用户名: 密码: 验证码:
N80-1非调质无缝油井管工艺控制技术的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
N80-1非调质无缝油井管具有成本低、节约生产资源、减少生产周期和环境污染等诸多优点,但性能控制一直不太稳定,尤其是冲击韧性时常偏低,严重影响了该产品的成材率和使用安全性。归根究底,还是缺乏有效的工艺控制技术及相关理论研究。然而,N80-1非调质无缝油井管的工艺控制极为独特,传统的工艺控制技术及研究方法均不太适用。本文紧密结合N80-1无缝油井管的工艺控制特点及实际参数,采用工业生产的36Mn2V和40Mn2V钢,在试验研究的基础上,对N80-1无缝油井管的新型工艺控制技术及相关理论进行了探索和研究,并在工业实践中进行了验证。主要研究工作如下:
     通过现场采集、测量和计算,确定了N80-1无缝油井管连轧和定径温度的可控范围及80个常用规格对应的不可控参数,连轧和定径的变形量、变形速率和钢管空冷速度,建立空冷速度与规格尺寸之间的数学关系式,平均准确度R为96.70%。为工艺控制技术研究提供了可靠的参数。
     通过连轧和定径的热模拟试验、奥氏体晶粒观察及微合金碳氮化物的析出分析,系统研究了变形参数对变形抗力、动态再结晶行为、晶粒细化的影响及相关理论。建立36Mn2V和40Mn2V钢变形抗力数学关系式(拟合度分别为96.96%和97.33%),计算出连轧和定径的变形抗力范围。求出两个钢种的动态再结晶激活能分别为361.96KJ/mol和381.66KJ/mol(比普通碳锰钢分别高出52.35KJ/mol和72.05KJ/mol),作出两个钢种的综合动态再结晶图。综合得出两个钢种的连轧再结晶细化晶粒控制温度均≥1050℃,最佳温度为1050℃(平均晶粒尺寸可达十几个μm)。其中,Ti和V的碳氮化物析出,尤其是V(N、C)的析出,显著地推迟了动态再结晶行为,并细化了奥氏体晶粒。
     通过连轧+再加热+定径+冷却的综合热模拟实验、性能测试、金相及透射电镜观察,系统分析了钢种和工艺参数对性能、组织及析出物的影响,并对试验钢的性能变化、组织转变规律、微合金碳氮化物析出特点及相关理论依据进行了探讨。得出了36Mn2V和40Mn2V钢性能与工艺参数之间的定量关系,建立了两个钢种屈服和抗拉强度的数学关系式(计算结果与测试值偏差约±10MPa)。钢种和工艺参数对组织及V的碳氮化物析出的影响与其对性能的影响相吻合。其中,定径温度和冷却速度是影响组织和性能的关键参数,强度均随温度的升高和冷却速度的增大而递增,冲击韧性随温度的升高而递减,但随冷却速度的增大先缓慢升高,达到峰值后迅速降低,其峰值对应的临界冷却速度随温度的升高而递减。贝氏体转变是组织转变的鲜明特点,还是导致韧性显著降低的主要因素。温度越高,越容易产生贝氏体组织,当冷却速度超过某一临界值时,则发生贝氏体转变,恰好与韧性峰值对应的临界冷却速度一致。主要析出物V(N、C)和VC分别在定径和冷却过程中析出,温度是关键影响因素,温度越高,V(N、C)越少,VC越多。其中,VC析出数量最多(占75%以上),尺寸最小(5~20nm),分布最均匀。与36Mn2V钢相比,40Mn2V钢铁素体含量更少,珠光体含量更多,更容易发生贝氏体转变,且V的碳氮化物析出更多,其屈服和抗拉强度平均高出91.1MPa和157MPa,冲击韧性平均低21.5J。
     结合工艺参数、组织、析出物及性能,对N80-1非调质无缝油井管的强韧化基本原理及机制进行了探讨,其强韧化效果为V的碳氮化物析出和组织的叠加及相互作用。VC和V(N、C)沉淀强化为关键强化机制,其中,VC强化作用最显著。组织对强韧化的作用是矛盾对立的,却是韧化的主要因素。铁素体及晶内铁素体是关键的韧化机制;珠光体和贝氏体强化作用显著,但不利于韧化,尤其是贝氏体组织脆化显著。要想获得良好的综合性能,主要靠细小的F+P组织及大量的VC的强韧化作用。
     根据上述研究结果,结合工艺控制特点及实际参数,对工艺控制技术进行了探索和研究。性能的关键影响因素中,钢种可合理选择,温度可有效控制,冷却速度可根据规格合理搭配,与N80-1无缝油井管的工艺控制特点相吻合。韧性是此类钢的薄弱环节,需优先考虑,以临界冷却速度为重要的依据。36Mn2V和40Mn2V钢的适用规格范围恰好覆盖了80个研究规格。针对不同规格,确定了选用的合适钢种,及连轧、定径合理控制温度范围和最佳控制温度,形成了一套完善的新型工艺控制技术。所有规格的屈服强度试验值稳定在600~700MPa之间,冲击韧性试验值远大于37J,完全满足控制目标要求。
     将整套研究软件化,采用VC++6.0软件,开发了一个可查询不同规格的基本参数、应选用的钢种及工艺控制参数,预报变形抗力和性能等信息的数据库软件。通过工业实践应用,验证了此套技术的可行性和准确性,实际屈服强度和冲击韧性与研究值的平均偏差约±20MPa和-8~+6J。产品的屈服强度和冲击韧性基本稳定在615~675MPa之间和45J以上,完全满足API5CT验收要求,且大大提高了一次性成材率。
N80-1non-quenched and no-tempered seamless OCTG have many advantages such as lowcost, saving production resources, reducing production cycle and environmental pollution, butthe properties were always quite inconsistent, especially the impact toughness often tended to beon the low side, which affected the yield rate of the product and the safety of the applicationconsiderably. All in all, it was due to lack of effective process control technology and relatedtheoretical research. However, neither the conventional process control technology nor theresearch method was applicable since the process control of N80-1non-quenched andno-tempered seamless OCTG is very unique. In this paper, a new process control technology andrelated theories for N80-1seamless OCTG were studied based on tests using industrial steels36Mn2V and40Mn2V in combination with the process control features and actual parametersfor N80-1seamless OCTG, and verified in industrial practice. The main research and resultswere as follows:
     The controllable range for continuous rolling and sizing temperature for N80-1seamlessOCTG, the non-controllable parameters, such as the deformation degree, deformation speed ofcontinuous rolling and sizing and the air cooling rate of pipes corresponding to80regular sizeswere determined by collecting, measuring and calculating on the spot. The mathematicalrelationship between the air cooling rate and pipe sizes has been established with averageaccuracy rate at about96.70%, which provided the research of process control technology withreliable parameters.
     Influence of deformation parameters on deformation resistances, dynamicalre-crystallization behaviors, grain refinement, and related theoretical basis were researchedsystematically by hot simulation tests of continual rolling and sizing processes, observation ofaustenitic grain and analysis of microalloyed carbonitride precipitation. By setting up thedeformation resistance mathematical relationship (with fitting degree of about96.96%and97.33%) for the tested36Mn2V and40Mn2V steels respectively, the deformation resistancerange for continuous rolling and sizing has been worked out. By finding out dynamicre-crystallization activation energies for the two steels at about361.96KJ/mol and381.66KJ/mol which are52.35KJ/mol and72.05KJ/mol higher than plain C-Mn steels, comprehensivedynamic re-crystallization charts have been made for the two steel grades. A comprehensiveconclusion was drawn that the controlled temperature of continuous rolling for dynamicre-crystallization of fine grains shall be higher than or equal to1050℃, with the optimumtemperature at1050℃(under which the average grain size can reach about tens of micrometers).The precipitation of the carbonitride of Ti and V especially the V (N, C),evidently delayed thedynamic re-crystallization behaviors and refined the austenitic grain size.
     Influence of steel grades and process parameters on properties, microstructures andprecipitations were analyzed systematically, and the law (behaviour) of property change andmicrostructure transition, the precipitating characters of microalloyed carbonitride of the tested steels and related theoretical basis were explored, through comprehensive hot simulation tests ofcontinuous rolling+reheating+sizing+cooling process, property test, microscope and TEMobservation. The quantitative relationship between the properties of36Mn2V and40Mn2V steelsand process parameters has been extrapolated, and the mathematical relationship between theyield strength and the tensile strength of the two steels has been established with deviation ofabout±10MPa between the calculated and test values. The influence of steel grades, processparameters on the microstructure and the carbonitride precipation of V coincided with that on theproperties. In which, the sizing temperature and cooling rate were the key parameters influencingthe microstructure and the properties, the strength value increased with the increasing oftemperature and cooling rate, and impact toughness value decreased with the increasing oftemperature, it first raised slowly with the increasing of cooling rate, but quickly decreased afterreaching a peak value (the corresponding critical cooling rate decreased as the temperaturedecreased). For the microstructure, bainite transformation was the bright feature, and it was themain factor that led to the remarkable drop of toughness value. The higher the temperature, themore easily bainitic structure occurred, when the cooling rate exceeded some criticalvalue(consistent with the critical cooling rate of impact toughness peak), the transformation ofbainite occurred. Main precipitations of V (N, C) and VC precipitated during the sizing processand the cooling process respectively, the temperature was the key impact factor, the higher thetemperature, the less V(N,C), the more VC. In which, VC was the main precipitation matter(accounting for more than75%) with the smallest size (5~20nm) and most uniformly distributed.Compared with steel36Mn2V, steel40Mn2V contained more pearlite and carbonitride of V butless ferrite, and the transformation of bainite occurred more easily, while the yield strength,tensile strength values were91.1MPa and157MPa higher on average, and the impact toughnessvalues were21.5J lower on an average.
     Basic principle and mechanism of strengthening and toughening for N80-1non-quenchedand no-tempered seamless OCTG were discussed and researched, combining with processparameters, microstructures, precipitations and properties. Strengthening and toughening effectswere caused by the superimposition of microstructure and precipitation of V carbonitride andtheir interaction. In which, VC and V (N, C) precipitation strengthening effects were the keystrengthening mechanism with VC strengthening effect the most remarkable. Microstructure wasthe main factor for toughening effect, but contradictory between strengthening and tougheningeffect. Ferrite and intragranular-ferrite were the key toughening mechanism; the strengtheningeffect of pearlite and bainite was notable, but disadvantageous to toughening especially thebainite, which embrittles remarkably. To acquire good comprehensive properties, fine F+Pmicrostructure and a mass of VC precipitations should be gained for strengthening andtoughening effects.
     The process control technology were explored and researched, based on the results aboveand in combination with the process control features and actual parameters. In the main propertyinfluencing factors, steel grades could be chosen rationally, temperature could be controlledeffectively, and cooling rate could be adapted to pipe sizes properly in a manner to, perfectly suitthe process control features of N80-1non-quenched and no-tempered seamless OCTG. Among them, toughness is the weakest link for steels of the type, which should be considered as toppriority, using the critical cooling rate as the important basis. As all the80researched pipe sizeswere completely covered by the applicable size ranges of steels36Mn2V and40Mn2V, theappropriate steel grades for selection, the rational control temperature range and optimal value ofcontinuous rolling and sizing were determined for each pipe size, and a suit of new processcontrol technology was established. The yield strength test values for all the sizes remainedstable at the range of600~700MPa and the impact toughness test values were far more than37J,completely satisfying the target control requirements.
     Based on the research results of process control technology, a database software has beendesigned using software VC++6.0, that can be utilized to access the basic parameters of differentsizes, the selected steel grades and process control parameters, to forecast deformation resistance,properties and other information. By industrial application, the new process controllingtechnology has been proved to be feasible and accuracy, the actual yield strength values werestable at the range of615~675MPa and actual impact values were more than45J with averagedeviation about±20MPa and-8~+6J respectively compared with research values, whichcompletely satisfied the acceptance requirements of API5CT and greatly improved the one-timeproduction yield rate.
引文
[1] Fang J, Li Y H, Xie K Y, et al.Influence of Hot Deformation on Micostructure ofNon-Quenching and Non-Tempering Pipe36Mn2V Used in Oil Well[A].ICPNS2010[C],China,2010:314
    [2] Jian F, Yanghua L, Kaiyi X, et al.Study on the Influence of Cooling Rate on the Propertyof Non-quenching and Non-tempering Steel OCTG[J].Applied Mechanics and Materials,2011,7(71-78):837-841
    [3] Jian F, Yanghua L, Kaiyi X, et al.Influence of Hot Deformation on Microstructure ofNon-Quenching and Non-Tempering Pipe36Mn2V Used in Oil Well[J].Journal ofMaterials Science Forum,2011,12(704-705):504-509
    [4]方剑,李阳华,谢凯意,等.P110钢级套管探伤合格率偏低原因分析[J].金属热处理,2011,36(s1):154-156
    [5] Pan T, Yang C F M.Chemistry and Process Optimization of V-Microalloyed N80-ClassSeamless Casing Tube[J].Journal of Iron and Steel Research (International),2010,17(03):72-78
    [6] Yan T J, Wang K H.Effect of Produced Fluid on the Wear Behavior of Grade D SuckerRod and N80Type Tubing[J].Petroleum Science,2005,22(2):116-118
    [7]周勇.微合金非调质钢N80油井管研制[J].轧钢,2007,24(3):25-29
    [8]刘胜新,刘国权,钟云龙,等.N80级非调质热轧油井管用钢33Mn2V的相变特性及其应用[J].钢铁,2003,38(1):38-42
    [9]李鹤林,田伟,邝献任.油井管供需形势分析与对策[J].钢管,2010,39(1):1-7
    [10]李鹤林,韩礼红,张文利.高性能油井管的需求与发展[J].钢管,2009,38(1):1-9
    [11]李鹤林,吉玲康,谢丽华.中国石油钢管的发展现状分析[J].河北科技大学学报,2006,27(1):1-5
    [12]李鹤林,韩礼红.刍议我国油井管产业的发展方向[J].焊管,2009,32(4):5-10
    [13]李鹤林.油气输送管的发展动向与展望[J].焊管,2004,27(6):1-11
    [14] Liu S, Liu G, Zhong Y, et a1.Transformation Characteristics of Medium Carbon V-Ti-NMicroalloyed Steel for non-Quenched and Tempered Oil Well Tubes[J].Materials Scienceand Technology,2004,20(3):357-362
    [15] Han Z T, Zhang N J, Gao D.Research into Grinding Hardening of MicroalloyedNon-quenched and Tempered Steel[J]. Journal of China University of Mining&Technology,2007,17(2):238-241
    [16] Liu, Z L, Lin C, Liu Y, et al.Calculation of the Yield and Tensile Strength in the AlloyingNon-quenched and Tempered Steel by the Electron Structure Parameters[J].Progress inNatural Science,2005,15(9):832-837
    [17] Liu, Z L, Lin C. Theoretical Calculation of the Finishing Rolling Elongation inNon-quenched and Tempered Si-Mn Steel[J].Progress in Natural Science,2006,6(1):78-83
    [18]邹喜洋.N80-1套管失效分析[J].轧钢,2007,24(4):19-22
    [19]李平全,史交齐,赵国.油套管的服役条件及产品研制开发现状(下)[J].钢管,2008,7(5):11-14
    [20]李平全,史交齐,赵国仙.油套管的服役条件及产品研制开发现状(上)[J].钢管,2008,37(4):6-12
    [21]谌智勇,辛广胜,成永久.非调质N80级油井管的发展[J].包钢科技,2009,35(6):9-11
    [22] Liu Z, Liu Y Z, Zhang Y S.Feasibility Experimental Study of New Process of ProductingNon-quenching and Tempering N80Grad Oil Casings[J].Hot Working Technology2006,35(10):43-46
    [23] API5CT-2005Specification for Casing and Tubing[S].American Petroleum Institute press,2005,7:80-87
    [24]邱朋军.非调质钢锻件控锻-控冷技术研究[D].北京科技大学硕士学位论文,2009
    [25] Ali R K, Mohammad J, Steve Y.Impact Toughness and Tensile Properties Improvementthtough Microstucture Control in Hot Forged Nb-V Microalloyed Steel[J].ISIJ,2005,45(2):272-280
    [26] Wu D, Li Z,LU H S.Effect of Controlled Cooling After Hot Rolling on MechanicalProperties of Hot Rolled TRIP Steel[J].Iron&Steel Res., Int.,2008,15(2):65-70
    [27] Qi S Z, Zhang P J, Du L X, et al.Controlled Rolling and Controlled Cooling Technology ofUltra-High Strength Steel with700MPa Grade[J].J. Iron&Steel Res., Int.,2004,11(3):27-32
    [28]方剑,李阳华,邹喜洋等.N80级非调质油井用钢36-40Mn2V连轧和定径工艺对组织和性能的影响[J].特殊钢,2012,33(3):53-56
    [29]李国祯.现代钢管轧制与工具设计原理[M].北京:冶金工业出版社,2006
    [30]双远华.现代无缝钢管生产技术[M].北京:化学工业出版社,2008
    [31]严泽生.现代热连轧无缝钢管生产[M].北京:冶金工业出版社,2009
    [32] Wang F Z.Equivalent Stress Analysis of Processing Tube Tension-Reducing of The NewSteel33Mn2V for Oil Well Tubes[J]. Journal of Mechanical Engineering,2008,54(3):219-224
    [33] Pussegoda L N, Yue S, Jonas J J.Effect of Intermediate Cooling on Grain Refinement andPrecipitation During Rolling of Seamless Tubes[J].Materials Science and Technology,1991,7(2):129-136
    [34] Anelli E, Cumino G, Gonalez C.Metallurgical Design of Accelerated-Cooling Process forSeamless Pipe Production[A].In: Proceedings from Materials Solutions'97on AcceleratedCooling/Diirect Quenching Steels[C], Indiana,1997:15-18
    [35]刘雅政,刘照,徐进桥,等.非调质N80石油套管轧制工艺优化的实验研究[J].钢铁,2006,41(7):41-44
    [36]薛东妹,潘涛,赵苏娟,等.钒微合金化N80级无缝管成分和工艺优化的模拟研究[J].钢铁钒钛,2009,30(3):26-32
    [37]王安东,刘国权,刘胜新,等.V-Ti-N微合金非调质无缝油井管钢中碳氮化物的热力学计算[J].北京科技大学学报,2006,28(9):823-829
    [38]季怀忠,杨才福,张永权.氮在非调质钢中的作用[J].钢铁,2000,35(7):66-71
    [39] Li S Z, Xu J, Yin Y D, et al.Simulation of Center Crack Occurrence in Tube Rounds DuringTwo-roll Rotary Rolling Process[J].Acta Metallurgica Sinica,2007,20(3):225-234
    [40]穆动.衡阳钢管长Ф89mm半浮芯棒连轧管机组工艺及设备结构特点[J].特殊钢,1997,18(4):21-25
    [41]吕立华,马靳江,袁泉.钢管微张力定减径过程有限元模拟与分析[J].钢铁钒钛,2005,26(4):47-51
    [42] Pussegoda L N, Yue S, Jonas J J.Laboratory Simulation of Seamless Tube Piercing andRolling Using Dynamic Recrystallization Schedules[J].Metallurgical Transactions,1990,21A(1):153-164
    [43] Qu J B, Sha Y h, Zhao M C, et al.Effect of Hot Deformation and Accelerated Cooling onMicrostructural Evolution of Low Carbon Microalloyed Steels[J].Materials Science andTechnology,2002,18(2):l45-49
    [44] Sun W P,Hawboh E B.Comparison Between Static and Dynamic Recrystallization AnApplication to the Hot Rolling of Steels[J].ISIJ International,1997,37(10):1000-1009
    [45] Bahman M, Mohammad T S, Shahin K, et al.Investigation of Dynamic and StaticRecrystallization Behavior During Thermomechanica1Processing in a API-X70Microalloyed Steel.ASM International,2009, l8(8):1029-1034
    [46]李平全,王世宏.油井管国产化的现状及其进一步国产化的建议[J].钢管,2000,29(1):44-47
    [47]李鹤林,吉玲康,谢丽华.中国石油钢管的发展前景展望[J].河北科技大学学报,2006,27(2):97-102
    [48]董成瑞,任海鹏,金同哲,等.微合金非调质钢[M].北京:冶金工业出版社,2000
    [49]殷光虹.钢管在线加速冷却技术开发[J].宝钢技术,2006(3):1-4
    [50]余伟,陈银莉,蔡庆伍,等.N80级石油套管在线常化工艺的优化[J].钢铁,2002,37(5):46-49
    [51]余伟,陈银莉,陈雨来,等.N80级石油套管在线形变热处理工艺[J].北京科技大学学报,2002,24(6):643-646
    [52]闫晓洛,赵超.在线优化工艺在石油套管生产上的应用[J].天津冶金,1999(增刊):8-l1
    [53]刘忆征.N80钢管在线常化常化作用研究[J].轧钢,1996,15(2):20-22
    [54] Chen Y, Tang G Y, Liu W.The characteristics of Microstructures and Properties forAdvanced Aluminum/silicon Contained Hot-rolled Trip Steels[J].Acta Metallurgica Sinica,2004,17(6):823-829
    [55] Li M Y, Liu Y Z.Microstructure Homogenization Control of Nb-bearing X65Pipeline Steelby The CSP Process[J].International Journal of Minerals, Metallurgy and Materials,2011,18(1):35-41
    [56] Zhu L J, Wu D, Zhao X M.Effect of Ssilicon Addition On Recrystallization and PhaseTransformation Behavior of High-strength Hot-rolled Trip Steel[J].Acta MetallurgicaSinica,2008,21(3):163-168
    [57] Zhang J.Z.Formulas of Tension of Continuous Rolling Process[J].Acta MetallurgicaSinica,2007,20(6):403-416
    [58] Zhao Z P, Wang Z M.Effect of Deformation and Cooling Rate on The TransformationBbehavior and Microstructure of X70Steels[J].Journal of University of Science andTechnology Beijing,2007,14(5):410-413
    [59] Chen Y, Chen X, Yuan Z X, et al.Effects of Carbon Content and Rolling Processing onRetained Austenite for Hot-rolled Trip Steels[J]. Acta Metallurgica Sinica,2002,15(5):439-447
    [60] Wang Y C, Li Y S.Improved Processing for Microstructures and Mechanical Properties ofA Commercial Pipeline Steel[J].Acta Metallurgica Sinica,2005,18(2):121-128
    [61] Zhao L M, Yang X Y, Liu Y.Investigation on Mechanical Property of SeamlessPipe[J].Journal of Iron and Steel Research,2004,11(2):52-54
    [62] Xie H B, Liu X H.Optimization and Model of Laminar Cooling Control System for HotStrip Mills[J].Journal of Iron and Steel Research, International,2006,13(1):18-22
    [63] Zheng L, Zhang A W, Tang W J.Research and Development of Hot-rolled Ultra-highStrength Steel at Baosteel[J].Baosteel Technical Research,2010,04(2):48-53
    [64]丛志宇.X70级管线钢热变形行为及控轧控冷工艺研究[D].东北大学硕士学位论文,2008
    [65]李龙.低碳锰(铌)钢组织控制及强韧化机制的研究[D].东北大学博士学位论文,2006
    [66]孔君华.高钢级X80管线钢工艺、组织与性能的研究[D].华中科技大学博士学位论文,2005.
    [67]王占学.控制轧制与控制冷却[M].北京:冶金工业出版社,1991:14-38
    [68]李曼云,孙本荣.钢的控制轧制和控制冷却技术手册[M].北京:冶金工业出版社,1998:2
    [69] Mohammad A, Masood A T, Ron P.Effect of Controlled Rolling On the MartensiticHardenability of Dual Phase steel[J].Intemational JoumaI of Miners, Metallurgy andMaterials,2009,16(2):165-169
    [70] Fallahi A.Microstructure-Properties Correlation of Dual Phase Steels Produced byControlled Rolling Process[J]. Journal of Materials Science&Technology,2002,18(5):451-454
    [71] Hu X L, Zhao Z, Wang J.Optimization of Holding Temperature and Holding Thickness forControlled Rolling on Plate Mill[J].Journal of Iron and Steel Research, International,2006,13(3):21-25
    [72] Du L X, Zhang Z P, She G F, et al.Austenite Recrystallization and Controlled Rolling ofLow Carbon Steels[J].Journal of Iron and Steel Research, International,2006,13(3):31-35
    [73] Zhang C W, Lu J H, Xie C S, et al.Effect of Controlled Rolling and Controlled Cooling onMechanical Properties of Low Carbon Nb-Ti-B Steels[A].TSCR2009[C].2009:413-419
    [74] Zhu H X, Hao X H,Wen Z.Application of Feedforward and Feedback Control Strategy forWire Rod Hot Rolling Line[J].Journal of Iron and Steel Research, International,2005,12(5):21-23
    [75] Hongxiang Z, Xiaohong H, Zhi W, et al.Mathematical model for the thermal process ofcontrolled cooling of wires and its numerical simulation[J].Journal of University ofScience and Technology Beijing,2004,11(6):505-510
    [76] LI Z.Influence of Hot Rolling Conditions on the Mechanical Properties of Hot Rolled TRIPSteel[J].Journal of University of Wuhan Technology (Materials Science Edition),2008,23(1):74-79
    [77] LI Z.Effects of finishing rolling temperatures and reduction on the mechanical properties ofhot rolled multiphase steel[J]. Journal of University of Zhejiang Science,2007,8(5):797-804
    [78] Zhuang L I.Influence of Hot Deformation and Subsequent Austempering on theMechanical Properties of Hot Rolled Multiphase Steel[J].Journal of University of MaterialsScience&Technology,2006,22(6):763-768
    [79] Zhuang L.Austempering of hot rolled transformation-induced plasticity steels[J].Journal ofUniversity of Science and Technology Beijing,2008,15(2):143-149
    [80] Liu S P, Yang C F, Zhang Y Q.Effect of Adding Nitrogen on Microstructure and Propertyof Vanadium Microalloyed Reinforcing Bar Steel[J].J. Iron&Steel Res., Int.,2003,10(2):45-50
    [81] Zajac S, Siwecki T, Hutchinson W B, et al.Strengthening Mechanisms in VanadiumMicroalloyed Steels Intended for Long Products [J]. ISIJ International,1998,38(10):1130-1139
    [82] Ma L Q, Liu Z Y, Jiao S H, et al.Dynamic Recrystallization Behaviour of Nb-TiMicroalloyed Steels[J].Journal of University of Wuhan Technology (Materials ScienceEdition),2008,23(4):551-557
    [83] Ma L Q, Liu Z Y,Jiao S H, et al.Effect of Niobium and Titanium on DynamicRecrystallization Behavior of Low Carbon Steels[J].Journal of Iron and Steel Research,International,2008,15(3):31-36
    [84] Ling Z, Wang Y Y, Zu Q S.Modeling of Microstructural Evolution During DynamicRecrystallization in Coarse Nb Microalloyed Austenite[J].Journal of University of Scienceand Technology Beijing,2007,14(2):130-135
    [85] Bin Z, Hongbing Z, Xueyou R.Dynamic Recrystallizaton Behavior of35CrMo StructuralSteel[J].Journal CSUT,2003,10(1):13-19
    [86] Zhang B, Zhang H B.The Hot Deformation Behavior and Dynamic RecrystallizationModel of35CrMo Steel[J].Acta Metallurgica Sinica,2003,16(3):183-191
    [87] Zhu F X, Liu C, Chui G Z.Effect of Hot Deformation Parameters on Recrystallization ofSteel T91[J].Acta Metallurgica Sinica,2003,13(1):335-341
    [88] Karjalainen L P, Somani M C. Discrepancies in the Regessiong Modelling ofRecrystallization Rate as Using the Data from Physical Simulation Tests[J]. CataMetallurgica Sinica,2004,17(3):221-228
    [89] Xiong L, Hongbing Z, Xueyou R.Kinetics for Static Recrystallization After Hot Working of0.38C-0.99Cr-0.06Mo Steel[J].Journal SCUT,2004,11(4):353-357
    [90] Sellar C M.Hot Working and Forming Processes[A].Sellar C M, Daries G J, etal.Proceedings of the Conference of Hot Working and Forming Processes[C].London: MS,1980:3-11
    [91] Ryan N D.M C Queen H J. Comparison of Dynamic Softening in301,304,316and317Stainless Steels[J].High Temperature Technology,1990,8(3):185-200
    [92] He Y A, Chen D H, Lei T Q.Theoretical Models for Grain Size Refining During DynamicRecovery and Recrystallization of HSLA[A].HSLA’95Confernce Proceedings[C].Beijing:China Sci and Technol Press,1995:163-168
    [93]何宜柱,陈大宏,雷廷权.变形Z因子与动态再结晶晶粒尺寸间的理论模型[J].钢铁研究学报,2000,12(1):26-30
    [94]黄杰,徐州,邢新.微合金钢热变形奥氏体再结晶图及Y参数的应用[J].热加工工艺,2003(3):12-13
    [95] Tao N, Kang Y L, Gu H W.Effect of Nb onThe Dynamic Recrystallization Behavior ofHigh-grade Pipeline Steels[J].International Journal of Minerals, Metallurgy and Materials,2010,17(6):742-747
    [96] Liang X K, Sun X J.Study of Dynamic Recrystallization oF Low Carbon Steel in Thin SlabContinuous Rolling Process[J].Acta Metallurgica Sinica,2006,19(4):265-270
    [97] Wang J, Chen J. Dynamic Recrystallization Behavior of Microalloyed ForgedSteel[J].Journal of Iron and Steel Research, International,2008,15(3):78-81
    [98] Wang B X, Xu X D.Dynamic Recrystallization Behavior in Mn-Cr Gear Steel[J].Journal ofIron and Steel Research, International,2006,13(2):49-53
    [99] Xiao H, Xie H B.Simulation of Dynamic Recrystallization Using Cellular AutomatonMethod[J].Journal of Iron and Steel Research,2004,11(2):42-45
    [100] Dong L F, Zhong X Y, Ma Q X, et al.Dynamic Recrystallization and Grain GrowthBehavior of20SiMn Low Carbon Alloy Steel[J].Tsinghua Science and Technology,2008,13(5):609-613
    [101] Sun W P, Hawbolt E B. Comparison Between Staticand MetadynamicRecrystallization-An Appliciationto the Hot Rolling of Steels [J].ISIJ Int.,1997,37(1):1000-1007
    [102] Sang H C, Ki B K, Jonas J.Mathematical Modeling of the Recrystallization Kinetics ofNb Microalloyed Steels[J].ISIJ Int.,2001,41(7):766-773
    [103]方剑,谢凯意,邹喜洋,等.微合金非调质40Mn2V钢管的变形抗力研究[J].武汉科技大学学报,2009,32(3):238-241
    [104] Dai T J, Liu Z Y.Mathematical Model of Deformation Resistance of30MnSiVSteel[J].The Chinese Journal of Nonferrous Metals,2001,11(z1):210-212
    [105] Di H S, Cui G Z.Hot Ductility of304HC Stainless Steel and The Model of Resistance toDeformation[J].Acta metallurgica Sinica,2003,16(2):97-103
    [106]周纪华,管克智.金属塑性变形阻力[M].北京:机械工业出版社,1989:20-80
    [107]雍岐龙,马鸣图,吴宝榕.微合金钢—物理和力学冶金[M].北京:机械工业出版社,1989:633
    [108]方芳.C、N含量对钢中V(C,N)析出行为的影响[D].钢铁研究总院博士学位论文,2009
    [109] Inoue K, Ishikawa N, Ohnuma I, et a1.Calculation of Phase Equilibria Between Austeniteand (Nb, Ti, V)(C,N) in Microalloyed Steels[J].ISIJ International,2001,41(2):175
    [110] Hao Y, Yi S, Qixiang C, et al.Precipitation Behaviors of X70Acicular Ferrite PipelineSteel[J].Journal of University of Science and Technology Beijing,2006,13(6):523-527
    [111] Yang C F.Research, Development, and Production of V-N Microalloyed High StrengthRebars for Building in China[J].Journal of Iron and Steel Research,International,2008,15(2):81-86
    [112] Zhao X M, Wu D.Modeling of Isothermal Precipitation Kinetics in HSLA Steels and ITSApplication[J].Acta Metallurgica Sinica,2004,17(6):902-906
    [113] Li X H, Zhao L Y. Precipitation and Hetero-nucleation Effect of V(C, N) inV-Microalloyed Steel[J].Ournal of Wuhan University of Technology (Materials Science),2008,23(6):844-849
    [114] Zhou X G, Liu Z Y, Yuan X Q.Modeling of Strain-Induced Precipitation Kinetics andEvolution of Austenite Grains in Nb Microalloyed Steels[J].Journal of Iron and SteelResearch, International,2008,15(3):65-69
    [115] Rassizadehghani J, Najafi H.Mechanical Properties of V-, Nb-, and Ti-bearing As-castMicroalloyed Steels[J].Journal of Materials Science&Technology,2007,23(6):779-784
    [116] Deguang Z, Jie F.Precipitation Behavior of TiN in Bearing Steel[J].Journal of MaterialsScience&Technology,2003,19(2):184-186
    [117] Paules J R, Fisher S.Production and Properties of80Ksi (550MPa) Yield Strength TruckTrailer Cross Member [A].30th Mechanical Working and Steel Processing ProceedingsConference [C].American,1988:59-64
    [118] Mises V R.Mechanik Der festen K rper Im Plastisch Deformablen Zustand[J].G ttin.Nachr. Math. Phys.,1913(1):582-592
    [119] Tobin A D.Learning MATLAB [M].American:Society for Industrial and AppliedMathematics,2009,7:82-111
    [120] Xia F J.Piecewise Curve-Fitting Method for Measured Profile[J].Journal of BeijingInstitute of Technology,1998,7(1):155-174
    [121] Ling W, Zi G F, Wen D W.Research of Universal Characteristic Curve UsingMATLAB[A]. International Conference on Mechanic Automation and ControlEngineering [C], china,2010:3555-3557
    [122] Ozgun O, Apaydin G, Kuzuoglu M, et al.Petool: Matlab-based One-way and Two-waySplit-step Parabolic Equation Tool for Radiowave Propagation Over VariableTerrain[J].Computer physics communications,2011,182(12):2638-2634
    [1223] Ji Q S, Hui D, Yong C Z.Research on mathematical model of thermal deformationresistance of X80pipeline steel[J].Materials and Design,2012,32(3):1612-1616
    [124] Szkodo M.Mathematical description and evaluation of cavitation erosion resistance ofmaterials[J].Journal of Materials Processing Technology,2005,164-165(1):1631-1636
    [125] Shunhu Z, Cairu G, Huiliang W.The Model of Thermal Deformation Resistance for P20Steel[A].International Conference on Manufacturing Science and Engineering[C], China,2011:2562-2566
    [126] Blake R, Smith J.Solidification Technology in the Founding and Casthouse[M].Lodon:The Institute of Metals,1980
    [127] Medina S F, Hernadon C A.General Expression of the Zener-Hollomon on Parameter as aFunction of the Chemical Composition of Low Aolloy and Microalloyed Steels[J].ActaMater,1996,44(1):137-148
    [128] Bebgochea R, Lopez B, Gutierrez I.Influence of the Prior Austenite Microstructure on theTransformation Products Obtained for C-Mn-Nb Steels after Continuous Cooling[J].ISIJIternational,1999,39(1):538-591
    [129] Cho S H, Kang K B, Jonas JJ.The dynamic, Static and Metadynamic Recrystallization ofa Nb-Microalloyed Steels[J].ISIJ Iternational,2001,41(1):63-69
    [130] Yunlong Z, Gouquan L, Jiankai H, et al.Research on Dynamic Recrystallization Low ofNew Steel33Mn2V for Oil Well Tubes[J].Iron and Steel,2003,38(2):42-45
    [131] Rongsheng L, Ganli W, Shuliong W, et al. Phase Transformation DuringThermomechanical Processing and Microstructure of Steel16MnCr5[J].Iron and Steel,2001,36(1):47-51
    [132]王晓明,洪慧平,王孟.37Mn5钢高温变形抗力模型及动态再结晶动力学模型研究[J].武汉科技大学学报,2010,33(5):497-500
    [133]王辅忠,张慧春,陆璐.无缝钢管穿管过程动态再结晶晶粒变化规律[J].塑性工程学报,2009,16(5):65-69
    [134]方剑,谢凯意,李阳华,等.V的碳氮化合物析出对36Mn2V非调质钢组织性能的影响[J].武汉科技大学学报,2012,35(2):81-84,126
    [135] Hans L L, Suzana G F, Sundman B.Computational Thermodynamics[M].Britain:Cambridge University Press,2007,8:94-270
    [136] Danielsen H K, Hald J.A Thermodynamic Model of The Z-phase Cr(V, Nb)N[J].Calphad,2007,31(4):505-514
    [137] Janovec J, Kpoupa A, Svobda M.Evolution Of Secondary Phases In Cr-V and Cr-Mo-VLow Alloy Steels[J].Canadian Metallurgical Quarterly,2005,44(2):219-232
    [138] JB/T10175-2008热处理质量控制要求[S].北京:机械工业出版社,2008,11:2

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700