用户名: 密码: 验证码:
薄板结构成形与耐撞性优化设计关键技术研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
薄板结构成形与耐撞性设计一直是制约汽车产品开发速度与品质的两项关键技术。传统的薄板结构成形与耐撞性设计主要依靠工程技术人员的经验进行“试错”来提高产品设计的质量。这种试错方法不仅耗时长、费用高,还往往难以保证产品设计的品质。随着有限元方法的发展和成熟,CAE技术已经广泛用于薄板结构的成形与耐撞性设计。尽管有限元分析方法促进了车身类薄板结构件的成形性和耐撞性研究的进步,一定程度上避免了设计的盲目性、减少了设计成本以及缩短了车身结构的开发周期,但是有限元方法本身仅作为一种分析手段,其主要功能只是对给定设计进行评价和校核。为了充分发挥CAE技术的潜能,将CAE技术与优化算法相结合来提高薄板结构的成形性和耐撞性已成为国际上许多学者研究的前沿课题。本文主要围绕如何提高薄板结构的成形性与耐撞性优化设计的效率,精度以及结果的稳健性等几个关键技术展开研究。
     主要研究内容如下:
     (1)提出了一种能量化冲压件起皱缺陷和拉裂缺陷的指数加权评价准则,该准则具有对不同的潜在失效单元赋予不同权重的优点,且权重随着拉裂、起皱的严重程度成指数函数增长。和现有的其它评价准则相比,将该准则作为板料成形优化设计的目标函数具有更强的针对性,优化结果能显著的提高板料的成形质量。在板料成形多目标优化研究方面,本文提出了基于径向基函数的板料成形多目标优化方法。研究表明基于薄板样条函数(Thin-plate spline)的径向基函数模型非常适合作为板料成形仿真的代理模型。在多目标优化迭代过程中,该方法调用的是代理模型而非有限元模型,因此,提出的方法具有非常高的效率。同时,该方法能解决拉裂和起皱缺陷同时存在且相互冲突的问题。在薄壁结构耐撞性研究方面,提出了一种新型的功能梯度泡沫填充薄壁结构。该新型泡沫填充结构的泡沫密度沿着长度方向成幂指数连续变化。数值算例表明,幂指数m对该结构的耐撞性有重要的影响。在此基础上,对该结构的幂指数m进行了优化设计。优化结果表明该结构在能量吸收、变形稳定性和最大峰值碰撞力方面比同质量的均匀泡沫填充薄壁结构具有更佳的耐撞性,是一种潜在的性能卓越的吸能结构。
     (2)提出了一种薄板结构成形与耐撞性序列代理模型优化设计方法,并对逐步序列的增加样本点数量和逐步序列减少设计空间这两种序列策略进行了研究。研究表明在样本点数量相同的情况下,无论是基于哪一种序列策略的序列代理模型优化设计方法的优化结果的精度均比传统的基于代理模型的优化设计方法的优化结果的的精度高。同时,提出的方法还具有对初始样本的数量与分布的依赖性相对较弱等优点。DP800高强度钢材料参数的反求优化设计和拉延筋几何参数的优化设计结果表明了该方法具有非常高的精度和效率。在此基础上,将单目标序列优化方法拓展到了多目标优化设计领域,提出了多目标序列代理模型优化方法。并开展了拉延筋几何参数多目标序列代理模型优化设计和汽车结构耐撞性多目标序列代理模型优化设计方法研究。
     (3)为了充分发挥高精度模型计算精度高和低精度模型耗时少的优点,提出了一种基于代理模型的板料成形变复杂度优化设计方法。该方法的核心是首先在高精度模型和低精度模型问建立一个补偿模型,然后对低精度模型进行补偿,补偿后的低精度模型的仿真结果的精度将得到大大的提高,在优化过程中可以代替高精度模型的结果。采用提出的方法对某汽车内板的拉延筋进行了优化设计研究,结果表明提出的方法的优化效率尽管低于基于一步法的优化效率,但优化结果的精度却得到了显著的提高;与传统的基于代理模型的优化方法相比,在相同的求解效率下,提出的方法的求解精度更高。
     (4)由于薄壁结构成形与耐撞性变复杂度优化在迭代过程中调用的低精度模型仍为有限元模型,这些模型在仿真过程中存在数值噪声,目标函数易陷入因数值噪声引起的局部峰值中,最终的优化结果难以直接用于指导实际的设计。薄壁结构成形与耐撞性数值模拟中,单元计算或接触计算常常产生问题,导致在优化过程中因单次仿真的失效而使整个优化过程无法进行。为了解决上述问题,提出了两步变复杂度优化方法,并开展了板料成形和蜂窝结构耐撞性的二步变复杂度优化方法研究。研究结果表明该方法具有较高的效率和精度,特别适合求解像板料成形和汽车碰撞这类复杂的非线性工程优化问题。
     (5)进行了汽车构件耐撞性可靠性优化设计、薄壁构件耐撞性6sigma单目标稳健优化设计和薄板冲压成形6sigma单目标稳健优化设计研究。在此基础上,提出了基于双响应面模型的6sigma多目标稳健优化设计方法。该方法不仅考虑了噪声因素的波动对产品性能的影响,同时也解决了多个质量特性之间互相冲突的问题。应用该方法开展了汽车结构耐撞性和板料成形多目标稳健优化研究。研究结果表明提出的方法能显著的提高设计结果的稳健性。
Forming and crashworthiness design of sheet structures are two key technologies to restrict the development rapidity and quality of automobile product. Traditional forming and crashworthiness design of sheet structures mainly depend on experience available by incorporating with a trial and error procedure to improve the product design quality. As a result, the design method requires a long design cycle and significant cost, whearas this by no means guarantees the quality of product. As the development and maturity of finite element method, CAE technology has been widely applied in the forming and crashworthiness design of sheet structrues. Although the finite element analysis promotes the progress of vehicle body parts in sheet metal forming and crashworthiness, avoids the blindness, reduces the design cost and shortens the development cycle to considerable extent, the finite element analysis is only a tool to evaluate and verify the product design. In order to take up the protential of CAE technology, it has been studied by a lot of researcher and become an international hot issue that integrating the CAE technology and optimization algorithm togother to improve the formability and crashworthiness of sheet structure. The paper mainly focuses on how to improve the optimization design efficiency, accuracy and robustness in the forming and crashworthiness design of sheet structures.
     The detailed content is as follows:
     (1) The paper presents an exponential weighted evaluation criterion which can evaluate the defects of wrinkle and crack. The criterion has the advantage of giving different protentional failure elements to different weighted values, and these values increase with the severity of crack and wrinkling in an expontential function. Compared with the other existing criteria, the criterion presented takes as objective function, which is more targeted and can significantly improve the formability of sheet metal forming. In the multiobjecvtive optimization of sheet metal forming, the paper presents a multiobjective optimization algorithm of sheet metal forming based radial basis function. The research result shows that the radial basis function based thin-plate spline is very suitable as surrogate model of sheet metal forming. The method proposed has very high efficiency due to calling surrogate model not the finite element model in the multiobjective optimization iterative process. In the crashworthiness research of thin walled structures, the paper presents a novel functionally graded foam-filled thin walled structure. In which, the foam density varies throughout the depth in a certain expotential function. Numerical simulations show that gradient exponential parameter m has significant effect on system crashworthiness. On the basis, the parameter m is optimized. The result shows that the columns filled by graded foam provide a better crashworhtinss performance than the uniform counterpart in the energy absorption, deformation stability, peak force. Hence, the functionally graded foam-filled thin walled structure is a protentional excellent energy absorption structure.
     (2) The paper presents a sequential surrogate model optimization design method of forming and crashworthiness of sheet structures. These two strategies of gradually sequentially increasing the number of the samples and decreasing the design space have been studied. The results show that the accuracy of the sequential surrogate model method based on no matter what kind of sequential strategy is higher than the accuracy of traditional surrogate method method. The method prestened has the advantage of relative weak dependence on the number of initial samples and distribution of initial samples. The optimal results of the DP800high strength steel material parameter identification and the drawbead geometrical parameter design show the sequential approximation method has very high accuracy and efficience. Baed on this, a multiobjective sequential method based metamodel is presented to extend the single objective sequential method to multiobjective optimization design. The research on drawbead geometrical parameter multiobjective sequential surrogate model optimization design method and vehicle structure crashworthiness multiobjective sequential surrogate model optimization design method are carried out.
     (3) In order to take full of the advantages of both the high fidelity model and low fidelity model, we present a variable fidelity model based metamodel. The key of the method presented is to construct a compensate model between the high fidelity model and low fidelity model firstly, and then compensate the low fidelity model. The precision of the low fidelity model compensated will be improved siginificantly. Therefore, the result of the low fidelity model compensated can be used to replace the result of the high fidelity model in the optimization process. The drawbead of some vehicle inner panel is studied using the method proposed. The result shows though the efficiency of the method proposed is lower than the efficiency of the one step method, the accuracy of the optimal design is improved significantly. Compared with the traditional surrogate model method, the accuracy of the method proposed is higher under the same solution efficiency.
     (4) The variable fidelity algorithm of forming and crashworthiness of sheet structure call the low fidelity models which are often finite element models in the optimization iterative process. The objective function value often falls into the local optimal result due to some numerical noises in the finite element analysis. So, the optimal is difficult to guide the real design. On the other hand, in the simulation of forming and crashworthiness of steel structure, the element deformation behaviors and frictional conatact involved in the simulation model sometimes result in unstable simulation analysis. As such, the collapse of a single finite element simulation may lead to whole optimization procedure being terminated prematurely. In order to address the issue mentioned above, the paper develops a two stage multifidility optimization algorithm. The optimal results of the two stage multifidelity optimization based on metamodel for honeycomb structure crashworthiness design and sheet metal forming design show that the method presented has high efficiency and accuracy, especially suitable solving complicated nonlinear engineering problems such sheet metal forming as vehicle crashworthiness.
     (5) The research on the reliability optimization design of the crashworthiness for vehicle part, the single objective robust optimization design based on6sigma of sheet metal forming and crashworthiness of thin-walled structures are carried out. On the basis, the paper presents a6sigma multiobjective robust optimization algorithm based on dual response method. The method proposed not only takes the perturbations of noise factors into account, but also solves the problem of some quality characteristics conflicting with each other. The multiobjective roubst optimization method is applied to the crashworthiness of vehicle structures and sheet metal forming optimization design. The study shows that the method proposed can significantly improve the robustness of the design result.
引文
[1]张晓斌.板料成形过程建模与质量控制技术研究:[南京理工大学博士学位论文].南京:南京大学,2008,90-97
    [2]Makinouchi A. Sheet metal forming simulation in industry. Journal of Materials Processing Technology,1996,60(1-4):19-26
    [3]Panthi S K, Ramakrishnan N, Pathak K K. An analysis of springback in sheet metal bending using finite element method (FEM). Journal of Materials Processing Technology,2007,186(1-3):120-124
    [4]Dong H Z, Lin Z Q. Investigation of sheet metal forming by numerical simulation and experiment. Journal of Materials Processing Technology,2000, 103(3):404-410
    [5]Chen L, Yang J C, Zhang L W, et al. Finite element simulation and model optimization of blankholder gap and shell element type in the stamping of a washing-trough. Journal of Materials Processing Technology,2007,182(1-3): 637-643
    [6]Takuda H, Mori K, Masuda I, et al. Finite element simulation of warm deep drawing of aluminium alloy sheet when accounting for heat conduction. Journal of Materials Processing Technology,2002,120(1-3):412-418
    [7]Liu G, Lin Z Q, Bao Y X, et al. Eliminating springback error in U-shaped part forming by variable blankholder force. Journal of Materials Engineering and Performance,2002,11(1):64-70
    [8]Gomes C, Onipede O, Lovell M. Investigation of springback in high strength anisotropic steels. Journal of Materials Processing Technology,2005, 159(1):91-98
    [9]Ohata T, Nakamura Y, Katayama T, et al. Development of optimum process design system by numerical simulation. Journal of Materials Processing Technology,1996,60(1-4):543-548
    [10]Naceur H, Guo Y Q, Batoz J L. Blank optimization in sheet metal forming using an evolutionary algorithm. Journal of Materials Processing Technology,2004, 151(1-3):183-191
    [11]Naceur H, Guo Y Q, Batoz J L, et al. Optimization of drawbead restraining forces and drawbead design in sheet metal forming process. International Journal of Mechanical Sciences,2001,43(10):2407-2434
    [12]Azaouzi M, Naceur H, Delameziere A, et al. An Heuristic Optimization Algorithm for the blank shape design of high precision metallic parts obtained by a particular stamping process. Finite Elements in Analysis and Design,2008,44(14):842-850
    [13]Kubli W, Reissner J. Optimization of sheet metal forming processes using the special purpose program autoform. Journal of Materials Processing Technology, 1995,50(1-4):292-305
    [14]Dong M, Debray K, Guo Y Q, et al. Design and optimization of addendum surfaces in sheet metal forming process. International Journal for Computational Methods in Engineering Science and Mechanics,2007,8(4):211-222
    [15]Liu G, Lin Z Q, Bao Y X. Optimization design of drawbead in drawing tools of autobody cover panel. Journal of Engineering Materials and Technology-Transactions of the ASME,2002,124(2):278-285
    [16]Park S H, Yoon J W, Yang D Y, et al. Optimum blank design in sheet metal forming by the deformation path iteration method. International Journal of Mechanical Sciences,1999,41(10):1217-1232
    [17]Chengzhi S, Guanlong C, Zhongqin L. Determining the optimum variable blank-holder forces using adaptive response surface methodology (ARSM). International Journal of Advanced Manufacturing Technology,2005,26(1-2): 23-29
    [18]Naceur H, Ben-Elechi S, Batoz J L, et al. Response surface methodology for the rapid design of aluminum sheet metal forming parameters. Materials & Design, 2008,29:781-790
    [19]Kok S, Stander N. Optimization of a sheet metal forming process using successive multipoint approximations. Structural and Multidisciplinary Optimization,1999,18(4):277-295
    [20]Kayabasi O, Ekici B. Automated design methodology for automobile side panel die using an effective optimization approach. Materials & Design,2007,28(10): 2665-2672
    [21]Huang Y, Lo Z Y, Du R. Minimization of the thickness variation in multi-step sheet metal stamping. Journal of Materials Processing Technology,2006, 177(1-3):84-86
    [22]Ohata T, Nakamura Y, Katayama T, et al. Development of optimum process design system for sheet fabrication using response surface method. Journal of Materials Processing Technology,2003,143(Sp):667-672
    [23]Breitkopf P, Naceur H, Rassineux A, et al. Moving least squares response surface approximation:Formulation and metal forming applications. Computers & Structures,2005,83(17-18):1411-1428
    [24]郑刚,李光耀,孙光永,等.基于近似模型的拉延筋几何参数反求.中国机械工程,2006,17(19):1988-1992
    [25]Tang B T, Sun J X, Zhao Z, et al. Optimization of drawbead design in sheet forming using one step finite element method coupled with response surface methodology. International Journal of Advanced Manufacturing Technology, 2006,31(3-4):225-234
    [26]Jansson T, Andersson A, Nilsson L. Optimization of draw-in for an automotive sheet metal part An evaluation using surrogate models and response surfaces. Journal of Materials Processing Technology,2005,159(3):426-434
    [27]Jansson T, Nilsson L. Optimizing sheet metal forming processes- Using a design hierarchy and response surface methodology. Journal of Materials Processing Technology,2006,178(1-3):218-233
    [28]Wei D L, Cui Z S, Chen J. Optimization and tolerance prediction of sheet metal forming process using response surface model. Computational Materials Science, 2008,42(2):228-233
    [29]Wang H, Li G Y, Zhong Z H. Optimization of sheet metal forming processes by adaptive response surface based on intelligent sampling method. Journal of Materials Processing Technology,2008,197(1-3):77-88
    [30]Jakumeit J, Herdy M, Nitsche M. Parameter optimization of the sheet metal forming process using an iterative parallel Kriging algorithm. Structural and Multidisciplinary Optimization,2005,29(6):498-507
    [31]Guo Y Q, Batoz J L, Naceur H, et al. Recent developments on the analysis and optimum design of sheet metal forming parts using a simplified inverse approach. Computers & Structures,2000,78(1-3):133-148
    [32]Liew K M,Tan H, Ray T, et al. Optimal process design of sheet metal forming for minimum springback via an integrated neural network evolutionary algorithm. Structural and Multidisciplinary Optimization,2004,26(3):284-294
    [33]Scott-Murphy A, Kalyanasundaram S, Cardew-Hall M. A hybrid draw die optimization technique for sheet metal forming. Journal of Manufacturing Science and Engineering-Transactions of the ASME,2004,126(3):582-590
    [34]Hino R, Yoshida F, oropov V V. Optimum blank design for sheet metal forming based on the interaction of high-and low-fidelity FE models. Archive of Applied Mechanics,2006,75(10-12):679-691
    [35]Sattari H, Sedaghati R, Ganesan R. Analysis and design optimization of deep drawing process-Part Ⅱ:Optimization. Journal of Materials Processing Technology,2007,184(1-3):84-92
    [36]Liu Q, Liu W J, Ruan F, et al. Parameters' automated optimization in sheet metal forming process. Journal of Materials Processing Technology,2007,187-188: 159-163
    [37]Liu W, Yang Y Y, Xing Z W, et al. Springback control of sheet metal forming based on the response-surface method and multi-objective genetic algorithm. Materials Science and Engineering A,2009,499(1-2):325-328
    [38]Ohata T, Nakamura Y, Katayama T, et al. Development of optimum process design system for sheet fabrication using response surface method. Journal of Materials Processing Technology,2003,143:667-672
    [39]包友霞,徐伟力,刘罡.薄板成形中变压边力优化设计方法.机械工程学报,2001,37(2):105-109
    [40]张峻,柯映林.基于响应面和空间映射技术的模面设计优化.计算机辅助设计与图形学学报,2005,17(3):479-485
    [41]Jansson T, Nilsson L, Redhe M. Using surrogate models and response surfaces in structural optimization- with application to crashworthiness design and sheet metal forming. Structural and Multidisciplinary Optimization,2003,25(2): 129-140
    [42]孙光永,李光耀,龚志辉.基于代理模型的变复杂度方法在板料成形优化中的应用.机械工程学报,2009,45(9):201-209.
    [43]Majeske K D, Hammett P C. Identifying sources of variation in sheet metal stamping. International Journal of Flexible Manufacturing Systems,2003, 15(1):5-18
    [44]Gantar G, Kuzman K. Sensitivity and stability evaluation of the deep drawing process. Journal of Materials Processing Technology,2002,125:302-308
    [45]Karthik V, Comstock R J, Hershberger D L, et al. Variability of sheet formability and formability testing. Journal of Materials Processing Technology,2002,121 (2-3):350-362
    [46]Cao J, Kinsey B L, Yao H, et al. Next generation stamping dies- controllability and flexibility. Robotics and Computer-Integrated Manufacturing,2001 17(1-2):49-56
    [47]Kleiber M, Rojek J, Stocki R. Reliability assessment for sheet metal forming operations. Computer Methods in Applied Mechanics and Engineering,2002, 191(39-40):4511-4532
    [48]Gantar G, Kuzman K. Optimization of stamping processes aiming at maximal process stability. Journal of Materials Processing Technology,2005,167(2-3): 237-243
    [49]Strano M. Optimization under uncertainty of sheet-metal-forming processes by the finite element method. Proceedings of the Institution of Mechanical Engineers Part B,2006,220(8):1305-1315
    [50]Del P A, Primo T, Strano M. The use of FEA packages in the simulation of a drawing operation with springback in the presence of random uncertainty. Finite Elements in Analysis and Design,46(7):527-534
    [51]Zhang W F, Shivpuri R. Probabilistic design of aluminum sheet drawing for reduced risk of wrinkling and fracture. Reliability Engineering & System Safety, 2009,94(2):152-161
    [52]Jansson T, Nilsson L, Moshfegh R. Reliability analysis of a sheet metal forming process using Monte Carlo analysis and metamodels. Journal of Materials Processing Technology,2008,202(1-3):255-268
    [53]Demir I, Kayabasi O, Ekici B. Probabilistic design of sheet-metal die by finite element method. Materials & Design,2008,29(3):721-727
    [54]Xie Y M, Yu H P, Chen J, et al. Application of grey relational analysis in sheet metal forming for multi-response quality characteristics. Journal of Zhejiang University-Science A,2007,8(5):805-811
    [55]Li Y Q, Cui Z S, Ruan X Y, et al. CAE-based six sigma robust optimization for deep-drawing process of sheet metal. International Journal of Advanced Manufacturing Technology,2006,30(7-8):631-637
    [56]Hsu S S, Jones N. Quasi-static and dynamic axial crushing of thin-walled circular stainless steel, mild steel and aluminium alloy tubes. International Journal of Crashworthiness,2004,9(2):195-217
    [57]Guillow S R, Lu G, Grzebieta R H. Quasi-static axial compression of thin-walled circular aluminium tubes. International Journal of Mechanical Sciences,2001, 43(9):2103-2123
    [58]Abramowicz W, Jones N. Dynamic axial crushing of square tubes. International Journal of Impact Engineering,1984,2(2):179-208
    [59]Singace A A. Axial crushing analysis of tubes deforming in the multi-lobe mode. International Journal of Mechanical Sciences,1999,41(7):865-890
    [60]Singace A A, Elsobky H. Further experimental investigation on the eccentricity factor in the progressive crushing of tubes. International Journal of Solids and Structures,1996,33(24):3517-3538
    [61]Singace A A, Elsobky H, Reddy T Y. On the eccentricity factor in the progressive crushing of tubes. International Journal of Solids and Structures,1995,32(24):3589-3602
    [62]Langseth M, Hopperstad O S, Hanssen A G. Crash behaviour of thin-walled aluminium members. Thin-Walled Structures,1998,32(1-3):127-150
    [63]Arnold B, Altenhof W. Experimental observations on the crush characteristics of AA6061 T4 and T6 structural square tubes with and without circular discontinuities. International Journal of Crashworthiness,2004,9(1):73-87
    [64]Tarigopula V, Langseth M, Hopperstad O S, et al. Axial crushing of thin-walled high-strength steel sections. International Journal of Impact Engineering,2006, 32(5):847-882
    [65]Dipaolo B P, Tom J G. Effects of ambient temperature on a quasi-static axial-crush configuration response of thin-wall, steel box components. Thin-Walled Structures,2009,47(8-9):984-997
    [66]DiPaolo B P, Tom J G. A study on an axial crush configuration response of thin-wall, steel box components:The quasi-static experiments. International Journal of Solids and Structures,2006,43(25-26):7752-7775
    [67]Dipaolo B P, Monteiro P J M, Gronsky R. Quasi-static axial crush response of a thin-wall, stainless steel box component. International Journal of Solids and Structures,2004,41 (14):3707-3733
    [68]Abramowicz W, Jones N. Dynamic progressive buckling of circular and square tubes. International Journal of Impact Engineering,1986,4(4):243-270
    [69]White M D, Jones N. Experimental study into the energy absorbing characteristics of top-hat and double-hat sections subjected to dynamic axial crushing. Proceedings of the Institution of Mechanical Engineers Part D-Journal of Automobile Engineering,1999,213(D3):259-278
    [70]Daneshi G H, Hosseinipour S J. Grooves effect on crashworthiness characteristics of thin-walled tubes under axial compression. Materials & Design, 2002,23(7):611-617
    [71]Wierzbicki T, Abramowicz W. On the crushing mechanics of thin-walled strutures. Journal of Applied Mechanics-Transactions of the ASME,1983, 50(4a):727-734
    [72]Wierzbicki T, Recke L, Abramowicz W, et al. Stress profiles in thin-walled prismatic columns subjected to crush loading—I. Compression.Computers & Structures,1994,51(6):611-623
    [73]Wierzbicki T, Recke L, Abramowicz W, et al. Stress profiles in thin-walled prismatic columns subjected to crush. loading-Ⅱ. Bending. Computers & Structures,1994,51(6):625-64l.
    [74]Reid S R, Reddy T Y, Gray M D. Static and dynamic axial crushing of foam-filled sheet-metal tubes. International Journal of Mechanical Sciences, 1986,28(5):295-322
    [75]Hanssen A G, Hopperstad O S, Langseth M. Validation of constitutive models applicable to aluminum foams. International Journal of Mechanical Sciences, 2002,44:359-406
    [76]Hanssen A G, Langseth M, Hopperstad O S. Static and dynamic crushing of square aluminium extrusions with aluminium foam filler. International Journal of Impact Engineering,2000,24(4):347-383
    [77]Hanssen A C, Langseth M, Hopperstad O S. Static and dynamic crushing of circular aluminium extrusions with aluminium foam filler. International Journal of Impact Engineering,2000,24(5):475-507
    [78]Song H W, Fan Z J, Yu G, et al. Partition energy absorption of axially crushed aluminum foam-filled hat sections. International Journal of Solids and Structures,2005,42(9-10):2575-2600
    [79]Wang Q C, Fan Z J, Gui L J. A theoretical analysis for the dynamic axial crushing behaviour of aluminium foam-filled hat sections. International Journal of Solids and Structures,2006,43(7-8):2064-2075
    [80]Han J, Yamazaki K. Crashworthiness optimization of S-shape square tubes. International Journal of Vehicle Design,2003,31(1):72-85
    [81]Yamazaki K, Han J. Maximization of the crushing energy absorption of tubes. Structural and Mulitidisplinary Optimization,1998,16(1):37-46
    [82]Yamazaki K, Han J. Maximization of the crushing energy absorption of cylindrical shells. Advances in Engineering Software,2000,31(6):425-432
    [83]Marklund P O, Nilsson L. Optimization of a car body component subjected to side impact. Structural and Multidisciplinary Optimization,2001,21(5): 383-392
    [84]Mamalis A G, Manolakos M B, Ioannidis P K, et al. Finite element simulation of the axial collapse of thin-wall square frusta. International Journal of Crashworthiness,2001,6(2):155-164
    [85]Cho Y B, Bae C H, Suh M W, et al. A vehicle front frame crash design optimization using hole-type and dent-type crush initiator. Thin-Walled Structures,2006,44(4):415-428
    [86]Qi W G, Jin X L, Zhang X Y. Improvement of energy-absorbing structures of a commercial vehicle for crashworthiness using finite element Method. International Journal of Advanced Manufacturing Technology,2006,30 (11-12):1001-1009
    [87]Teng T L, Chang K C, Wu C H. Development and validation of side-impact crash and sled testing finite-element models, Vehicle System Dynamics,2007,45(10): 925-937
    [88]Zhang Y, Lai X M, Zhu P, et al. Lightweight design of automobile component using high strength steel based on dent resistance. Materials & Design,2006,27(1):64-68
    [89]Qiao J S, Chen J H, Che H Y. Crashworthiness assessment of square aluminum extrusions considering the damage evolution. Thin-Walled Structures,2006,44 (6):692-700
    [90]钟志华,张维刚,曹立波,等.汽车碰撞安全技术.北京:机械工业出版社,2002
    [91]贾宏波,黄金陵,李掌宇,等.车身碰撞仿真技术在红旗轿车车身开发中的应用.汽车工程,1998,20(5):257-261
    [92]裘新,黄存军,张金焕,等.汽车正撞的数值模拟及实验验证.清华大学学报(自然科学版),1999,39(2):102-105
    [93]朱平,张宇,葛龙,等.基于正面耐撞性仿真的轿车车身材料轻量化研究.机械工程学报,2005,41(9):207-211
    [94]Kurtaran H, Eskandarian A, Marzougui D, et al. Crashworthiness design optimization using successive response surface approximations. Computational Mechanics,2002,29(4-5):409-421
    [95]Forsberg J, Nilsson L. On polynomial response surfaces and Kriging for use in structural optimization of crashworthiness. Structural and Multidisciplinary Optimization,2005,29(3):232-243
    [96]Lanzi L, Bisagni C, Ricci S. Neural network systems to reproduce crash behavior of structural components. Computers & Structures,2004,82(1):93-108
    [97]Liu Y C. Design optimisation of tapered thin-walled square tubes. International Journal of Crashworthiness,2008,13(5):543-550
    [98]Liu Y C. Optimum design of straight thin-walled box section beams for crashworthiness analysis. Finite Elements in Analysis and Design,2008,44(3): 139-147
    [99]Liu Y C. Crashworthiness design of multi-corner thin-walled columns. Thin-Walled Structures,2008,46(12):1329-1337
    [100]Liu Y C, Day M L. Bending collapse of thin-walled circular tubes and computational application. Thin-Walled Structures,2008,46(4):442-450
    [101]Hou S J, Li Q, Long S Y, et al. Design optimization of regular hexagonal thin-walled columns with crashworthiness criteria. Finite Elements in Analysis and Design,2007,43(6-7):555-565
    [102]Hou S J, Li Q, Long S Y, et al. Multiobjective optimization of multi-cell sections for the crashworthiness design. International Journal of Impact Engineering, 2008,35(11):1355-1367
    [103]Craig K J, Stander N, Dooge D A, et al. Automotive crashworthiness design using response surface-based variable screening and optimization. Engineering Computations,2005,22(1-2):38-61
    [104]Zhang Y, Zhu P, Chen G L, et al. Study on structural lightweight design of automotive front side rail based on response surface method. Journal of Mechanical Design,2007,129(5):553-557
    [105]Fang H, Rais-Rohani M, Liu Z, et al. A comparative study of metamodeling methods for multiobjective crashworthiness optimization. Computers & Structures,2005,83(25-26):2121-2136
    [106]Liao X T, Li Q, Yang X J, et al. Multiobjective optimization for crash safety design of vehicles using stepwise regression model. Structural and Multidisciplinary Optimization,2008,35(6):561-569
    [107]Xiang Y J, Wang Q, Fan Z J, et al. Optimal crashworthiness design of a spot-welded thin-walled hat section. Finite Elements in Analysis and Design,2006,42(10):846-855
    [108]Redhe M,Nilsson L. Optimization of the new Saab 9-3 exposed to impact load using a space mapping technique. Structural and Multidisciplinary Optimization,2004,27(5):411-420
    [109]Redhe M,Nilsson L. A multipoint version of space mapping optimization applied to vehicle crashworthiness design. Structural and Multidisciplinary Optimization,2006,31(2):134-146
    [110]Sun G Y, Li G Y, Hou S J, et al. A two-stage multi-fidelity optimization procedure for honeycomb-type cellular materials. Computational Materials Science,2010,49:500-511
    [111]孙光永,李光耀,王建华,等.可靠性优化设计在汽车构件耐撞性中的应用.计算机辅助设计与图形学学报,2007,19(10):308-1314
    [112]孙光永,李光耀,张勇,等.基于鲁棒性的概率优化设计在薄壁构件耐撞性中的应用.中国机械工程,2007,18(4):479-483
    [113]Gu L, Yang R J, Tho C H, et al. Optimization and robustness for crashworthiness of side impact. International Journal of Vehicle Design,2001,26(4):348-360
    [114]Koch P N, Yang R J, Gu L. Design for six sigma through robust optimization. Structural and Multidisciplinary Optimization,2004,26(3-4): 235-248
    [115]Yang R J, Akkerman A, Anderson D F, et al. Robustness optimization for vehicular crash simulations. Computing in Science & Engineering,2000,2(6): 8-13
    [116]Youn B.D, Choi K K, Yang R J, et al. Reliability-based design optimization for crashworthiness of vehicle side impact. Structural and Multidisciplinary Optimization,2004,26(3-4):272-283
    [117]Youn B D, Choi K K. A new response surface methodology for reliability-based design optimization. Computers & Structures,2004,82(2-3):241-256
    [118]庄茁.连续体和结构体的非线性有限元.北京:清华大学出版社,2002,64-108
    [119]LS-DYNS Theoretical Manual, V.970, Editor.2003, Livermore Software Technology Corporation
    [120]Hardy R L. Multiquadric equations of topography and other irregular surfaces. Journal of Geophysical Research,1971,76(8):1905-1915
    [121]Wang J G, Liu G R. On the optimal shape parameters of radial basis functions used for 2-D meshless methods. Computer Methods in Applied Mechanics and Engineering,2002,191 (23-24):2611-2630
    [122]Sasena M J. Flexibility and Efficiency Enhancements for Constrained Global Design Optimization with Kriging Approximation:[dissertation]. Michigan: University of Michigan,2002
    [123]Hickernell F J. A generalized discrepancy and quadrature error bound. Mathematics of Computation,1998,67(221):299-322
    [124]Shi Y, Eberhart R C.A modified particle swarm optimization. In Proceedings of IEEE International Conference on Evolutionary Computation. Anchorage,1998
    [125]Clerc M,Kennedy J. The particle swarm:explosion, stability, and convergence in multimodal complex space. In:Proceedings of the Congress of Evolutionary Computation. Washington,2002
    [126]Coello C A C, Pulido G T, Lechuga M S. Handling multiple objectives with particle swarm optimization. IEEE Transactions on Evolutionary Computation, 2004,8(3):256-279
    [127]Huang V L, Suganthan P N, Liang J J. Comprehensive learning particle swarm optimizer for solving multiobjective optimization problems. International Journal of Intelligent Systems,2006,21(2):209-226
    [128]雷德明,吴智铭.Pareto档案多目标粒子群优化.模式识别与人工智能,2006,19(4):475-480
    [129]Raquel C, Naval P. An effective use of crowding distance in multiobjective particle swarm optimization. In:Proceedings of the 2005 conference on Genetic and evolutionary computation, Washington DC,2005
    [130]孙光永,李光耀,张勇,等.基于有限元的板料拉延成形质量评价准则及工艺参数优化研究.固体力学学报,2009,30(1):70-78
    [131]Naceur H, Delamezierec A, Batoz J, et al. Some improvements on the optimum process design in deep drawing using the inverse approach. Journal of Materials Processing Technology,2004,146(2):250-262
    [132]Barlet O. Optimum design of blank contours using the inverse approach and a mathematical programming technique. In:Proceedings of the Third International Conference,NUMISHEET 96. Michigan,1996
    [133]Yasunori N, Tomiso O, Eiji N. Study of optimum drawbead design in sheet forming.In:Proceedings of NUMISHEET. Jeju Island,2002
    [134]Nakamura Y, Ohata T, Katayama T. Optimum die design for sheet metal forming process by using finite element and discretized optimization method. In Proceedings of the Numiform 98. Netherlands,1998
    [135]潘江峰,钟约先,袁朝龙.板料拉深成形工艺参数的多目标遗传算法传化.清华大学学报(自然科学版),2007,47(8):1267-1269
    [136]Shi X X, Chen J, Peng Y H, et al. A new approach of die shape optimization for sheet metal forming processes. Journal of Materials Processing Technology, 2004,152(1):35-42
    [137]Levy B S. Development of a Predictive Model for Draw Bead Restrainning Force Utilizing Work of Nine and Wang. Journal Of Applied Metal Working,1983,3(1):38-44
    [138]Wang N M. A Mathematical Model of Drawbead Forces in Sheet Metal Forming. Journal Of Applied Metal Working,1982,2(3):193-199
    [139]Stoughton T B. Model of drawbead forces in sheet metal forming. In: Proceedings of the 15th biennial IDDRG congress. Dearborn,1998
    [140]Gameiro C P, Cirne J. Dynamic axial crushing of short to long circular aluminium tubes with agglomerate cork filler. International Journal of Mechanical Sciences,2007,49(9):1029-1037
    [141]Wierzbicki T. Abramowicz W. On the crushing mechanics of thin-walled structures. Journal of Applied Mechanics-Transactions of the ASME, 1983,50(4A):727-734
    [142]Seitzberger M, Rammerstorfer F G, Degischer H P, et al. Crushing of axially compressed steel tubes filled with aluminium foam. Acta Mechanica, 1997,125(1-4):93-105
    [143]Reyes A, Hopperstad S, Hanssen A G, et al. Modeling of material failure in foam-based components. International Journal of Impact Engineering, 2004,30(7):805-834
    [144]Ahmad Z, Thambiratnam D P. Dynamic computer simulation and energy absorption of foam-filled conical tubes under axial impact loading. Computers & Structures,2009,87(3-4):186-197
    [145]Hou S J, Li Q, Long S Y, et al. Crashworthiness design for foam filled thin-wall structures. Materials & Design,2009,30(6):2024-2032
    [146]Zarei H R, Kroger M. Optimization of the foam-filled aluminum tubes for crush box application. Thin-Walled Structures,2008,46(2):214-221
    [147]Nariman-Zadeh N, Darvizeh A, Jamali A. Pareto optimization of energy absorption of square aluminium columns using multi-objective genetic algorithms. Proceedings of the Institution of Mechanical Engineers Part B-Journal of Engineering Manufacture,2006,220(2):213-224
    [148]Svensson N, Gilchrist M D. Mixed-mode delamination of multidirectional carbon fiber/epoxy laminates. Mechanics of Composite Materials and Structures,1998,5(3):291-307
    [149]Gantar G, Kuzman K, Makarovic M. An industrial example of FE supported development of a new product. Journal of Materials Processing Technology, 2004,150(1-2):163-169
    [150]Gantar G, Pepelnjak T, Kuzman K. Optimization of sheet metal forming processes by the use of numerical simulations. Journal of Materials Processing Technology,2002,130-131(20):54-59
    [151]Cui L, Kiernan S, Gilchrist M D. Designing the energy absorption capacity of functionally graded foam materials. Materials Science and Engineering A,2009,507(1-2):215-225
    [152]Kiernan S, Cui L, Gilchrist M D. Propagation of a stress wave through a virtual functionally graded foam. International Journal of Non-Linear Mechanics, 2009,44(5):456-468
    [153]Brothers A H, Dunand D C. Mechanical properties of a density-graded replicated aluminum foam. Materials Science and Engineering A,2008,489(1-2):439-443
    [154]Kieback B, Neubrand A, Riedel H. Processing techniques for functionally graded materials. Materials Science and Engineering A,2003,362(1-2):81-105
    [155]Matsumoto Y, Brothers A H, Stock S R, et al. Uniform and graded chemical milling of aluminum foams. Materials Science and Engineering A, 2007,447(1-2):150-157
    [156]Deshpande V S, Fleck N A. Isotropic constitutive models for metallic foams. Journal of the Mechanics and Physics of Solids,2000,48(6-7): 1253-1283
    [157]Reyes A, Hopperstad O S, Berstad T, et al. Constitutive modeling of aluminum foam including fracture and statistical variation of density. European Journal of Mechanics A-Solids,2003,22(6):815-835
    [158]Zhang X, Cheng G D. A comparative study of energy absorption characteristics of foam-filled and multi-cell square columns. International Journal of Impact Engineering,2007,34(11):1739-1752
    [159]Aktay L, Kroplin B H, Toksoy A K, et al. Finite element and coupled finite element/smooth particle hydrodynamics modeling of the quasi-static crushing of empty and foam-filled single,bitubular and constraint hexagonal-and square-packed aluminum tubes. Materials & Design,2008,29(5):952-962
    [160]郑刚,李光耀,孙光永,等.基于近似模型的拉延筋几何参数反求.中国机械工程,2006,17(19):1988-1992
    [161]张维刚,钟志华.汽车正撞吸能部件改进的计算机仿真.汽车工程,2002,24(1):6-9
    [162]Wu E, Jiang W S. Axial crush of metallic honeycombs. International Journal of Impact Engineering,1997,19(5-6):439-456
    [163]Paik J K, Thayamballi A K, Kim G S. The strength characteristics of aluminum honeycomb sandwich panels. Thin-Walled Structures,1999,35(3):205-231
    [164]Goldsmith W, Sackman J L. An experimental-study of energy-absorption in impact on sandwich plates. International Journal of Impact Engineering, 1992,12(2):241-262
    [165]Zarei H, Kroger M. Optimum honeycomb filled crash absorber design. Materials & Design,2008,29:193-204
    [166]Meo M, Morris A J, Vignjevic R, et al. Numerical simulations of low-velocity impact on an aircraft sandwich panel. Composite Structures,2003,62(3-4): 353-360
    [167]Karagiozova D, Nurick G N, Langdon G S. Behaviour of sandwich panels subject to intense air blasts- Part 2:Numerical simulation. Composite Structures,2009,91(4):442-450
    [168]Yamashita M, Gotoh M. Impact behavior of honeycomb structures with various cell specifications- numerical simulation and experiment. International Journal of Impact Engineering,2005,32(1-4):618-630
    [169]Yasuki T, Kojima S. Application of aluminium honeycomb model using shell elements to offset deformable barrier model. International Journal of Crashworthiness,2009,14(5):449-456
    [170]Aktay L, Johnson A F, Kroplin B H. Numerical modelling of honeycomb core crush behaviour. Engineering Fracture Mechanics,2008,75(9):2616-2630
    [171]Heimbs S. Virtual testing of sandwich core structures using dynamic finite element simulations. Computational Materials Science,2009,45(2):205-216
    [172]Vining G G, Myers R H. Combining taguchi and response surface philosophies-a dual response approach. Journal of Quality Technology,1990,22(1):38-45
    [173]Lin D K J, Tu W Z. Dual response surface optimization. Journal of Quality Technology,1995,27(1):34-39
    [174]Copeland K A F, Nelson P R. Dual response optimization via direct function minimization. Journal of Quality Technology,1996,28(3):331-336
    [175]林忠钦,刘罡,李淑慧,等.应用正交试验设计提高U形件的成形精度.机械工程学报,2002,38(3):83-89
    [176]汪忠来.基于模型的不确定性优化设计方法研究:[电子科技大学博十学位论文].成都:电子科技大学,2009,12-26

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700