assessment of humanpharmaceuticals II: aquatic risk characterisation//Kummerer K. Pharmaceuticals in theenvironment. sources, fate, effects and risks. Berlin: Springer-Verla,2001:319-343.
    [50] Brain R A, Johnson D J, Richards S M, et al. Microcosm evaluation of the effects of an eightpharmaceutical mixture to the aquatic macrophytes Lemna gibba and Myriophyllum sibiricum.Aquatic Toxicology,2004,70(1):23-40.
    [51] Richards S M, Wilson C J, Johnson D J, et al. Effects of pharmaceutical mixtures in aquaticmicrocosms. Environmental Toxicology&Chemistry,2004,23(4):1035-1042.
    [52] Cleuvers M. Aquatic ecotoxicity of pharmaceuticals including the assessment of combinationeffects. Toxicology Letters,2003,142(3):185-194.
    [53] Cleuvers M. Mixture toxicity of the anti-inflammatory drugs diclofenac, ibuprofen, naproxen,and acetylsalicylic acid. Ecotoxicology&Environmental Safety,2004,59(3):309-315.
    [54] Peck A M, Hornbuckle K C. Synthetic musk fragrances in Lake Michigan. EnvironmentalScience&Technology,2004,38(2):367-372.
    [55] Lee K E, Cahill J D, Meyer M T, et al. Presence and distribution of organic wastewatercompounds in wastewater, surface, ground, and drinking waters, Minnesota,2000-2002[M/OL].2004[http://www.engineeringvillage2.org.cn/].
    [56] Jones-Lepp T L. Chemical markers of human waste contamination: Analysis of urobilin andpharmaceuticals in source waters. Journal of Environmental Monitoring,2006,8(4):472-478.
    [57] Zhang S, Zhang Q, Darisaw S, et al. Simultaneous quantification of polycyclic aromatichydrocarbons (PAHs), polychlorinated biphenyls (PCBs), and pharmaceuticals and personalcare products (PPCPs) in Mississippi river water, in New Orleans, Louisiana, USA.Chemosphere,2007,66(6):1057-1069.
    [58] Hua W, Bennett E R, Letcher R J. Ozone treatment and the depletion of detectablepharmaceuticals and atrazine herbicide in drinking water sourced from the upper Detroit River,Ontario, Canada. Water Research,2006,40(12):2259-2266.
    [59] Ternes T A. Occurrence of drugs in German sewage treatment plants and rivers. WaterResearch,1998,32(11):3245-3260.
    [60] Hirsch R, Ternes T, Haberer K, et al. Occurrence of antibiotics in the aquatic environment.Science of the Total Environment,1999,225(1-2):109-118.
    [61] Zwiener C, Frimmel F H. Oxidative treatment of pharmaceuticals in water. Water Research,2000,34(6):1881-1885.
    [62] Karsten O, Hans-Reinhard G, Kay K, et al. Sources and transport of selected organicmicropollutants in urban groundwater underlying the city of Halle (Saale), Germany. WaterResearch,2007,41(15):3259-3270.
    [63] Quednow K, Piittmann W. Organophosphates and synthetic musk fragrances in freshwaterstreams in Hessen/Germany. CLEAN-Soil, Air, Water,2008,36(1):70-77.
    [64] Wintgens T, Salehi F, Hochstrat R, et al. Emerging contaminants and treatment options inwater recycling for indirect potable use. Water Science&Technology,2008,57(1):99-107.
    [65] Bruchet A, Hochereau C, Picard C, et al. Analysis of drugs and personal care products inFrench source and drinking waters: the analytical challenge and examples of application.Water Science&Technology,2005,52(8):53-61.
    [66] Calamari D, Zuccato E, Castiglioni S, et al. Strategic survey of therapeutic drugs in the riversPo and Lambro in northern Italy. Environmental Science&Technology,2003,37(7):1241-1248.
    [67] Yamagishi T, Miyazaki T, Horii S, et al. Synthetic musk residues in biota and water fromTama River and Tokyo Bay (Japan). Archives of Environmental Contamination&Toxicology,1983,12(1):83-89.
    [68] Okumura T, Nishikawa Y. Gas chromatography—mass spectrometry determination oftriclosans in water, sediment and fish samples via methylation with diazomethane. AnalyticaChimica Acta,1996,325(3):175-184.
    [69] Kim S D, Cho J, Kim I S, et al. Occurrence and removal of pharmaceuticals and endocrinedisruptors in South Korean surface, drinking, and waste waters. Water Research,2007,41(5):1013-1021.
    [70] Le T X, Munekage Y. Residues of selected antibiotics in water and mud from shrimp ponds inmangrove areas in Viet Nam. Marine Pollution Bulletin,2004,49(11-12):922-929.
    [71] Loper C A, Crawford J K, Otto K L, et al. Concentrations of selected pharmaceuticals andantibiotics in south-central Pennsylvania waters, March through September2006[electronicresource].[Reston, Va.]: U.S. Geological Survey,2007.
    [72] Heberer T. Tracking persistent pharmaceutical residues from municipal sewage to drinkingwater. J Hydrology,2002,266(3-4):175-189.
    [73] Nakada N, Shinohara H, Murata A, et al. Removal of selected pharmaceuticals and personalcare products (PPCPs) and endocrine-disrupting chemicals (EDCs) during sand filtration andozonation at a municipal sewage treatment plant. Water Research,2007,41(19):4373-4382.
    [74] Richardson M L, Bowron J M. The fate of pharmaceutical chemicals in the aquaticenvironment. Journal of Pharmacy&Pharmacology,1985,37(1):1-12.
    [75] Kolpin D, Skopec M, Meyer M, et al. Urban contribution of pharmaceuticals and otherorganic wastewater contaminants to streams during differing flow conditions. Science of theTotal Environment,2004,328(1-3):119-130.
    [76] Marc M. H, Susanna K, Thomas A. T, et al. Oxidation of pharmaceuticals during watertreatment with chlorine dioxide. Water Research,2005,39(15):3607-3617.
    [77] Luks-Betlej K, Popp P, Janoszka B, et al. Solid-phase microextraction of phthalics from water.Journal of Chromatography A,2001,938(1-2):93-101.
    [78] Psillikis E, Kalogerakis N. Hollow-fiber liquid-phase microextraction of phthalate esters fromwater. Journal of Chemometrics,2003,999(1-2):145-153.
    [79] Halden R U, Daniel H P. Analysis of triclocarban in aquatic samples by liquidchromatography electrospray ionization mass spectrometry. Environronmental Science&Technology,2004,38(18):4849-4855.
    [80] Stan H J, Heberer T, Linkerhagner M. Occurrence of clofibric acid in the aquatic system-isthe use in human medical care the source of the contamination of surface ground and drinkingwater? Vom Wasser,1994,83:57-68.
    [81] Stumpf M, Ternes T, Haberer K, et al. Nachweis von Arzneimittelruckstanden in Klaranlagenund Flielgewassern [Determination of drugs in sewage treatment plants and river water]. VomWasser,1996,86:291-303.
    [82] Stackelberg P E, Gibs J, Furlong E T, et al. Efficiency of conventionaldrinking-water-treatment processes in removal of pharmaceuticals and other organiccompounds. Science of the Total Environment,2007,377(2-3):255-272.
    [83] Heberer T, Fuhrmann B, Schmidt-Baumler K, et al. Occurrence of pharmaceutical residues insewage, river, ground, and drinking water in Greece and Berlin. ACS Division ofEnvironmental Chemistry,2000,40(1):107-109.
    [84] Soliman M, Pedersen J, Suffet I H. Rapid gas chromatography-mass spectrometry screeningmethod for human pharmaceuticals,hormones, anti-oxidants and plasticizers in water. Journalof Chromatography A,2004,1029(1-2):223-237.
    [85] Ternes T. The occurrence of micopollutants in the aquatic environment: a new challenge forwater management. Water Science&Technology,2007,55(12):327-332.
    [86] Vieno N, Tuhkanen T, Kronberg L. Removal of pharmaceuticals in drinking water treatment:Effect of chemical coagulation. Environmental Technology,2006,27(2):183-192.
    [87] Adams C, Wang Y, Loftin K, et al. Removal of antibiotics from surface and distilled water inconventional water treatment processes. Journal of Environmental Engineering-ASCE,2002,138(3):253-260.
    [88] Westerhoff P, Yoon Y, Snyder S, et al. Fate of endocrine-disruptor, pharmaceutical, andpersonal care product chemicals during simulated drinking water treatment processes.Environmental Science&Technology,2005,39(17):6649-6663.
    [89] Chen C, Wen T, Wang G, et al. Determining estrogenic steroids in Taipei waters and removalin drinking water treatment using high-flow. Science of the Total Environment,2007,378(3):352-365.
    [90] Zuehlke S, Duennbier U, Heberer T. Investigation of the behavior and metabolism ofpharmaceutical residues during purification of contaminated ground water used for drinkingwater supply. Chemosphere,2007,69(11):1673-1680.
    [91] Gibs J, Stackelberg P E, Furlong E T, et al. Persistence of pharmaceuticals and other organiccompounds in chlorinated drinking water as a function of time. Science of the TotalEnvironment,2007,373(1):240-249.
    [92] Snyder S A, Westerhoff P, Yoon Y, et al. Pharmaceuticals, Personal Care Products, andEndocrine Disruptors in Water: Implications for the Water Industry. EnvironmentalEngineering Science,2003,20(5):449-469.
    [93] Huber M M, Korhonen S, Ternes T A, et al. Oxidation of pharmaceuticals during watertreatment with chlorine dioxide. Water Research,2005,39(15):3607-3617.
    [94] Gould J P, Richards J T. The kinetics and products of the chlorination of caffeine inaqueous-solution. Water Research,1984,18(8):1001-1009.
    [95] Huber M M, Canonica S, Park G Y, et al. Oxidation of pharmaceuticals during ozonation andadvanced oxidation processes. Environmental Science&Technology,2003,37(5):1016-1024.
    [96] Huber M M, Ternes T A, von Gunten U. Removal of estrogenic activity and formation ofoxidation products during ozonation of17alpha-ethinylestradiol. Environmental Science&Technology,2004,38(19):5177-5186.
    [97] Pinkston K E, Sedlak D L. Transformation of aromatic ether and amine containingpharmaceuticals during chlorine disinfection. Environmental Science&Technology,2004,38(14):4019-4025.
    [98] Knepper T P. Response to comment on ''Metabolism studies of phenylsulfonamides relevantfor water works". Environmental Science&Technology,2000,34(5):919-920.
    [99] Knepper T P, Kirschhofer F, Lichter I, et al. Metabolism studies of phenylsulfonamidesrelevant for water works. Environmental Science&Technology,1999,33(6):945-950.
    [100] Boyd G R, Zhang S, Grimm D A. Naproxen removal from water by chlorination and biofilmprocesses. Water Research,2005,39(4):668-676.
    [101] Haag W R, Yao C C D. Rate constants for reaction of hydroxyl radicals with severaldrinking-water contaminants. Environmental Science&Technology,1992,26(5):1005-1013.
    [102] Von Gunten U. Ozonation of drinking water: Part I. Oxidation kinetics and product formation.Water Research,2003,37(7):1443-1467.
    [103] Acero J L, Stemmler K, Von Gunten U. Degradation kinetics of atrazine and its degradationproducts with ozone and OH radicals: Apredictive tool for drinking water treatment.Environmental Science&Technology,2000,34(4):591-597.
    [104] Acero J L, Von Gunten U. Characterization of oxidation processes: Ozonation and the AOPO3/H2O2. Journal-American Water Works Association,2001,93(10):90-100.
    [105] Ternes T A, Stuber J, Herrmann N, et al. Ozonation: a tool for removal of pharmaceuticals,contrast media and musk fragrances from wastewater? Water Research,2003,37(8):1976-1982.
    [106] Kim I H, Tanaka H, Iwasaki T, et al. Classification of the degradability of30pharmaceuticalsin water with ozone, UV and H2O2. Water Science&Technology,2008,57(2):195-200.
    [107] Canonica S, Meunier L, von Gunten U. Phototransformation of selected pharmaceuticalsduring UV treatment of drinking water. Water Research,2008,42(1-2):121-128.
    [108] Heberer T, Feldmann D, Reddersen K, et al. Production of drinking water from highlycontaminated surface waters: Removal of organic, inorganic and microbial contaminantsapplying mobile membrane filtration units. Acta Hydrochimica et Hydrobiologica,2002,30(1):24-33.
    [109] Hu J Y, Jin X, Ong S L. Rejection of estrone by nanofiltration: Influence of solutionchemistry. Journal of Membrane Science,2007,302(1-2):188-196.
    [110] Zwiener C. Occurrence and analysis of pharmaceuticals and their transformation products indrinking water treatment. Analytical&Bioanalytical Chemistry,2007,387(4):1159-1162.
    [111] Yoon Y, Westerhoff P, Snyder S A, et al. Removal of endocrine disrupting compounds andpharmaceuticals by nanofiltration and ultrafiltration membranes. Desalination,2007,202(1-3):16-23.
    [112] Kot-Wasik A, Debska J, Namiesnik J. Analytical techniques in studies of the environmentalfate of pharmaceuticals and personal-care products. Trends in Analytical Chemistry,2007,26(6):557-568.
    [113] Dodd M C, Huang C. Transformation of the antibacterial agent sulfamethoxazole in reactionswith chlorine: Kinetics, mechanisms, and pathways. Environmental Science&Technology,2004,38(21):5607-5615.
    [114] Deborde M, Rabouan S, Mazellier P, et al. Oxidation of bisphenol A by ozone in aqueoussolution. Water Research,2008,42(16):4299-4308.
    [115]王占生,刘文君.我国给水深度处理应用发展近况与存在的问题.中国卫生监督杂志,2007,14(05):340-345.
    [116]王占生,刘文君.微污染水源饮用水处理.北京:中国建筑工业出版社,1999.
    [117]乔铁军,安娜,尤作亮,等.梅林水厂臭氧/生物活性炭工艺的运行效果.中国给水排水,2006,22(13):10-13.
    [118]王建平,何元春.南洲水厂处理工艺优化运行分析.给水排水,2006,32(05):23-26.
    [119]李伟光,曲艳明,何文杰,等.臭氧生物活性炭技术在低温低浊水处理中的应用.水处理技术,2006,32(11):4-6.
    [120]许嘉炯,范玉柱,雷挺,等.杭嘉湖地区微污染水源净水集成工艺选择.给水排水,2009,35(09):7-13.
    [121]乔铁军,刘晓飞,范洁,等.生物活性炭技术的安全性评价.中国给水排水,2004,20(02):31-33.
    [122]乔铁军,孙国芬.臭氧/生物活性炭工艺的微生物安全性研究.中国给水排水,2008,24(05):31-34.
    [123]刘丽君,张金松,安娜,等.生物活性炭滤池中无脊椎动物孳生问题与对策.给水排水,2009,45(03):14-18.
    [124]乔铁军,张锡辉.臭氧生物活性炭技术应用中水质安全研究.环境科学,2009,30(11):3311-3315.
    [125]刘丽君,张金松,李小伟,等.生物活性炭吸附池无脊椎动物群落变化及对水质影响.给水排水,2010,46(04):7-11.
    [126]王长平,乔铁军,周瑾,等.臭氧—生物活性炭工艺出水pH的变化及机理.给水排水,2010,46(07):21-24.
    [127] Schreiber H, Schoenen D, Traunspurger W. Invertebrate colonization of granular activatedcarbon filters. Water Research,1997,31(4):743-748.
    [128] Castaldelli G, Mantovani S, Benvenuti M R, et al. Invertebrate colonisation of GAC filters ina potabilisation plant treating groundwater. Journal of Water Supply: Research&Technology.AQUA,2005,54(8):561-568.
    [129]董秉直,陈艳,高乃云,等.粉末活性炭-超滤膜处理微污染原水试验研究.同济大学学报(自然科学版),2005,33(06):777-780.
    [130]田家宇,张宇,施雪华,等.超滤膜/混凝生物反应器去除饮用水中有机物的效能.中国给水排水,2009,25(05):20-23,28.
    [131]许航,陈卫,李为兵,等.臭氧-生物活性炭与超滤膜联用技术试验研究.华中科技大学学报(自然科学版),2009,37(02):125-128.
    [132]夏圣骥,徐斌,姚娟娟,等.粉末活性炭-超滤膜工艺净化松花江水.华南理工大学学报(自然科学版),2007,35(06):133-136.
    [133] Yu Z R, Peldszus S, Huck P M. Adsorption characteristics of selected pharmaceuticals and anendocrine disrupting compound-Naproxen, carbamazepine and nonylphenol-on activatedcarbon. Water Research,2008,42(12):2873-2882.
    [134] Scholz M, Martin R J. Ecological equilibrium on biological activated carbon. Water Research,1997,31(12):2959-2968.
    [135]张磊,陈士才.杭州市南星水厂O_3/BAC工艺的运行效果分析.中国给水排水,2006,22(17):42-45.
    [136]徐兵,贺尧基.嘉兴地区水厂生物预处理与深度处理的生产实践.中国给水排水,2007,23(08):56-58.
    [137]周胜昔,姚忠东.桐乡市果园桥水厂深度处理工艺设计和运行.给水排水,2004,30(01):6-10.
    [138]周云.周家渡水厂臭氧活性炭组合工艺的运行.给水排水,2006,32(05):19-22.
    [139]陈志真,王晓青,李伟光.生物活性炭工艺出水浑浊度和颗粒物的研究.净水技术,2008,27(03):17-20.
    [140]朱晓燕,吕锡武,刘武平,等.生物活性炭工艺去除长江原水中有机成分的研究.净水技术,2009,28(06):35-38.
    [141]范爱丽,刘路.桡足类生物死体进入供水管网后的分布规律研究.净水技术,2009,28(03):1-5,68.
    [142] Xiaowei L, Yufeng Y, Lijun L, et al. Invertebrate community characteristics in biologicallyactive carbon filter. Journal of Environmental Sciences,2010,22(5):648-655.
    [143] Kunikane S. A comparative study on the application of membrane technology to the publicwater supply. Journal of Membrane Science,1995,102(6):149-154.
    [144]时钧,袁权,高从堦.膜技术手册.北京:化学工业出版社,2001.
    [145]李爱斌,韩宏大,何文杰,等.天津市杨柳青水厂超滤膜法饮用水处理技术示范工程.给水排水,2008,34(9):14-16.
    [146]乔铁军,张锡辉,张金松.三种深度处理工艺出水的微生物安全性比较.中国给水排水,2010,26(07):30-33.
    [147]乔铁军张锡辉张金松Doris W. T. Au.活性炭-超滤组合工艺处理南方微污染源水的研究.给水排水,2011,37(4):15-18.
    [148]杨敏,曲久辉.水源污染与饮用水安全.环境保护,2007,381(19):62-64.
    [149]朱建文,许阳,代荣,等.微滤膜用于饮用水处理的中试研究.中国给水排水,2008,24(21):13-16.
    [150]黄瑾辉,曾光明,刘萍,等.颗粒活性炭-超滤膜联用工艺去除管网水中微量有机物.水处理技术,2007,33(01):74-78.
    [151]许经纶.微滤和超滤技术在澳门饮用水处理中的应用研究.上海水务,2002,18(4):45-49.
    [152] Lipp P, Baldauf G, Schick R, et al. Integration of ultrafiltration to conventional drinking watertreatment for a better particle removal—efficiency and costs? Desalination,1998,119(1-3):133-142.
    [153] Hagen K. Removal of particles, bacteria and parasites with ultrafiltration for drinking watertreatment. Desalination,1998,119(1-3):85-91.
    [154] Park N, Lee Y, Lee S, et al. Removal of taste and odor model compound(2,4,6-trichloroanisole) by tight ultrafiltration membranes. Desalination,2007,212(1-3):28-36.
    [155] Laine J M, Glucina K, Malleret L, et al. Assessment of membrane processes for taste andodour removal. Water Science&Technology: Water Supply,2001,1(4):19-24.
    [156] Clark M M, Heneghan K. Ultrafiltration of lake water for potable water production.Desalination,1991,80(1-2):243-249.
    [157] Hofman J A M H, M. M. Beumer E T B, van der Hoek J P, et al. Enhanced surface watertreatment by ultrafiltration. Desalination,1998,119(1-3):113-125.
    [158]白晓琴,赵英,顾平.膜分离技术在饮用水处理中的应用.水处理技术,2005,31(9):1-5.
    [159] Soffer Y, Ben A R, Adin A. Membrane fouling and selectivity mechanisms in effluentultrafiltration coupled with flocculation. Water Science&Technology,2005,51(6-7):123-134.
    [160] Kim J S, Cai Z X, Benjamin M M. Effects of adsorbents on membrane fouling by naturalorganic matter. Effects of adsorbents on membrane fouling by natural organic matter,2008,310(1-2):356-364.
    [161] Reddy A V, Mohan D J, Buch P R, et al. Desalination and water recovery: control ofmembrane fouling. International Journal of Nuclear Desalination,2006,2(1):103-107.
    [162] Wang X M, Li X Y. Accumulation of biopolymer clusters in a submerged membranebioreactor and its effect on membrane fouling. Water Research,2008,42(4-5):855-862.
    [163]张耀宗,王启山,丁莎莎,等.超滤膜处理地表水过程中膜污染的研究进展.水处理技术,2009,35(11):12-16.
    [164]朱建文,顾渊,代荣.饮用水深度处理中膜清洗方式的研究.中国给水排水,2009,25(23):41-44.
    [165] Schafer A I, Fane A G, Waite T D. Fouling effects on rejection in the membrane filtration ofnatural waters. Desalination,2000,131(1-3):215-224.
    [166] Crozes G F, Jacangelo J G, Anselme C, et al. Impact of ultrafiltration operating conditions onmembrane irreversible fouling. Journal of Membrane Science,1997,124(1):63-76.
    [167] Lee S, Lee C H. Effect of membrane properties and pretreatment on flux and NOM rejectionin surface water nanofiltration. Separation&Purification Technology,2007,56(1):1-8.
    [168] Choi H, Zhang K, Dionysiou D D, et al. Influence of cross-flow velocity on membraneperformance during filtration of biological suspension. Journal of Membrane Science,2005,248(1-2):189-199.
    [169] Yoon Y, Westerhoff P, Snyder S A, et al. Removal of endocrine disrupting compounds andpharmaceuticals by nanofiltration and ultrafiltration membranes. Desalination,2007,202(1-3):16-23.
    [170]王晓莲,彭永臻,王宝贞. PAC-UF组合系统对水中污染物去除研究.哈尔滨工业大学学报,2005,37(12):1739-1742.
    [171]李伟英,董秉直,谭章荣,等.混凝与超滤联用技术处理长江原水的研究.同济大学学报(自然科学版),2004,32(5):644-647.
    [172]王琳,王宝贞,王欣泽,等.活性炭与超滤组合工艺深度处理饮用水.中国给水排水,2002,18(02):1-4.
    [173] Katsoufidou K, Yiantsios S G, Karabelas A J. A study of ultrafiltration membrane fouling byhumic acids and flux recovery by backwashing: Experiments and modeling. Journal ofMembrane Science,2005,266(1-2):40-50.
    [174] Gur-Reznik S, Katz I, Dosoretz C G. Removal of dissolved organic matter bygranular-activated carbon adsorption as a pretreatment to reverse osmosis of membranebioreactor effluents. Water Research,2008,42(6-7):1595-1605.
    [175]于宏兵,范伟民,王暖春,等.超滤/臭氧/生物炭组合工艺预处理源水.中国给水排水,2003,19(08):1-3.
    [176]靳文礼,朱孟府,张玉忠,等.臭氧—活性炭—超滤组合工艺处理石油微污染水的试验研究.给水排水,2009,35(05):129-133.
    [177]刘研萍,王琳,王宝贞,等.压缩活性炭与超滤深度处理饮用水.中国给水排水,2004,20(11):39-42.
    [178]蒋绍阶,刘长兴,郭志强,等.接触过滤—活性炭吸附—超滤一体化净水装置处理长江原水的研究.给水排水,2007,33(10):16-19.
    [179] Kibbey T, Paruchuri R, Sabatini D. Adsorption of beta blockers to environmental surfaces.Environmental Science&Technology,2007,41(15):5349-5356.
    [180] Renner R. The Kow controversy. Environmental Science&Technology,2002,36(21):410A-413A.
    [181]陈卫,袁哲,陶辉,等. SUVA值与超滤膜污染的关系.华中科技大学学报(自然科学版),2011,39(2):129-132.
    [182]宋亚丽,董秉直,高乃云,等.臭氧/混凝预处理工艺降低膜污染的研究.环境科学,2010,31(7):1516-1519.
    [183]李永红,张伟,张晓健,等.超滤膜的污染控制研究进展.中国给水排水,2009,25(2):1-4.
    [184]乔铁军,唐晓会,张锡辉.活性炭/超滤复合工艺中膜污染特征的研究.中国给水排水,2010,26(17):35-39.
    [185] Yu Z, Peldszus S, Huck P M. Adsorption of selected pharmaceuticals and an endocrinedisrupting compound by granular activated carbon.1. adsorption capacity and kinetics.Environmental Science&Technology,2009,43(5):1467-1473.
    [186]刘晓飞,乔铁军.活性炭的性能和结构与水质安全性的关系.净水技术,2007,26(02):44-49.
    [187]刘铮,董秉直,陈艳,等.三维荧光光谱表征膜污染物.环境化学,2010,29(3):496-501.
    [188]李旭辉,于水利,赵晴,等. NOM的亲疏水性及分子质量分布对超滤膜污染的影响.中国给水排水,2010,26(17):31-34.
    [189] Snyder S A, Adham S, Redding A M, et al. Role of membranes and activated carbon in theremoval of endocrine disruptors and pharmaceuticals. Desalination,2007,202(1-3):156-181.
    [190]王琳,董秉直,高乃云.超滤去除水中内分泌干扰物(BPA)的效果和影响因素.环境科学,2007,28(2):329-334.
    [191] Redding A M, Cannon F S, Snyder S A, et al. A QSAR-like analysis of the adsorption ofendocrine disrupting compounds, pharmaceuticals, and personal care products on modifiedactivated carbons. Water Research,2009,43(15):3849-3861.
    [192] Yoon Y, Westerhoff P, Snyder S A, et al. Nanofiltration and ultrafiltration of endocrinedisrupting compounds, pharmaceuticals and personal care products. Journal of MembraneScience,2006,270(1-2):88-100.
    [193] Ternes T, Hirsch R, Stumpf M, et al. Nachweis und Screening von ArzneimittelruckstandenDiagnostika und Antiseptika in der aquatischen Umwelt.[Identification and screening ofpharmaceuticals diagnostics and antiseptics in the aquatic environment.].1999.
    [194]孙智慧,贾顺姬,孟安明.斑马鱼:在生命科学中畅游.生命科学,2006,18(5):431-436.
    [195] Nassef M, Kim S G, Seki M, et al. In ovo nanoinjection of triclosan, diclofenac andcarbamazepine affects embryonic development of medaka fish (Oryzias latipes).Chemosphere,2010,79(9):966-973.
    [196] Ensenbach U, Nagel R. Toxicity of complex chemical mixtures: acute and long-term Effectson different life stages of zebrafish (Brachydanio rerio). Ecotoxicology&EnvironmentalSafety,1995,30(2):151-157.
    [197] Ali S, Champagne D L, Spaink H P, et al. Zebrafish embryos and larvae: A new generation ofdisease models and drug screens. Birth Defects Research Part C: Embryo Today: Reviews,2011,93(2):115-133.
    [198] Westerfield M. The zebrafish book. A guide for the laboratory use of zebrafish (Danio rerio).3rd Edition. Eugene: University of Oregon Press,1995.
    [199] Kimmel C B, Ballard W W, Kimmel S R, et al. Stages of embryonic development of thezebrafish. Developmental Dynamics,1995,203(3):253-310.
    [200] Strmac M, Braunbeck T. Effects of triphenyltin acetate on survival, hatching success, andliver ultrastructure of early life stages of zebrafish (Danio rerio). Ecotoxicology&Environmental Safety,1999,44(1):25-39.
    [201]王爽.水源水中微生物群落结构的研究[硕士学位论文].北京:清华大学环境科学与工程系,2006.
    [202]王凌云.深圳河及沿岸污水处理厂典型雌激素微生物转化研究[博士学位论文].北京:清华大学环境学院,2011.
    [203] Ncbi. BLAST Assembled RefSeq Genomes[EB/OL]. http://blast.ncbi.nlm.nih.gov/.
    [204] Heng L, Yanling Y, Weijia G, et al. Effect of pretreatment by permanganate/chlorine on algaefouling control for ultrafiltration (UF) membrane system. Desalination,2008,222(1-3):74-80.
    [205]周凤霞,陈剑虹.淡水微型生物图谱.北京:化学工业出版社,2005.
    [206]章宗涉,黄祥飞.淡水浮游生物研究方法.北京:科学出版社,1995.
    [207] Drewes J E, Heberer T, Reddersen K. Fate of pharmaceuticals during indirect potable reuse.Water Science&Technology,2003,46(3):73-80.
    [208] Santos L H M L, Araujo A N, Fachini A, et al. Ecotoxicological aspects related to thepresence of pharmaceuticals in the aquatic environment. Journal of Hazardous Materials,2010,175(1-3):45-95.
    [209] Mak Y L, Taniyasu S, Yeung L W Y, et al. Perfluorinated compounds in tap water fromChina and several other countries. Environmental Science&Technology,2009,43(13):4824-4829.
    [210] Barbazuk W B, Korf I, Kadavi C, et al. The syntenic relationship of the zebrafish and humangenomes. Genome Research,2000,10(9):1351-1358.
    [211] Bakkers J. Zebrafish as model to study cardiac development and human cardiac disease.Cardiovasc Research,2011,91(2):279-288.
    [212] Lieschke G J, Currie P D. Animal models of human disease: zebrafish swim into view. NatureReviews Genetics,2007,8(5):353-367.
    [213]王琳,王宝贞.饮用水深度处理技术.北京:化学工业出版社,2002.
    [214] Wang L, Zhang J, Zhao R, et al. Adsorption of basic dyes on activated carbon prepared fromPolygonum orientale Linn: Equilibrium, kinetic and thermodynamic studies. Desalination,2010,254(1-3):68-74.
    [215] Ternes T, Joss A. Human Pharmaceuticals, Hormones and Fragrances:The challenge ofmicropollutants in urban water management. London: IWA Publishing,2007.
    [216]王晓昌,王锦.混凝-超滤去除腐殖酸的试验研究.中国给水排水,2002,18(3):18-22.
    [217]范延臻,王宝贞,王琳,等.改性活性炭对有机物的吸附性能.环境化学,2001,20(5):444-448.
    [218] Kasai Y, Takahata Y, Hoaki T, et al. Physiological and molecular characterization of amicrobial community established in unsaturated, petroleum-contaminated soil. EnvironmentalMicrobiology,2005,7(6):806-818.
    [219]郝春博,王广才,董建楠,等.石油污染地下水中细菌分子生态学研究.地学前缘,2009,16(4):389-400.
    [220] Haaijer S C M, Harhangi H R, Meijerink B B, et al. Bacteria associated with iron seeps in asulfur-rich, neutral pH, freshwater ecosystem. The ISME Journal,2008,2(12):1231-1242.
    [221]杨淑霞,范晓华,王振红,等.不动杆菌临床感染现状.中国现代医生,2010,48(33):12-13.
    [222]夏景洋,陈建江.鲍氏不动杆菌临床感染及耐药性分析.中华医院感染学杂志,2011,21(11):2342-2343.
    [223] Joshi S G, Litake G M, Niphadkar K B, et al. Multidrug resistant Acinetobacter baumanniiisolates from a teaching hospital. Journal of Infection&Chemotherapy,2003,9(2):187-190.
    [224] Yadav R, Pindi P K. Bacterial diversity of drinking water samples collected from differentlocations of Mahabubnagar District, A. P., India. Bioscience Discovery,2011,2(1):32-35.
    [225] Macedo A J, Kuhlicke U, Neu T R, et al. Three stages of a biofilm community developing atthe liquid-liquid interface between polychlorinated biphenyls and water. Applied&Environmental Microbiology,2005,71(11):7301-7309.
    [226] Al-Jasser A. Stenotrophomonas maltophilia resistant to trimethoprim-sulfamethoxazole: anincreasing problem. Annals of Clinical Microbiology&Antimicrobials,2006,5(1):23.
    [227]林益强,姚艺辉,宋秀宇,等.嗜麦芽窄食单胞菌对8种氟喹诺酮类抗生素的交叉耐药性及耐药现状的探讨.中国实验诊断学,2007,11(1):90-93.
    [228]张竹圆,白洁,周方,等.两株河口湿地耐盐石油降解菌的生物学特性及降解能力研究.海洋湖沼通报,2011(1):147-153.
    [229] Takeda K, Tonouchi A, Takada M, et al. Characterization of cultivable methanotrophs frompaddy soils and rice roots. Soil Science&Plant Nutrition,2008,54(6):876-885.
    [230]徐成斌,孟雪莲,马溪平,等.16S rDNA克隆文库方法对制药废水处理系统中微生物多样性的研究.生态环境学报,2009,18(4):1236-1240.
    [231] Hu L B, Yang J D, Zhou W, et al. Isolation of a Methylobacillus sp. that degrades microcystintoxins associated with cyanobacteria. New Biotechnology,2009,26(3-4):205-211.
    [232]马强,陶秀祥,侯彤,等.油田土壤中甲烷氧化菌的筛选及鉴定.煤炭工程,2008,1(7):84-85,105.
    [233] Feazel L M, Baumgartner L K, Peterson K L, et al. Opportunistic pathogens enriched inshowerhead biofilms. Proceedings of the National Academy of Sciences,2009.
    [234]余婷,何品晶,吕凡,等.生活垃圾填埋操作方式对覆土中Ⅰ型甲烷氧化菌的影响研究.环境科学,2008,29(10):2987-2992.
    [235] Hoque M S, Broadhurst L M, Thrall P H. Genetic characterisation of root nodule bacteriaassociated with Acacia salicina and A. stenophylla (Mimosaceae) across southeasternAustralia. International Journal of Systematic and Evolutionary Microbiology,2010,61(2):299-309.
    [236]吴清平,张永清,张菊梅.饮用水微生物安全风险控制.食品研究与开发,2009,30(11):188-191.
    [237]卢兰芬,何庭宇.食酸丛毛单胞菌31株耐药性分析.广东医学院学报,2006,24(6):604-605.
    [238]崔明超,李丽,陈繁忠,等.睾丸酮丛毛单胞菌对喹啉的微生物降解途径的研究.环境科学学报,2004,24(1):171-173.
    [239]刘磊,刘志培,吴建峰,等.氯代硝基苯降解菌Comamonas sp.strain CNB-1对污染土壤生物修复作用的研究.环境科学学报,2007,27(4):615-621.
    [240] Sheu S, Cho N, Arun A B, et al. Proposal of Solimonas aquatica sp. nov., and reclassificationof Sinobacter flavus (Zhou et al.2008) as Solimonas flava comb. nov. and Singularimonasvariicoloris (Friedrich and Lipski2008) as Solimonas variicoloris comb. nov. and emendeddescription of the genus Solimonas. International Journal of Systematic&EvolutionaryMicrobiology,2010.
    [241] Eichorst S A, Kuske C R, Schmidt T M. Influence of plant polymers on the distribution andcultivation of bacteria in the phylum acidobacteria. Applied&Environmental Microbiology,2011,77(2):586-596.
    [242]王春香,田宝玉,吕睿瑞,等.西双版纳地区热带雨林土壤酸杆菌(Acidobacteria)群体结构和多样性分析.微生物学通报,2010,37(1):24-29.
    [243]刘兴宇,王保军,赵克新,等.处理含氮芳烃废水SBR生物反应器细菌多样性研究.环境科学,2008,29(9):2564-2570.
    [244] Zhou H W, Wong A H Y, Yu R M K, et al. Polycyclic aromatic hydrocarbon-inducedstructural shift of bacterial communities in mangrove sediment. Microbial Ecology,2009,1(58):153-160.
    [245] Xi C, Zhang Y, Marrs C F, et al. Prevalence of Antibiotic Resistance in Drinking WaterTreatment and Distribution Systems. Applied&Environmental Microbiology,2009,75(17):5714-5718.
    [246]磨国鑫,佘丹阳,陈良安.多药耐药鲍氏不动杆菌的药物治疗.中华医院感染学杂志,2010(08):1195-1198.
    [247] Xu J, Wu L, Chang A C. Degradation and adsorption of selected pharmaceuticals andpersonal care products (PPCPs) in agricultural soils. Chemosphere,2009,77(10):1299-1305.
    [248] Xu P, Drewes J E, Kim T, et al. Effect of membrane fouling on transport of organiccontaminants in NF/RO membrane applications. Journal of Membrane Science,2006,279(1-2):165-175.
    [249]乔铁军,黄晓东,张金松,等.臭氧生物活性炭技术的工艺设计与运行管理.给水排水,2007,33(03):15-19.
    [250] Hatukai S, Ben-Tzur Y, Rebhun M. Particle counts and size distribution in system design forremoval of turbidity by granular deep bed filtration. Water Science&Technology,1997,36(4):225-230.
    [251] Stott R, May E, Ramirez E, et al. Predation of Cryptosporidium oocysts by protozoa androtifers: implicationsfor water quality and public health. Water Science&Technology,2003,47(3):77-83.
    [252] Jong-Sang P, Chung-Hak L. Removal of soluble COD by a biofilm formed on a membrane ina jet loop type membrane bioreactor. Water Research,2005,39(19):4609-4622.
    [253] Kim J, Digiano F A. A two-fiber, bench-scale test of ultrafiltration (UF) for investigation offouling rate and characteristics. Journal of Membrane Science,2006,271(1-2):196-204.
    [254] Xia S, Li X, Yao J, et al. Application of membrane techniques to produce drinking water inChina. Desalination,2008,222(1-3):497-501.
    [255] Schafer A I, Fane A G, Waite T D. Fouling effects on rejection in the membrane filtration ofnatural waters. Desalination,2000,131(1-3):215-224.
    [256] Zularisam A W, Ismail A F, Salim M R, et al. Application of coagulation-ultrafiltration hybridprocess for drinking water treatment: Optimization of operating conditions using experimentaldesign. Separation&Purification Technology,2009,65(2):193-210.
    [257] Malgorzata K. Application of ultrafiltration integrated with coagulation for improved NOMremoval. Desalination,2005,174(1):13-22.
    [258] Dong B Z, Chen Y, Gao N Y, et al. Effect of pH on UF membrane fouling. Desalination,2006,195(1-3):201-208.
    [259] Margarida R T, Maria J R. pH adjustment for seasonal control of UF fouling by natural waters.Desalination,2003,151(2):165-175.
    [260] Wang F, Tarabara V V. Pore blocking mechanisms during early stages of membrane foulingby colloids. Journal of Colloid&Interface Science,2008,328(2):464-469.
    [261] Susanto H, Feng Y, Ulbricht M. Fouling behavior of aqueous solutions of polyphenoliccompounds during ultrafiltration. Journal of Food Engineering,2009,91(2):333-340.
    [262] Lin C F, Wu C H, Lai H T, et al. Dissolved organic matter and arsenic removal with coupledchitosan/UF operation. Separation&Purification Technology,2008,60(3):292-298.
    [263] Chang I S, Bag S O, Lee C H. Effects of membrane fouling on solute rejection duringmembrane filtration of activated sludge. Process Biochemistry,2001,36(8-9):855-860.
    [264]周贤娇,董秉直.不同组分的有机物对膜过滤通量下降的影响.环境科学,2009,30(2):432-438.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700