用户名: 密码: 验证码:
高强度海洋平台用钢的强韧化机理研究及产品开发
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着石油工业的不断发展,海底油气开发从浅海大陆架延伸到千米水深的海区,仅具有较高的强度已经不能满足生产使用的需要,在降低成本的基础上,保证钢板的高强高韧性以及抗层状撕裂性能是未来海洋平台用钢的发展方向。本文在863计划项目“海洋石油平台用高强度、厚规格钢板生产的关键技术及原理”支持下,以东北大学与首钢组成联合研发中心开发厚规格海洋平台用钢科研项目为背景,进行了低成本TMCP工艺生产海洋平台用钢热加工过程的组织演变机理研究和产品开发,研究结果用于指导现场工业试轧。论文主要工作如下:
     (1)以C-Mn钢、Nb-Ti钢、Nb-V-Ti钢和高Nb钢四种实验钢为研究对象,研究了变形温度、变形量及应变速率对实验钢再结晶行为及组织演变的影响规律。结果表明,高变形温度和低应变速率有利于发生奥氏体动态再结晶,通过回归确定了动态再结晶激活能和变形抗力模型。根据双道次压缩实验确定了等温时间内静态再结晶行为,微合金钢的形变诱导析出使再结晶曲线上出现平台,并确定了静态再结晶激活能,建立了静态再结晶动力学模型。
     (2)对C-Mn钢、Nb-Ti钢、Nb-V-Ti钢和高Nb钢四种实验钢的连续冷却相变行为进行了研究,并绘制了连续冷却转变曲线。结果表明,在相同冷却速度和变形条件下,由于Nb的晶界偏聚作用抑制了铁素体相变,Nb-Ti钢的多边形铁素体量低于C-Mn钢;当冷却速度小于5℃/s时,C-Mn钢、Nb-Ti和Nb-V-Ti钢奥氏体变形促进了多边形铁素体相变,抑制了针状铁素体相变;而高Nb钢奥氏体变形抑制了晶界形核的贝氏体相变,促进了晶内形核的粒状贝氏体相变。当冷却速度较高时,四种钢的奥氏体变形均抑制了上贝氏体相变,而促进了针状铁素体相变。
     (3)对Nb-Ti钢,Nb-V-Ti钢和高Nb钢三种实验钢在控轧控冷中微合金元素的析出行为进行了研究,分析了轧后冷却路径和回火工艺对析出物的影响规律。实验结果表明,加热时存在大量未溶析出物;粗轧前的析出物与加热状态差异不大;粗轧待温后出现少量细小的球状粒子,抑制了精轧阶段再结晶的发生;而层流冷却后存在大量细小粒子,有利于析出强化。轧后两段式冷却和回火工艺有利于细化析出相尺寸和增加析出相数量。
     (4)对E36-Z35和E40-Z35钢进行了实验室热轧实验,确定了低成本海洋平台用钢的化学成分和控轧控冷工艺参数,并在首秦现场条件下进行了工业轧制实验。结果表明,开发的低成本海洋平台用钢E36-Z35和E40-Z35具有良好的低温韧性、焊接性能、抗层状撕裂性能,各项指标均满足船级社认证要求。
     (5)分析了Ni含量和冷却路径对高强度海洋平台用钢组织性能的影响规律,并在现场进行了F460-Z35的工业试轧。结果表明,随着Ni含量增加以及冷却方式由空冷向层流冷却、超快冷方式转变,析出方式由相间析出变向位错析出和均匀析出过渡;Ni含量对低温韧性的影响规律与冷却方式有关。细小的M/A岛有利于改善低温韧性;试制钢板具有良好的强韧性和抗层状撕裂性能。
With the development of oil industry, submarine oil exploitation, which originally located at shallow-sea shelf, has extended to the deep ocean. Requirements, not only high strength, but also high toughness, lamellar tearing resistant property and low costs, have been proposed for offshore platform steels. In present paper, microstructure evolution and precipitation behavior of low-cost offshore platform plate produced with TMCP technology were investigated. Industrial trials were conducted and results showed that each index of mechanical properties has satisfied the requirements. The whole research work was supported by the project "Development of offshore platform plate", and state863project "Key technology and theory of the production of high strength, thick offshore platform plate". Chief original work is as follows:
     (1)Effects of deformation temperature, strain and strain rate on austenite dynamic recrystalization behavior and microstructure evolution were investigated. Result showed that low strain rate and high deformation temperature were advantageous for austenite dynamic recrystalization. Activation energy of dynamic recrystalization and mathematical model for deformation resistance were obtained. The static recrystalization behavior for C-Mn steel, Nb-Ti steel, Nb-V-Ti steel and high Nb steel was studied by double-hit test. Flatform appeared on the recrystalization curve of microalloyed steel due to the induced precipitate. Activation energy of static recrystalization was determined and the static recrystalization kinetic model was established.
     (2)Thermal expansion method was employed to determine the CCT curves and transformation behavior with continuous cooling for C-Mn steel, Nb-Ti steel, Nb-V-Ti steel and high Nb steel. Results showed that the ferrite transformation has been suppressed by grain boundary segregation of Nb, polygonal ferrite fraction of Nb-Ti steel was lower than that of C-Mn steel under the same cooling rate and deformation condition. When cooling rate was below5℃/s, polygonal ferrite transformation was promoted and acicular ferrite was suppressed by austenite deformation for C-Mn steel, Nb-Ti steel and Nb-V-Ti steel. However, granular bainite transformation nucleated inside the grain was promoted and bainite transformation nucleated on grain boundary was suppressed for high Nb steel. When the high cooling rate was applied, upper bainite transformation was suppressed and acicular ferrite was promoted.
     (3)The precipitation behavior in different stages of TMCP was studied. The effects of cooling route and temper process on precipitation for C-Mn steel、 Nb-Ti steel、 Nb-V-Ti steel and high Nb steel was revealed. It was found that the undissolved cuboid precipitates after reheating process remained unchanged during rolling process. The strain-induced precipitates obtained a few seconds after rough rolling were found to be spherical shaped and austenite recrystalization during finish rolling was suppressed. Large quantity of precipitates appeared after laminar cooling, which was favorable for precipitation strengthening. Compared with the slow cooling mode, the precipitates obtained by two-step cooling mode in which first fast and then slow cooling rate were applied increased, sparsely distributed and of advantage for precipitation strengthening.
     (4) Chemical composition and TMCP processing parameters of low-cost offshore platform plate E36-Z35and E40-Z35were determined by laboratory hot rolling experiments. Industrial trials were conducted in Shou Qin field. Measured mechanical properties showed that favorable low temperature toughness, jointing property and lamellar tearing resistant property have been obtained for offshore platform plate. And it has been admitted by nine countries ship classification society.
     (5) Effects of Ni content and cooling mode on the microstructure and mechanical property were studied by laboratory hot rolling experiments. Industrial trials of offshore platform F460-Z35were conducted. Results showed that with the increase of Ni content and the transition of cooling mode from laminar cooling to ultra fast cooling, precipitation behavior has been transferred from interphase precipitation to dislocation precipitation and uniform precipitation and the strength has been increased.The effect of Ni content on low temperature toughness was related to cooling mode. Fine M/A was favorable for low temperature toughness. Offshore platform plate had excellent toughness and anti-lamellar tearing property.
引文
1.东涛.宽厚钢板用材及其技术发展[J].宽厚板,1995,1(3):1-20.
    2.孙树民.海洋平台结构的发展[J].广东造船,2000,(4):32-37.
    3.上田修三.结构钢的焊接-低合金钢的性能及冶金学[M].北京:冶金工业出版社,2004,73-74.
    4.沙才智.极厚高强度钢板的进展[J].宽厚板,1999,5(4):6-8.
    5.苗张木,王振宇.厚钢板焊接接头韧性CTOD试验评定技术及应用[J].宽厚板,2006,12(6):23-28.
    6.曹军,李小巍,温志刚CTOD断裂韧度试验在海洋平台建造中的应用[J].中国海上油气,2004,16(2),129-131.
    7. Hideaki Miyuki, Norio Katsumoto, Syuichi Hara. Corrosion and its properties of welded joint of seawater resistant low alloy steel [J]. The Sumitomo Search,1996, (2),68-75.
    8.顾建国,海洋石油平台用H型钢的开发研究钢铁[J].钢铁,2001,36(2):29-33.
    9. Manohra PA, Chandra T, Killmore C R. Continuous cooling transformation behaviour of microalloyed steels containing Ti, Nb, Mn and Mo [J]. ISIJ International,1996,36(12):1486-1493.
    10. Elwazri A M, Varano R, Siciliano F, et al. Characterisation of precipitation of niobium carbide using carbon extraction replicas and thin foils by FESEM [J]. Materials Science and Technology.2006,22(5): 537-541.
    11. Park J S, Lee Y K. Determination of Nb(C,N) dissolution temperature by electrical resistivity measurement in a low-carbon microalloyed steel [J]. Scripta Materialia,2007,56(3):225-228.
    12. Medina S F, Chapa M, Valles P, et al. Influence of Ti and N contents on austenite grain control and precipitate size in structural steels [J]. ISIJ International,1996,39(9):930-936.
    13. Amir A Z, Druce D. Effect of niobium on static recrystallization of hot-deformed austenitic HSLA steel analogue alloy [C]. HSLA Steels'95Conference Proceedings, Beijing,1995:157-162.
    14. Pentti Karjalainen L. Recrystallization in Nb and Nb-Ti microalloyed steels investigation by the stress relaxtation method [C]. HSLA Steels' 95Conference Proceedings, Beijing,1995:179-184.
    15. Bepari M A, Whiteman J A. The effect of nitrogen on the precipitation behavior of Nb(C,N) in continuously-cooled low-carbons structural steels [J]. J Mater Process Technology,1996,56:834-856.
    16. Gao Y, Sonmachi K. Effect of Mn and Ti precipitates on the hot ductility of low carbon and ultra low carbon steels [J]. ISIJ International,1995,35(7):914-919.
    17.向嵩.薄板坯连铸连轧微合金钢析出物与加工图的研究[D].北京:北京科技大学,2007.
    18.马立强.Nb、Ti钢5000mm宽厚板控制轧制中的物理冶金学规律[D].沈阳:东北大学,2007.
    19. Hong S C, Lim S H, Hong H S, et al. Effect of Nb on strain induced ferrite transformation in C-Mn steel [J]. Materials Science and Engineering A,2003,355(1-2):241-248.
    20. Lee K J, Lee J K. Modelling of y/a transformation in niobium-containing microalloyed steels [J]. Scripta Materialia,1999,40(7):831-836.
    21. Abe T, Aaronson H I, Shiflet G J. Growth kinetics and morphology of grain boundary ferrite allotriomorphs in an Fe-C-V alloy [J]. Metallurgy transactions A,1985,16(4):521-527.
    22. Jung Y C, Ueno H, Ohtsubo H, et al. Effect of small amount of B, Nb and Ti additions on nucleation and growth processes of intermediate transformation products in low carbon 3% Mn steels [J]. ISIJ International,1995,35(8):1001-1005.
    23. Sharma R C, Purdy G R. Nucleation limitation and hardenability [J]. Metallurgical Transactions,1973, 4(8):2303-2311.
    24. Maurizio V, Aldo M. Effects of titanium addition on precipitate and microstructural control in C-Mn microalloyed steels [J]. ISIJ International,2002,42(12):1520-1526.
    25. Chsapa M, Medina S F, LOPEZ V, et al. Influence of Al and Nb on optimum Ti/N ratio in controlling austenite grain growth at reheating temperatures [J]. ISIJ International,2002,42(11):1288-1296.
    26. Yang C F,Zhang Y Q, Liu T J. Effect of content on mechanical properties of hot rolled strip steel [C]. HSLA Steel's95 Conference proceedings, Beijing,1995:403-406.
    27. Vega M I, Medina S F, Charpa M et al. Determination of critical temperatures (Tnr, Ar3, Ar1) in hot rolling of structural steels with different Ti and N contents [J]. ISIJ International,1999,39(12): 1304-1310.
    28. Liu W J. Precipitation of Ti(C,N) in austenite:experimental results, Analysis and Modeling [D]. Montreal, Canada:McGill University,1987.
    29. Shanmugam S, Tanniru M, Misra R D K, et al. Precipitation in V bearing microalloyed steel containing low concentrations of Ti and Nb [J]. Materials Science and Technology,2005,21(8):883-892.
    30. Reip C P, Shanmugam S, K.Misra R D. High strength microalloyed C-Mn(V-Nb-Ti) and CMn(V-Nb) pipeline steels processed through CSP thin-slab technology:Microstructure, precipitation and mechanical properties [J]. Materials Science and Engineering A,2006,424(1-2):307-317.
    31. Shanmugam S, Tanniru M, Misra R D K, et al. Microalloyed V-Nb-Ti and V steels part 2-precipitation behaviour during processing of structural beams [J]. Materials Science and Technology, 2005,21(2):165-177.
    32. Jun H J, Kang K B, Park C G. Effects of cooling rate and isothermal holding on the precipitation behavior during continuous casting of Nb-Ti bearing HSLA steels [J]. Scripta Materialia,2003,49(11): 1081-1086.
    33. Wang R Z, Garcia C I, Hua M, et al. Microstructure and precipitation behavior of Nb, Ti complex microalloyed steel produced by compact strip processing [J]. ISIJ International,2006,46(9): 1345-1353.
    34. Emenike C O L, Billington J C. Formation of precipitation in microalloyed pipeline Steels [J]. Materials Science and Technology,1989,5(6):566-574.
    35. Hong S G, Kang K B, Par C G k. Strained-induced precipitation of NbC in Nb and Nb-Ti microalloyed HSLA steels [J]. Scripta Materialia,2002,46(2),163-168.
    36. Craven A J, He K, Garvie L A J, et al.. Complex heterogeneous precipitation in titanium-niobium microalloyed Al-killed HSLA steels— (Ti,Nb)(C,N) particles [J]. Acta mater,2000,48(15): 3857-3868.
    37. Craven A J, He K, Garvie L A J, et al. Complex heterogeneous precipitation in titanium-niobium microalloyed Al-killed HSLA steels—Ⅱ (Ti,Nb)(C,N) particles [J]. Acta mater,2000,48(15): 3869-3878.
    38. Hudd R C, Jones A, Kale M N. A method for calculating the solubility and composition of carbonitride precipitates in steel with particular reference to niobium carbonitride [J]. J Iron Steel Inst,1971,209(2): 121-125.
    39. Wang H R, Wang W. Precipitation of complex carbonitrides in a Nb-Ti microalloyed plate steel [J]. Journal of Materials Science,2009,44(2):591-600.
    40. Baker T N, Li Y, Wilson J A, et al. Evolution of precipitates, in particular cruciform and cuboid particles, during simulated direct charging of thin slab cast vanadium microalloyed steels [J]. Materials Science and Technology,2004,20(6):720-730.
    41. Li Y, Crowther D N, Mitchell P S, et al. The evolution of microstructure during thin slab direct rolling processing in vanadium microalloyed steels [J]. ISIJ International,42(6):636-644.
    42. Craven A J, He K, Garvie L A J. Complex heterogeneous precipitation in titanium-niobium microalloyed Al-killed HSLA steels-I.(Ti,Nb)(C,N) particles [J]. Acta Mater,2000,48(15):3857-3868.
    43.陆匠心,王国栋.一种Nb-Ti微合金钢微合金碳氮化物析出行为的研究[J].钢铁,2005,40(9):69-72.
    44. Poths R M, Higginson R L, Palmiere E J. Complex precipitation behaviour in a microalloyed. Plate steel [J]. Scripta materialia,2001,44(1):147-151.
    45. Hong S G., Jun H J, Kang K B, et al. Evolution of precipitates in the Nb-Ti-V microalloyed HSLA steels during reheating [J]. Scripta Materialia,2003,48(8):1201-1206.
    46. Charleux M, Poole W J, Militzer M, Deschamps A. Precipitation behavior and its effect on strengthening of an HSLA/Nb/Ti steel [J]. Metallurgical and Materials Transactions A,2001,32 (7): 1635-1647.
    47. Tamura I, Sekine H, Tanaka T. Thermomechanical processing of high strength low carbon steel [M], London:Butterworths,1996:22-24.
    48. Pentti Karjalainen L. Recrystallization in Nb and Nb-Ti microalloyed steels investigation by the stress relaxtation method [C]. HSLA Steels'95Conference Proceedings, Beijing,1995:179-184.
    49.王春明,吴杏芳,黄国建.X70管线钢控轧控冷工艺与组织性能的关系[J].钢铁,2005,40(3):70-74.
    50.王占学.塑性加工金属学[M].北京:冶金工业出版社,1991,184-185.
    51. Houyoux C, Herman J C, Simon P. Metallurgical aspects of ultra fast cooling on a hot strip mill [J]. Revuede Metallurgie,1997,97:58-59.
    52. Hiroshi Kagechika. Production and technology of iron and steel in Japan during 2005 [J]. ISIJ International,2006,46(7):939-958.
    53.王国栋,刘相华,刘彦春.包钢CSP"超快冷”系统及590MPa级C-Mn低成本热轧双相钢开发[J].轧钢,2006,23(4):1-4.
    54.赵宪明,吴迪,王国栋.一种线材和棒材热轧生产线用超快速冷却装置[P].中国专利: 200510046822.4,2006-01-11.
    55.王国栋.以超快速冷却为核心的新一代TMCP技术[J].上海金属,2008,30(2):1-5.
    56.小指挥夫.控制轧制控制冷却-改善钢材材质的轧制技术发展[M].北京:冶金工业出版社,2002.
    57.王有铭,李曼云,韦光.钢材的控制轧制和控制冷却[M].北京:冶金工业出版社,2009.
    58.贺祖武,胡小鹏.试论低温钢低温韧性的改善[J].洪都科技,2004,13(8):33-35.
    59.叶卫江,张有渝.影响金属低温韧性因素浅谈[J].天然气与石油,1997,32(15):32-36.
    60.易邦学,钱学君,郎文旺,等.镍含量对13Cr型低碳马氏体不锈钢性能的影响[J].金属功能材料,1992,(2):75-78.
    61.崔忠圻.金属学与热处理[M].北京:机械工业出版社,2003:325-326.
    62. Gao,Z.Q., Fultz,B. Kinertics of ordering in alloy Fe3Si [J]. Hyperfine Interactions,94(1):2361-2366.
    63.路焱,刘向东,李勇,等.含镍量对QT400-18L低温冲击韧性的影响[J].铸造技术,2006,27(12):1342-1345.
    64.朱敏之.冰海区域用YP420MPa级的高韧性海洋结构厚板的研究[J].宽厚板,2000,6(5):29-33.
    65.陈铿如,李继欣,吴静贞.三种不同含Ni量的35SiMnCrNiMoV钢的力学性能研究[J].钢铁,1985,20(4):26-32.
    66. Keinosuke Hamada, Toshiaki Wake. Making and fabricating of steel components for jack-up rig legs [J]. Kawasaki Steel Technical Report,1982, (6):80-97.
    67. Yoshihide Nagai, Hidenori Fukami.YS500N/mm2 high strength steel for offshore structures with good CTOD properties at welded joints [J]. Nippon Steel Technical Report,2004, (90),14-19.
    68.陈树人,张冠军.国内外钢科技的新进展与石油机械用钢研究[J].石油机械,2005,12(33):50-54.
    69. Kozaburo Otani, Keiichi Hattori. Development of ultra heavy-gauge(210mm Thick) 800N/mm2 tensile strength plate steel for racks of jack-up rigs [J]. Nippon Steel Technical Report,1993,58,1-8.
    70.韦明,李玉谦,王升.海洋平台用钢[J].宽厚板,2002,8(4):34-36.
    71.金涛,刘继勋.海洋采油平台钢板开发与研究[J].钢铁,2002(37)增刊,498-501.
    72.杨才福张永权.新一代易焊接高强度高韧性船体钢的研究[J].钢铁,2001,36(11):50-54.
    73.温永红,武会宾,唐荻,等.E40级船板控轧控冷后的组织性能研究[J].热加工工艺,2008,37(6):40-43.
    74.孙占,黄继华,张华,等.微合金EH40型船板钢大热输入焊接接头组织和力学性能[J].焊接学报,29(3):41-44.
    75.沙才智.极厚高强度钢板的进展[J].宽厚板,1999,5(4):6-8.
    76.刘增沛.热处理工艺学[M].北京:科学普及出版社,1984,33-35.
    77.孙齐松.连铸板坯质量与中厚板Z向性能研究[D].北京:北京科技大学,2007.
    78.崔忠歧.金属学与热处理[M].北京:机械工业出版社,1989,272-276.
    79. Lee K J, Lee J K. Modelling of γ/α transformation in niobium-containing microalloyed steels [J]. Scripta Materialia,1999,40(7):831-836.
    80. Abe T, Aaronson H I, Shiflet G J. Growth kinetics and morphology of grain boundary ferrite allotriomorphs in an Fe-C-V alloy [J]. Metallurgy transactions A,1985,16(4),1985:521-527.
    81. Enomoto M, Sato Y. Effects of vanadium and niobium on the nucleation kinetics of proeutectoid ferrite at austenite grain boundaries in Fe-C and Fe-C-Mn alloys [J]. Materials Transactions,1994,35(12): 859-867.
    82. Enomoto M, Sato Y. Effects of vanadium and niobium on the nucleation kinetics of proeutectoid ferrite at austenite grain boundaries in Fe-C and Fe-C-Mn alloys [J]. Mater. Trans.,1994,35(12):859-867.
    83.袁向前.Nb、 Nb-Ti微合金化钢控冷过程中相变规律的研究[D].沈阳:东北大学,2007.
    84. Okaguchi S, Hashimoto T, Ohtani H. Effect of Nb,V and Ti on transformation behavior of HSLA steel in accelerated cooling [M]. Thermec Iron and Steel Institute of Japan,1988:330-336.
    85.陈庆军,康永林,苏世怀,等.微合金高强度耐候钢的实验研究[J].钢铁,2005,40(7):60-63.
    86.雍歧龙,马鸣图,吴宝榕.微合金钢-物理和力学冶金[M].北京:机械工业出版社,1989:317-318.
    87. Sun Z Q, Yang W Y, Qi J J, et al. Deformation enhanced transformation and dynamic recrystallization of ferrite in a low carbon steel during multipass hot deformation [J]. Materials Science and Engineering A,2002,334(1-2):201-206.
    88. Du L X, Zhang C B, Ding H. Determination of upper limit temperature of strain-induced transformation of low carbon steels [J]. ISIJ International,2002,42(10):1119-1124.
    89.董瀚,孙新军,刘清友.变形诱导铁素体相变-现象与理论[J].钢铁,2003,38(10):57-67.
    90. Huang Y D, Yang W Y, Sun Z Q. Formation of ultrafine grained ferrite in low carbon steel by heavy deformation in ferrite or dual phase region [J]. Journal of Materials Processing Technology,2003, 134(1):19-25.
    91. Yoshitaka A, Toshiro T, Shigeharu H. Ferrite grain size refinement by heavy deformation during accelerated cooling in low-carbon steel [J]. Tetsu To Hagane,1999,85(8):620-627.
    92. Wang Z D, Qu J B, Liu X H. Influence of hot deformation on continuous cooling bainitic transformation in a low carbon steel [J]. Acta Metallurgica Sinica (English Letters),1998,11(2): 121-127.
    93.张红梅,刘相华,王国栋.低碳贝氏体钢形变奥氏体的连续冷却相变研究[J].金属热处理学报,2000,21(4):35-39.
    94. Khlestov V M, Konopleva E V, McQueen H J. Kinetics of austenite transformation during thermomechanical processes [J]. Canadian Metallurgical Quarterly,1998,37(2):75-89.
    95. Babu S S, Bhadshia H K D H. Mechanism of the transition from bainite to acicular ferrite [J]. Materials Transactions, JIM,1991,32(8):679-688.
    96.杜林秀.低碳钢变形过程及冷却过程的组织演变与控制[D].沈阳:东北大学,2003.
    97. Yang J R, Huang C Y, Hsieh W H, et al. Mechanical stabilizaton of austenite against bainitic reaction in Fe-Mn-Si-C bainitic steel [J].Mater. Trans. JIM,1996,37(4):579-585.
    98. Andrade H I, Akben M G, Jonas J J. Effect of molybdenum, niobium and vanadium on static recovery and recrystallization and on solute strengthening in microalloyed steels [J]. Metallurgical Transactions A,1983,14(10):1967-1977.
    99.魏洁,唐广波,刘正东.碳锰钢热变形行为及动态再结晶模型[J].钢铁研究学报,2008,20(3):30-35.
    100.王有铭,李曼云,韦光.钢材的控制轧制与控制冷却[M].北京:冶金工业出版社,1995,20-22.
    101.王占学.控制轧制与控制冷却[M].北京:冶金工业出版社,1988,14-17.
    102.王智祥,刘雪峰,谢建新.AZ91镁合金高温变形本构关系[J].金属学报,2008,44(11):1378-1383.
    103.Derby B. The dependence of grain size on stress during dynamic recrystallization [J]. Acta Metallurgica et Materialia,1991,39(5):955-962.
    104.Derby B, Ashby M F. On dynamic recrystallization [J]. Scripta Metallurgica,1987,21(6): 879-884.
    105.何宜柱,陈大宏,雷廷权,等.形变Z因子与动态再结晶晶粒尺寸间的理论模型[J].钢铁研究学报,2000,12(1):26-30.
    106.何宜柱,雷廷权,吴惠英,等.动态再结晶晶粒尺寸同Zener-Hollomon参数间的理论模型[J].华东冶金学院学报,1995,12(2):139-145.
    107.王秉新.齿套用22CrSH钢管的研制[D].沈阳:东北大学,2004.
    108.Salvatorl I, Inoue T, Nagai K. Ultrafine grain structure through dynamic recrystallization for type 304 stainless steel [J]. ISIJ International,2002,42(7):744-750.
    109.Poliak E I, Jonas J J. Initiation of dynamic recrystallization in constant strain rate hot deformation [J]. ISIJ International,2003,43(5):684-691.
    110.Poliak E I, Jonas J J. A one-parameter approach to determining the critical conditions for the initiation of dynamic recrystallization [J]. Acta Materialia,1996,44(1):127-136.
    111.Sung-Il Kim, Yeon-Chul Yoo. Dynamic recrystallization behavior of AISI 304 stainless steel [J]. Materials Science and Engineering A,2001,311(1-2):108-113.
    112.曹金荣,刘正东,程世长,等.应变速率和变形温度对T122耐热钢流变应力和临界动态再结晶行为的影响[J].金属学报,2007,43(1):35-40.
    113.周纪华,管克智.金属塑性变形抗力[M].北京:机械工业出版社,1987,212.
    114.Cho S H, Kang K B, Jonas J J. Mathematical modeling of the recrystallization kinetics of Nb microalloyed steels [J]. ISIJ International,2001,41(7):766-773.
    115.Laasroui A, Jonas J J. Prediction of temperature distribution, flow stress and microstructure during the multipass hot rolling of steel plate and strip [J]. ISIJ International,1991,32(3):95-105.
    116.Medina S F, Hernadez C A. General expression of Zener-Hollomon parameter as a function of chemical composition of low alloy and microalloyed steel [J]. Acta Mater,1996,44(1):137-148.
    117.孙彬斌,贾志伟,张红梅,等.C-S-Mn系双相钢静态软化行为的研究[J].热加工工艺,2007,36(10):26-29.
    118.Medina S F, Mancilla J E. Determination of static recrystallization critical temperature of austenite in microalloyed steels [J]. ISIJ International,1993,33(12):1257-1264.
    119.Uranga P, Ferna'ndez A I, Lopez B, et al. Transition between static and metadynamic recrystallization kinetics in coarse Nb microalloyed austenite [J]. Materials Science and Engineering A,2003,345(1-2): 319-327.
    120.Medina S F. The influence of niobium on the static recrystallization of hot deformed austenite and on strain induced precipitation kinetics [J]. Scripta Materialia,1995,32(1):43-48.
    121.Medina S F, Mancilla J E. Influence of alloying elements in solution on static recrystllization kinetics of hot deformed steels [J]. ISIJ International,1996,36(8):1063-1069.
    122.Medina S F, Quispe A, Valles P, et al. Recrystallization-precipitation interaction study of two medium carbon niobium microalloyed steels [J]. ISIJ International,1999,39(9):913-922.
    123.Medina S F, Quispe A. Improved model for static recrystallization kinetics of hot deformed austenite in low alloy and Nb/V microalloyed steels [J]. ISIJ International,2001,42(4):774-781.
    124.Laasraoui A, Jonas J J. Recrystallization of austenite after deformation at high temperatures and strain rates-analysis and modeling [J]. Metall. Trans. A,1991,22 (1):151-160.
    125.Dutta B, Sellars C M. Effect of composition and process variables on Nb(C,N) precipitation in niobium microalloyed austenite [J]. Materials Science and Technology,1987,3(3):197-205.
    126.刘振宇,许云波,王国栋.热轧钢材组织-性能演变的模拟和预测[M].沈阳:东北大学出版社,2004,95-97.
    127.赵昆,王昭东.1F钢铁素体区热变形后的静态软化行为[J].钢铁研究学报,1999,11(4):18-211.
    128.Gomez M, Medina S F, Quispe A, et al. Static recrystallization and induced precipitation in low Nb microalloyed steel [J]. ISIJ International,2002,42(4):423-431.
    129.Medina S F, Mancilla J E. Determination of static recrystallisation critical temperature of austenite in microalloyed steels [J]. ISIJ International,1993,33(12):1257-1264.
    130.Siwecki T. Modeling of microstructure evolution during recrystallisation controlled rolling [J]. ISIJ International,1992,32(3):368-376.
    131.苑少强,邢宝泉,吴晓红,等.含Nb微合金钢应变诱导析出的研究现状[J].材料导报,2005,19(5):46-49.
    132.Froes F H, Honeycomb R W K, Warrington D H. Conditions controlling matrix and stacking-fault precipitation [J]. Acta Metallurgica Materialia,1967,15(1):157-159.
    133.张志波,刘清友,张晓兵,等.加热温度对管线钢奥氏体晶粒尺寸和铌固溶的影响[J].钢铁研究学报,2008,20(10):36-39.
    134.傅杰,朱剑,迪林,等.微合金钢中TIN的析出规律研究[J].金属学报,2000,36(8):801-804.
    135.孙毅.X70针状铁素体管线钢的析出行为与工艺控制研究[D].北京:北京科技大学,2007.
    136.雍岐龙,马鸣图,吴宝榕.微合金钢-物理和力学冶金[M].北京:机械工业出版社,1989.
    137.Radko Kaspar, Josef Siegfried Distl, Klaus-Joachim. Changes in austenite grain structure of microalloyed plate steels due to multiple hot deformation [J]. Steel Research,1998,57(6):271-448.
    138.黄杰,徐洲.V-Ti微合金钢的轧后冷却相变及第二相析出行为[J].上海金属,2005,27(1):14-17.
    139.Klinkenberg C, Hulka K, W.bleck. Niobium carbide precipitation in microalloyed steel [J]. Steel Research,2003,75(11):744-752.
    14O.Akhlaghi S, Ivey D G. Precipitation behavior of a grade 100 structural steel [J]. Canadian Metallurgical Quarterly,2002,41(1):111-119.
    141.马力强.Nb、Ti钢5000mm宽厚板控制轧制中的物理冶金学规律[D].沈阳:东北大学,2007.
    142.Chiou C S. The effect of prior compressive deformation of austenite on toughness property in an ultra-low carbon bainitic steel [J]. Materials Chemistry and Physics,2001,69(1-3):113-124.
    143.Mangonnon P L. Effect of alloying elements on the microstructure and properties of a hot-rolled low carbon low alloy bainitic steel [J]. Metallurgical Transactions A,1976,7(8):1398-1400.
    144.张永权,张荣久,苏航,等.粒状贝氏体对10MnNiCr微合金钢力学性能的影响[J].钢铁,2003,38(11):45-47.
    145.刘东雨,方鸿生,白秉哲,等.我国中低碳贝氏体钢的发展[J].江苏冶金,2002,3(30):1-5.
    146.Drian H A, Pickering F B. Effect of Ti addition on ausrenite grain growth kinetics of medium carbon V-Nb steels containing 0.008-0.18% N [J]. Material Science and Technology,1991,7(2):176-182.
    147.吴新朗,赵征志,田允.Nb-Ti微合金钢第二相粒子分析及其对组织性能的影响[C].全国塑性加工理论与新技术学术研讨会,沈阳,2007:25-29.
    148.Emeriike C O L, Billington J C. Formation of precipitation in microalloyed pipeline steels [J]. Materials Science and Technology,1989,5(6):566-574.
    149.陈晓,陈颜堂,刘继雄,等.大线能量低焊接裂纹敏感性钢的显微组织[J].中国有色金属学报,2004,14(5):217-223.
    150.温永红,武会宾,唐荻.E40级船板控轧控冷后的组织性能研究[J].热加工工艺,2008,37(6):40-43.
    151.高季明,厉焕波,邹燕杰,等.大焊接线能量下RE对C-Mn钢熔敷金属低温韧性的影响[J].东北大学学报,1994,15(3):313-316.
    152. Kohichi Yamamoto, Toshiei Hasegawal. Effect of boron on intragranular ferrite formation in Ti-Oxide bearing steels [J]. ISIJ International,1996,36(1):80-86.
    153.陈颜堂,芮晓龙.600MPa级高能量输入焊接压力钢管用钢的研制[J].钢铁,2007,42(6):38-41.
    154.王宁.低成本高强度车辆行走机构用钢的研究开发[D].沈阳:东北大学,2008.
    155.张莉芹,袁泽喜,陈晓.大线能量低焊接裂纹敏感性钢的焊接(二)-热影响区强韧性机理研究[J].压力容器,2002,119(8):25-28.
    156.章小浒.十万立方米原油储罐用钢板的国产化研究[J].石油化工设备技术,2001,22(5):32-36.
    157.贾坤宁.高强度桥梁钢焊接性能的研究[D].沈阳:东北大学,2008.
    158.张德勤,田志凌,杜则裕,等.热输入对X65钢焊缝金属组织及性能的影响[J].焊接学报,2001,22(5):31-33.
    159.姚上卫,徐景贤,陈新.热输入对高强度气体保护焊丝焊缝金属强韧性的影响[J].材料开发与应用,2008,23(4):47-49.
    160. Jye-Long Lee, Yeong-Tsuen Pan. The formation of intragranular acicular ferrite in simulate heat affected zone [J]. ISIJ International,1995,135(8):1027-1033.
    161. Fernandez J, IllescaS S, Guilemany J M. Effect of microalloying elements on the austenitic grain growth in a low carbon HSLA steel [J]. Materials Letters,2007,61(11/12):2389-2392.
    162. Misa R D K, Nathani H, Hartmann J E, et al. Microstructural evolution in a new 770 MPa hot roiled Nb-Ti microalloyed steel [J]. Materials Science and Engineering A,2005,394(1/2):339-352.
    163.杜海军,赵德文,杜林秀,等.Q390高强低合金厚板控制轧制工艺[J].东北大学学报,2008,29(7):976-979.
    164.Thompson S W, Colvin D J, Krauss G. Continuous cooling transformations and microstructures in a low-carbon, high-strength low-alloy plate steels [J]. Metallurgical and Materials Transactions A,1990, 21(6):1493-1507.康永林.汽车轻量化先进高强钢与节能减排[J].钢铁,2008,43(6):1-7.
    165.Bai D Q, Yue S, Maccagno T M. Continuous cooling transformation temperatures determined by compression tests in low carbon bainitic grades [J]. Metallurgical and Materials Transactions A,1998, 29(3):989-1001.
    166.陈忠孝,陈字刚,徐绍山,等.M-A岛状组织对12N13MoV低温钢焊接热影响区的韧性的影响[J].大连铁道学院学报,1984,(1):13-26.
    167.Zhang X L, Zhuang C J, Ji L K. The relationship between characteristic parameters of high grade pipeline steel and its mechanical properties [C]. International seminar on application of high strength line pipe and integrity assessment of pipeline, xi'an,2006:267-274.
    168.王浩杰.高强度低合金管线钢中的组织对性能的影响[J].南钢科技与管理,2008,(4):8-11.
    169.赵惠,李智超.低碳奥氏体-马氏体双相不锈钢热处理工艺研究[J].辽宁工程技术大学学报,2004,23(2):41-45.
    170.鲁晓声.lOMnNiCrMoV钢低温冲击韧性的研究[J].材料开发与应用,2005,20(3):11-13.
    171.Kocatepe K, Cerah M, Erdogan M. The tensile fracture behaviour of intercritically annealed and quenched+tempered ferritic ductile iron with dual matrix structure [J]. Materials and Design,2007, 28(26):172-181.
    172.张明星,康沫狂.粒状贝氏体中残余奥氏体机械稳定性与强韧性关系[J].金属热处理学报,1993,14(1):14-19.
    173.杨福宝,白秉哲,刘东雨,等.无碳化物贝氏体马氏体复相高强度钢的组织与性能[J].金属学报,2004,40(3):296-300.
    174.捷列.合金结构钢[M].北京:冶金工业出版社,1956.
    175.Kamada A. K, Koshizuka N, Funakoshi T. Effect of austenite grain size and C content on the substructure and toughness of tempered martensite and bainite [J]. Trans. ISIJ,1976,16(8):407-416.
    176.北京研究总院,32SiMnMoV钢研究报告:1974.
    177.尚成嘉,杨善武,王学敏,等.低碳贝氏体钢的组织类型及其对性能的影响[J].钢铁,2005,40(4):57-61.
    178.于少飞,钱百年,国旭明.加速冷却对X70钢热影响区组织与韧性的影响[J]金属学报,2005,41(4):402-406.
    179.Wang C M, Wu X F, Liu J, Xu N A.. Study on M/A islands in pipeline steel X70 [J].Journal of University of Science and Technology Beijing,2005,12(1):43-47.
    180.张红梅,刘相华,王国栋,等.低碳贝氏体钢形变奥氏体的连续冷却相变研究[J].金属热处理学报,2000,21(4):35-40.
    181.于庆波,赵贤平,孙斌.高层建筑用钢板的屈强比[J].钢铁,2007,42(11):74-78.
    182.于浩,杨旭宁,龙建明,等.管线钢中M/A岛的作用及其控制[C].中国钢铁年会论文集,成都,2007:38-41.
    183.Krauss G, Thompson S W. Ferrite microstructure in continuously cooled low-and-ultralow-carbon steels [J]. ISIJ International,1995,35(8):937-938.
    184.Muddle B C. Microstructure in controlled-rolled low carbon microalloyed steels [J]. Accelerated Cooling/Direct Quenching of Steels,1997,18(9):125-134.
    185.杨旭宁,康永林,于浩,等.X70针状铁素体管线钢中M/A岛的工艺控制[J].轧钢,2007,24(4):7-10.
    186.赵明纯,单以银,肖福仁,等.管线钢中针状铁素体的形成及其强韧性的分析[J].材料科学与工艺,2001,9(4):356-358.
    187.Buchi G J P, Page J H R, Sidery M P. Creep properties and precipitation characteristics of 1% Cr-Mo-V steels [J]. J. Iron Steel Inst.,1965,203(3):291-299.
    188.王路兵,武会宾,任毅,等.终冷温度对X1O0管线钢组织与性能的影响[J].热加工工艺,2007,36(14):21-26.
    189.周民,杜林秀,衣海龙,等.高钢级管线钢DWTT性能的显微分析[C].第五届先进结构钢及轧制新技术国际研讨会,沈阳,2008:339-406.
    190.任毅,张帅,王爽.组织形貌对X80管线钢性能影响[J].北京科技大学学报,2007,29(8):798-802.
    191.Pontremoli M. Metallurgical and technological challenges for the development of high-performance X100-X120 linepipe steels [C]. Proc. Second Inter. Conf. on Advanced Structural Steels, Shanghai, 2004:39-45.
    192.Zhong Y, Xiao F R, Zhang J W. In Situ TEM study of the effect of M/A films at grain boundaries on crack propagation in an ultra-fine acicular ferrite pipeline steel [J]. Acta Materialia,2006,54(2): 435-443.
    193.杨阿娜,李自刚,季思凯.厚板Z向性能不合的夹杂物属性研究分析[J].宝钢技术,2007(2):13-17.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700