用户名: 密码: 验证码:
澳大利亚小桉树流化床快速热解的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
生物质热解是当前国际上生物质能研究的前沿技术之一。流化床快速热解技术由于具有高传热速率,一致的床层温度,较短的气相停留时间,可以抑制热解蒸气的二次裂解等优点,有利于提高生物油产量,因而受到广泛应用。该技术能以连续进料的工艺将生物质转化为高品质的易储存、易运输、能量密度高且使用方便的代用液体燃料(生物油)。小桉树是澳大利亚西澳州用于治理土地盐渍化而广泛种植在小麦条带间的一种灌木桉树,其具有耐干旱、成材迅速、产量大等优点。
     在以往的生物质热解实验研究中,人们更多的将研究的重点放在油产率的最大化,但是考虑到生物油的最终用途及其对油品质的要求,本文同时也研究了生物质热解的产物分布、热解生成的生物油的性质及化学组成。在实际工业生产中,包含植物的各部分(木质部分和树叶)的小桉树将会被整体送入反应装置中热解制油,因此分别研究清楚小桉树的木质部分和树叶的热解行为,以及各部分热解所生成的生物油的性质非常必要。
     基于此本论文依托澳大利亚第二代生物能源技术政府科研基金项目,在流化床热解反应器上较系统地研究了热解参数(热解温度、生物质粒度、生物质中碱金属和碱土金属的含量等)对小桉树各部分(木质部分和树叶)热解产物产率以及生物油化学组成的影响。主要包括以下研究内容和结论:
     1.本文在实验室规模流化床热解反应器上研究了温度(350-580℃)对小桉树木质部分热解产物的产率的影响,并通过热重分析、扫描电镜、生物油粘度测试、生物油元素分析、生物油的水含量测试、生物油热值测试等方法对小桉树木质部分原料和热解油进行了分析,探讨了温度对小桉树木质部分热解汕的物理性质和化学组成的影响,得出以下结论:热解温度对热解产物的产率有显著影响,热解温度在450℃时,生物汕的产率达到最大值(65%);在生物油产率最高的温度范围热解制得的生物油中木质素衍生的聚合物的含量最高,并且生物油的水含量最低,使得生物油的粘度最高,同时生物油的热值最高,品质最好,即获得生物油产率最高的热解温度范围与获得较高品质的生物油的温度范围完全吻合;在350-500℃的温度范围内,生物油产率随热解温度升高而增大主要是由生物油中的木质素聚合物(不溶于水不但溶于二氯甲烷组分)产率升高引起的。
     2.采用生物质流化床快速热解装置研究了生物质粒度对小桉树木质部分热解产率和热解油的组成及化学性质的影响,通过热重分析、生物油粘度测试、生物油的水含量测试、冷水萃取法、紫外荧光光谱方法等方法和技术对小桉树木质部分热解油进行了分析,得出以下结论:当生物质粒度从0.38mm增大到1.7mmm时,生物油的产率明显降低(约11-13%),生物焦和热解气的产率明显升高,分别升高8%和6%;当生物质的粒度从1.7mm继续增大到5.38mm时,生物质热解产物产率不再发生明显变化。生物油的粘度随粒径的变化规律正好与油产率的变化相一致,均随着生物质粒度的增大而降低;生物油中水含量随生物质粒度的增大而升高以及生物油中分子量较高的木质素聚合物的含量随生物质粒度的增大而降低是油粘度变化的原因;通过对不同粒度生物质热解制得的生物油的TGA族组分分析得到,生物质粒度越大,生物质热解油中轻组分产率越高,重组分产率越低。
     3.采用流化床快速热解装置研究了碱金属和碱土金属的脱除对小桉树木质部分热解产物产率和热解油的组成及化学性质的影响,通过热重分析、生物油粘度测试、生物油的水含量测试、冷水萃取法、紫外荧光光谱方法等方法和技术对小桉树木质部分热解油进行了分析,得出以下结论:生物质中的AAEM在生物质中以水可脱除的和水不可脱除但酸可脱除两种形式存在;经过水洗和酸洗预处理的后生物质热解产率均没有明显变化,但是生物油的组成却发生明显变化,尤其是水不可脱除但酸可脱除的AAEM对生物油组成的影响显著;生物质中的AAEM的脱除(尤其是水不可脱除但酸可脱除的AAEM),会导致生物油中糖类和木质素聚合物等重组分的含量增加,以及水和轻组分含量的下降,造成生物油粘度增加,使生物油变“重”。
     4.由于树叶热解制得的蒸气与最终冷凝所得的生物汕与木质部分热解所得的蒸气及生物油相比,具有更高的粘结性,很容易造成生物油冷凝和收集系统的堵塞。针对这个问题,本实验对原装置的冷凝系统进行了设计和改造。
     在改造后的反应器上对小桉树树叶在不同温度下(300-580℃)的热解行为进行了研究。采用Karl-Fisher水分测定仪、冷水萃取法、旋转粘度计、热重分析仪、傅里叶变换红外光谱、气相色谱-质谱联用、紫外荧光光谱等对生物质油进行分析。实验结果表明小桉树的树叶和木质部分均可通过热解实现较高的油产率,成为生物能源的优质原料。小桉树树叶在各温度下热解油产率均低于小桉树木质部分热解油产率。小桉树树叶热解油的产率在热解温度为400-450℃达到最大值,为52.6%。树叶热解油中的水不溶组分含量远高于木质部分热解油。桉脑油是桉树树叶热解液体产物中特有的且含量最丰富的单体化合物。在小桉树树叶热解油中源自纤维素和半纤维素的化合物(左旋葡聚糖、酸类和醛类)产率也低于木质部分热解油中相应化合物。树叶热解的生物焦产率高于木质部分,原因是由于桉树树叶中含量较高的“萃取物”所致。小桉树树叶热解油的芳香性随着热解温度的升高而增加。
Biomass pyrolysis is one of the cutting-edge technologies for the research of bio-energy in the world. Fluidised-bed fast pyrolysis technology has advantages such as high heat transfer rate, uniform bed temperature, short residence time to inhibit second cracking, etc. so has been widely used in the biomass pyrolysis research to obtain high bio-oil yield. Fluidised-bed fast pyrolysis technology can convert biomass into high quality liquid fuel (bio-oil) using continual feeding. Mallee biomass is grown in Australia to combat the existing salinity problem in the Western Australian wheat belt, due to its performance in fast growing, high yield and drought tolerance.
     In the past research on biomass pyrolysis, a lot of work has been done in maximizing bio-oil yield. However, considering the final use and its request for the oil quality, pyrolysis products distribution, property and chemical composition of bio-oil have been intensively studied in this thesis. For practical production facility, the entire tree (including woody trunk and leaves) will be delivered in the reactor to produce biofuels. Understanding the pyrolysis behaviour of woody trunk and leaves would thus be an important aspect of the biofuel technology development. Based on above described necessarity, the effects of pyrolysis parameters (temperature, particle size of biomass, the removal of AAEM) on mallee woody trunk and leaves pyrolysis products yield and bio-oil composition have been systematically studied. The main research work and conclusions are listed as following:
     1. This paper presents an investigation of the effect of temperature on yield of pyrolysis products and bio-oil property through characterization method of thermogravimetric analysis, scanning electron microscope, viscosity analysis, elemental analysis, water content analysis and heating value analysis. The research results show that the yields of pyrolysis products were significantly influenced by the pyrolysis temperature. The maximum yield of bio-oil and minimum content of water in bio-oil were achieved at the same pyrolysis temperature range (450-475℃). It was shown that the conditions for maximizing bio-oil yield also led to the formation of the largest amounts of small lignin-derived oligomers as a part of bio-oil, resulting in a bio-oil with the highest viscosity and highest heating value. The increases in oil yield with increasing temperature from350to500℃were mainly due to the increases in the production of lignin-derived oligomers insoluble in water but soluble in CH2C12.
     2. The effect of particle size on yield of pyrolysis products and bio-oil propoty was studied in a fluidized-bed reactor, and the bio-oil was analyzed by technologies/method of thermogravimetric analysis, UV-fluorescence spectroscopy, viscosity analysis, water content analysis and cold water precipitation analysis. The research results show that the yield of bio-oil decreased as the average biomass particle size was increased from0.3to about1.5mm. Further increases in biomass particle size failed result in any further decreases in the pyrolysis products yield. The viscosity of bio-oil decrease with increasing particle size as well, which paralled the changing trend of bio-oil yield. The increase of water content in bio-oil and and the decrease of the content lignin derived oligmor with increasing particle size could explain the changing trend of bio-oil viscosity. It can be learned from the TGA analysis of the bio-oil that the biomass with larger particle size could result in higer yield of light components in bio-oil.
     3. The effects of inorganic species in biomass, especially the alkali and alkaline earth metallic (AAEM) species (K, Na, Mg and Ca) on the yield and property of bio-oil from the pyrolysis of biomass was investiated. The bio-oil was characterized by thermogravimetric analysis, UV-fluorescence spectroscopy, viscosity analysis, water content analysis and cold water precipitation analysis. The research results show that AAEM species exist in the wood in two different forms:water-soluble and water-insoluble but acid-soluble. The removal of AAEM species did not result in significant changes in the yields of bio-oil and bio-char. However, the bio-oil properties, e.g.viscosity, were drastically affected by the removal of AAEM species. The water-soluble AAEM species were not as important as the waterinsoluble but acid-soluble AAEM species in influencing the bio-oil composition and properties. It is believed that the acid-soluble AAEM species (especially Ca) were more closely linked with the organic matter in biomass and thus were closely involved in the reactions during pyrolysis. The removal of AAEM species, especially the acid-soluble AAEM species, led to very significant increases in the yields of sugars and lignin-derived oligomers, accompanied by decreases in the yields of water and light organic compounds in the bio-oil.
     4. The viscous nature of the bio-oil from the pyrolysis of leaves cause the bio-oil condensation and collection system to block easily, necessitating modifications to ensure uninterrupted pyrolysis experiments.
     The pyrolysis behaviour of mallee leaves at different temperatures has been studied using a modified fluidised-bed reactor. The bio-oils have been characterised with Karl Fischer titration, TGA, UV-fluorescence spectroscopy, FTIR spectroscopy and GC-MS. These results show that the yields and composition/properties of bio-oils from leaves are quite different from those obtained from the pyrolysis of the woody fraction of the same mallee tree species. Both wood and leaves give good yields of bio-oils and therefore are suitable feedstocks for biofuel production. Notably, the amount of water-insoluble compounds present in leaf bio-oils occur in much higher concentration than in wood bio-oils. Eucalyptol is the most abundant simple compound identified in the liquid product. Char yields of leaves are also higher than the woody fraction, partly due to the increased fraction of "extractives", which include other compounds not included in the usual classification of woody biomass.
引文
[1]陈少雄,刘杰锋,孙正军,吴志华,桉树生物质能源的优势、现状和潜力[J],,生物质化学工程,2006,40(z1)119-128
    [2]王效平,澳大利亚几种灌木桉树引种栽培及耐旱性能的基础研究[D],呼和浩特,内蒙古农业大学,2006
    [3]祁述雄,中国桉树[M],北京,中国林业出版社(第二版),2002
    [4]Jacobs M R,桉树栽培[M],意大利,罗马,联合国粮农组织,1981
    [5]洪菊升,王豁然,澳大利亚阔叶树研究[C],中国林业出版社,北京,1993
    [6]John Bartle, Gary Brennan, Australian Low Rainfall Tree Improvement Group, Mallee Genotype /Environment Interaction [M], RIRDC Publication,2002
    [7]DRAFT, Mallee Cropping Code of Practice [M], Western Australia,2002
    [8]M.I.H.Brooker, D.A.Kleinig, Field Guide to Eucalypts South-western and Southern Australia [M], Volume 2, Second Edition.Bloomings Books,2001
    [9]Norman Hall, R.D.Johnston, Forest trees of Australia [M], Australian government publishing Service, Canberra,1970
    [10]Noble JC, Bradstock RA, Mediterranean landscapes in Australia:mallee ecosystems and their management[M],1989, Melbourne, CSIRO,168-180
    [1]蒋思臣,何光设,生物质热分解技术比较研究[J],可再生能源,2006,4:58-62
    [2]陈军,陶占良,能源化学[M],北京,化学工业出版社。2004:206-207
    [3]苏亚欣,毛玉如,赵敬德,新能源与可再生能源概论[M].北京,化学工业出版社,2006:90-94
    [4]Bridgewaster A V. Peacocke G V. Fast Pyrolysis Processes for Biomass, Renewable &Sustainable Energy Reviews.2000. (4):1-73
    [5]Bridgewaster A. Cottam M L. Opportunities for Biomass Pyrolysis Liquids Production and Upgrading. Energy & Fuels,1992,6(2):113-120
    [6]曹有为,王述洋,国内生物质热解技术的研究进展探究[J],林业劳动安全,2005,18(2):24-26
    [7]苗真勇,厉伟,顾永琴。生物质快速热解技术研究进展[J],节能与环保,2005,(2):13-15
    [8]翟秀静,刘奎仁,韩庆,新能源技术[M],北京,化学工业出版社,2005,266-271
    [9]Bridgwater A V, Towards The Bio-refinery-Fast Pyrolysis of Biomass[J]. Renewable Energy World, 2001,(1):66-83
    [10]Rowell R M, The Chemistry of Solid Wood, American Chemical Society, Washington, DC,1984.
    [11]李传统,新能源与可再生能源技术[M],江苏,东南大学出版社,2005:116-117
    [12]Mohan D, Pittman C U, Steele PH, Pyrolysis of wood/biomass for bio-oil:a critical review, Energy & Fuels 2006,20:848-89
    [13]马承荣,肖波,杨家宽,生物质热解影响因素分析[J],环境技术,2005,5:10-12
    [14]Tang W K, Neill W K, Polym Sci[J], Part C:Polym, Symp,1964,6,65-81
    [15]Soltes E J, Elder T J, Pyrolysis, In Organic Chemicals from Biomass, Goldstein I S, Ed, CRC Press: Boca Raton, FL,1981, pp 63-95
    [16]Bradbury A G W, Saka Y, Shafizadeh F, et al, A kinetic model for pyrolysis of cellulose[J], J Appl Polym Sci,1979,23:3271-3280
    [17]Varhegyi G, Szabo P. Mokwa L, et al, Kinetics of the thermal decomposition of cellulose in sealed vessels at elevated pressures:Effects of the presence of water on the reaction mechanisim[J]. J Anal Appl Pyrolysis,1993,26:159-174
    [18]Alen R, Ruoppala E, Oeson P, Formation of tile main degradation compound groups from wood and its components during pyrolysis[J],J Anal Appl Pyrol,1996,6:137
    [19]Nunn T R, Howard J B, Longwell J P, et.al. Product composition and kinetics in the rapid pyrolysis of milled wood lignin[J], Ind Eng Chem Process Des Dev,1985,24:844
    [20]Latridis B, Gavalas G R, Pyrolysis of a precipitated kraft lignin[J].lnd Eng Chem Process Des Dev, 1979,18:127-129
    [21]Koufopanos C A. Mascjion G. Lucchesi A, Pyrolysis kinetics of wood and wood components[J], Can J Chem Eng,1989,7,67-75
    [22]Liu N A, Fan W C. Lin Q Z. Thermogravimetric analysis on global mass,loss kinetics of leaf, bark and wood pyrolysis in air atmosphere[J] Fire Safety Science,2001,10(3):125-134
    [23]车德勇,国文学。王攀,等,程序升温下生物质混合物热解过程实验研究[J],东北电力学院报,2006,25(6):25-29
    [24]谢克昌,刘生玉,热解/红外光谱联用技术用于热解反应的快速检测[J],分析化学,2003,31(4):501-504
    [25]鲍卫仁,曹青,吕水康,生物质玉米芯热解机理研究[J],煤炭转化,2004,3(27):93-97
    [26]王君,张明旭,陈明强,等.3种生物质的裂解特性及动力学模型[J],煤炭学报,2007,32(4):194-197
    [27]曾凯斌,蒋斌波,陈纪忠,竹材热解过程的动力学[J],化丁学报,2006,2(57):3]8-323
    [28]张瑞霞,仲兆平,黄亚继,生物质热解液化技术研究现状[J],节能,2008,27(6):16-19
    [29]孔晓英,武书彬,农林废弃物热解液化机理及其主要影响因素[J],造纸科学与技术,200120(5):22-26
    [30]刘荣厚,牛卫生,张大雷,生物质热化学转换技术[M],北京,化学工业出版社,2004
    [31]王富丽,黄世勇,宋清滨,等,生物质快速热解液化技术的研究进展[J],广西科学院学报,2008,24(3):225-230
    [32]Manuel G P, Wang X S, Shen j, et.al,1. Fast pyrolysis of oil mallee woody biomass:Effect of temperature on the yield and quality of pyrolysis products[J], Industrial & Engineeering chemistry research,2008,47(6):1846-1854
    [33]Akwasi A B, Mullen C A, Goldberg N M, Production of bio-oil from alfalfa stems by fluidized-bed fast pyrolysis[J], Industrial & Engineeering chemistry research,2008,47(12): 4115-4122
    [34]刘荣厚,栾敬德,榆木木屑快速热裂解主要工艺参数优化及生物油成分的研究[J],农业工程学报,2008,24(5):187-190
    [35]Boukis I, Gyftopoulou M E, Papamichael I, Progress in Thermochemical Biomass Conversion[M]. Oxford, Blackwell Publishing Ltd..2001:25-32
    [36]Velden M V, Baeyens J, Boukis I, Modeling CFB biomass pyrolysis reactors[J],Biomass Bioenergy,2008,32(2):128-139
    [37]LeDe J, Comparison of contact and radiant ablativepyrolysis of biomass[J]. Journal of Analytical and Applied Pyrolysis,2003,70(3):601-618
    [38]Bridgwater A V, The production of biofuels and renewable chemicals by fast pyrolysis of biomass[J], International Journal of Global Energy Issues.2007,27(2):160-203
    [39]LeDe J, Brous F, Ndiaye F T, Properties of bio-oils produced by biomass fast pyrolysis in a cyclone reactor [J], Fuel,2007,86(12/13):1800-1810
    [40]李滨,转锥式生物质闪速热解装置设计理论及仿真研究[D],哈尔滨,东北林业大学博士学位 论文,2008
    [41]杜洪双,常建民,王鹏,等,木质生物质快速热解生物油产率红影响因素分析[J],林业机械与木工设备,2007,35(3):16-21
    [42]Chen M Q. Wang J. Zhang M X, Catalytic effects of eight inorganic additives on pyrolysis of pine wood sawdust by microwave heating[J]. Journal of Anlalytical and Applied Analysis,2008,82(1): 145-150
    [43]Adisak P. James O T. Bridgewater A V. Evaluation of catalytic pyrolysis of cassava rhizome by principal component analysis[J]. Fuel,2010,89(1):1-10
    [44]白鲁刚,颜涌捷,李庭深,媒与物质共液化的催化反应[J],化工冶金,2000,21(2):198-203
    [45]陈吟颖,生物质与煤共热解试验研究[D],北京,华北电力大学博士学位论文,2007
    [46]Miura M, Kaga H, Youshida T, Microwave pyrolysis of cellulosic materials for the production of anhydrosugars[J], The Japan Wood Research Society,2001,47(6):502-506
    [47]Miura M. Kaga H, Sakural I A, Rapid pyrolysis of wood block by microwave heating[J], Journal of Anlalytical and Applied Analysis,2004,71(1):187-199
    [48]商辉,Kingman S, Robinson J,微波热裂解木屑的基础研究[J],生物质化学工程,2009,43(6):18-22
    [49]Wan Y Q, Chen P, Zhang B, Microwave-assisted pyrolysis of biomass:Catalysts to improve product selectivity [J], Journal of Anlalytical and Applied Analysis,2009,86(1):161-167
    [50]易维明,柏雪源,何芳,等,利用热等离子体进行生物质液化技术的研究[J],山东工程学院学报,2000,14(1):9-12
    [51]李志合,易维明,李永军,等离子体加热流化床反应器的设计与实验[J],农业机械学报,2007,38(4):66-68
    [52]修双宁,易维明,李保明,秸秆类生物质闪速热解规律[J],太阳能学报,2005,26(4):538-542
    [53]栾敬德,刘荣厚,武丽娟,等,生物质快速热裂解制取生物油的研究[J],农机化研究,2006(12):206-210
    [54]Garcia-Perez M, Chaala A, Yang J, Roy C. Co-pyrolysis of Sugarcane Bagasse with Petroleum Residue, Part Ⅰ:Thermogravimetric Analysis, Fuel 2001,80,1245.
    [55]Australian Government National Land & Water Audit. Dryland Salinity in Australia-Key Findings, http://www.anra.gov.au/topics/publications/fast_facts/pubs/21-fastfact.pdf
    [56]Bell SJ, Barton AFM, Stocker LJ. Agriculture for health and profit in Western Australia:The western oil mallee project. Ecosystem Health 2001;7:116-121.
    [57]Bartle J, Olsen G, Carslake J, Cooper D. Acacia species as large-scale crops in the Western Australian wheatbelt. Conservation Science Western Australia Journal 2002;4(3):96-108.
    [58]Zohar Y, Di Stefano J, Bartle J. Strategy for screening eucalypts for saline lands. Agroforestry Systems 2010;78:127-137.
    [59]Bartle JR, Abadi A. Toward sustainable production of second generation bioenergy feedstocks. Energy & Fuels 20 10:24:2-9.
    [60]Bartle J. Olsen G. Cooper D. Hobbs T. Scale of biomass production from new woody crops for salinity control in dryland agriculture in Australia. International Journal of Global Energy Issues 2007:27:115-137.
    [61]Guell AJ, Li C-Z, Herod AA, Stokes BJ, Hancock P. Kandiyot R. Effect of H2-pressure on the structures of bio-oils from the mild hydropyrolysis of biomass. Biomass & Bioenergy 1993;5:155-171.
    [62]Peacocke GVC. Madrali ES. Li C-Z. Guell AJ. Wu F. Kandiyoti R. Bridguater AV. Effect of reactor contiguration on the yields and structures of pine-wood derived pyrolysis liquids - a comparison between ablative and wire-mesh pyrolysis. Biomass & Bioenergy 1994;7:155-167.
    [63]Bridgwater AV, Meier D, Radlein D. An overview of fast pyrolysis of biomass. Organic Geochemistry 1999;30:1479-1493.
    [64]Boucher ME. Chaala A, Roy C. Bio-oils obtained by vacuum pyrolysis of softwood bark as a liquid fuel for gas turbines. Part I: Properties of bio-oil and its blends with methanol and a pyrolytic aqueous phase. Biomass & Bioenergy 2000; 19:337-350.
    [65]Janse AMC, Westerhout RWJ, Prins W. Modelling of flash pyrolysis of a single wood particle. Chemical Engineering and Processing 2000;39:239-252.
    [66]Garcia-Perez M, Wang XS, Shen J, Rhodes MJ, Tian FJ, Lee WJ, Wu HW, Li C-Z. Fast pyrolysis of oil mallee woody biomass: effect of temperature on the yield and quality of pyrolysis products. Industrial & Engineering Chemistry Research 2008;47:1846-1854.
    [67]Garcia-Perez M, Wang S, Shen J, Rhodes M, Lee WJ, Li C-Z. Effects of temperature on the formation of lignin-derived oligomers during the fast pyrolysis of mallee woody biomass. Energy & Fuels 2008;22:2022-2032.
    [68]Shen J, Wang XS, Garcia-Perez M, Mourant D, Rhodes MJ, Li C-Z. Effects of particle size on the fast pyrolysis of oil mallee woody biomass. Fuel 2009;88:l 810-1817.
    [69]Scott DS, Paterson L, Piskorz J, Radlein D. Pretreatment of poplar wood for fast pyrolysis: Rate of cation removal. Journal of Analytical and Applied Pyrolysis 2001 ;57:169-176.
    [70]Di Blasi C. Galgano A. Branca C. Influences of the chemical state of alkaline compounds and the nature of alkali metal on wood pyrolysis. Industrial & Engineering Chemistry Research 2009;48:3359-3369.
    [71]Fahmi R, Bridgwater A, Donnison I, Yates N, Jones JM. The effect of lignin and inorganic species in biomass on pyrolysis oil yields, quality and stability. Fuel 2008;87:1230-1240.
    [72]Lievens C, Carleer R, Comelissen T. Yperman J. Fast pyrolysis of heavy metal contaminated willow: Influence of the plant part. Fuel 2009;88:1417-1425.
    [73]Stals M. Thijssen E. Vangronsveld J. Carleer R, Schreurs S, Yperman J. Flash pyrolysis of heavy metal contaminated biomass from phytoremediation: Influence of temperature, entrained flow and wood/leaves blended pyrolysis on the behaviour of heavy metals. Journal of Analytical and Applied Pyrolysis 2010;87:1-7.
    [74]Vlilthorpe PL. Brookcr MIH. Slee A. Nicol HI. Optimum planting densities for the production of eucalyptus oil from blue mallee (eucalyptus polybractea) and oil mallee (e-kochii). Industrial Crops and Products 1998;8:219-227.
    [75]Bartle J, Auslmm. New non-food crops and industries for australian dryland agriculture, in Green processing 2006. 2006. p. 63-68.
    [76]Li CZ. Wu F. Cai HY, Kandiyoti R. UV-fluorescence spectroscopy of coal 585 pyrolysis tars. Energy Fuels 1994;8:1039-48.
    [77]Lievens C. Mourant D. He M. Gunawan R. Li X. Li CZ. An FT-IR spectroscopic study of carbonyl functionalities in bio-oils. Fuel 2011:90:3417-23.
    [78]Oasmaa A, Kuoppala E, Gust S, Solantausta Y. Fast pyrolysis of forestry residue. 1. Effect of extractives on phase separation of pyrolysis liquids. Energy Fuels 2003; 17:1 — 12.
    [79]Oasmaa A, Kuoppala E, Solantausta Y. Fast pyrolysis of forestry residue. 2.Physicochemical composition of product liquid. Energy Fuels 2003; 17:433—43.
    [80]Lievens C, Mourant D, Gunawan R, Li X. Li CZ. FT-IR carbonyl bands of bio-oils: iportance of water. Fuel 2012. http://dx.doi.Org/10.1016/j.fuel.2012.01.04.
    [81 ]Mohamed Abdel Raouf, R. Christopher Williams. Determination of Pre-Treatment Procedure Required for Developing Bio-Binders from Bio-Oils [S]. Proceedings of the 2009 Mid-Continent Transportation Research Symposium, Ames, Iowa, August 2009.
    [82]Sheng Tang, R. Christopher Williams. Antioxidant Effect of Bio-Oil Additive ESP on Asphalt Binder[J]. Proceedings of the 2009 Mid-Continent Transportation Research Symposium, Ames, Iowa, August 2009.
    [83]Ronald Christopher WILLIAMS, Mohamed Abdel Raouf MOHAMD METWALLY, Robert C. Brown. Bio-oil formulation as an asphalt substitute: United States, US 2011/0294927 Al[P].Dec.l,2011.
    [84]Kersten SRA, Wang XQ, Prins W, van Swaaij WPM. Biomass pyrolysis in a fluidized bed reactor. Part 1: literature review and model simulations. Ind Eng Chem Res 2005;44:8773-85.
    [85]Wang XQ, Kersten SRA, Prins W, van Swaaij WPM. Biomass pyrolysis in afluidized bed reactor. Part 2: experimental validation of model results. Ind Eng Chem Res 2005:44:8786-95.
    [86]Kang BS. Lee KH, Park HJ, Park YK, Kim JS. Fast pyrolysis of radiata pine in a bench scale plant with a fluidized bed: influence of a char separation system and reaction conditions on the production of bio-oil. J Anal Appl Pyrol 2006;76:32-7.
    [87]Onay O, Kockar OM. Pyrolysis of rapeseed in a free fall reactor for production of bio-oil. Fuel 2006:85:1921-8.
    [88]Sensoz S, Angin D, Yorgun S. Influence of particle size on the pyrolysis of rapeseed (Brassica napus L.): fuel properties of bio-oil. Biomass Bioenergy 2000:19:271-9.
    [89]Onay O, Kockar OM. Production of bio-oil from biomass: slow pyrolysis of rapeseed (Brassica napus L.) in a fixed-bed reactor. Energy Sources 2003;25:879-92.
    [90]A tes F, Putun E, Putun AE. Fast pyrolysis of sesame stalk: yields and structural analysis of bio-oil. J Anal Appl Pyrol 2004:71:779-90.
    [91]Uzun BB. Putun AE. Putun E. Fast pyrolysis of soybean cake: product yields and compositions. Bioresour Techno! 2006:97:569-76.
    [92]Sensoz S. Demiral I. Gercel HF. Olive bagasse (Olea europea L.) pyrolysis. Bioresour Technol 2006;97:429-36.
    [93]Uzun BB. Putun AE. Putun E. Rapid pyrolysis of olive residue. 1. Effect of heat and mass transfer limitations on product yields and bio-oil compositions. Energy Fuels 2007:21:1768-76.
    [94]Kersten SRA. Wang XQ. Prins W. van Swaaij WPM. Biomass pyrolysis in a lluidized bed reactor. Part 1: literature review and model simulations, hid EngChem Res 2005:44:8773-85.
    [95]Boroson ML, Howard .IB, Longwell .IP, Peters WA. Heterogeneous cracking ofwood pyrolysis tars over fresh wood char surfaces. Energy Fuels 1989;3:735-40.
    [96]Di Blasi C. Modeling intra- and extra-particle processes ofwood fast pyrolysis. Aiche J 2002;48:2386-97.
    [97]Fraga AR. Gaines AF, Kandiyoti R. Characterization of biomass pyrolysis tarsproduced in the relative absence of extraparticle secondary reactions. Fuell991;70:803—9.
    [98]Okuno T, Sonoyama N, Hayashi J, Li C-Z, Sathe C, Chiba T. Primary release ofalkali and alkaline earth metallic species during the pyrolysis of pulverizedbiomass. Energy Fuels 2005; 19:2164-71.
    [99]Brackmann C, Alden M, Bengtsson P-E, Davidsson KO, Pettersson JB. Opticaland mass spectrometric study of the pyrolysis gas ofwood particles. ApplSpectrosc 2003;57:216-22.
    [100]Keown DM, Favas G, Hayashi J-I, Li C-Z. Volatilization of alkali and alkalineearth metallic species during the pyrolysis of biomass: differences betweensugar cane bagasse and cane trash. Bioresour Technol 2005;96:1570-7.
    [101]Sathe C, Pang Y, Li C-Z. Effects of heating rate and ion-exchangeable cations onthe pyrolysis yields from a Victorian brown coal. Energy Fuelsl999;13:748-55.
    [102]Li C-Z. Some recent advances in the understanding of the pyrolysis andgasification behaviour of Victorian brown coal. Fuel 2007;86:1664-83.
    [103]Sipila K, Kuoppala E, Fegernas L, Oasmaa A. Characterization of biomass flashpyrolysis oils. Biomass Bioenergy 1998; 14:103-13.
    [104]Scholze B. Meier D. Characterization of the water-insoluble fraction frompyrolysis oil (pyrolytic lignin). Part I. Py-GC/MS, FTIR, and functional groups. JAnal Appl Pyrol 2001 ;60:41-54.
    [105]Scholze B. Hanser C, Meier D. Characterization of the water insoluble fractionfrom fast pyrolysis liquids (pyrolytic lignin). Part Ⅱ. GPC, carbonyl groups ad 13C NMR. J Anal Appl Pyrol 2001:58:387-400.
    [106]French RJ. Milne TA. Vapor phase release of alkali species in the combustion of biomass pyrolysis oils. Biomass and Bioenergy 1994;7:315-325.
    [107]Fahmi R, Bridgwater A, Donnison I, Yates N, Jones JM. The effect of lignin andinorganic species in biomass on pyrolysis oil yields, quality and stability. Fuel2008;87:1230-1240.
    [108]Ponder GR, Richards GN. Mechanisms of pyrolysis of polysaccharides .7.Pyrolysis of some13-labeled glucans - a mechanistic study.. CarbohydrateResearch 1993:244:27-47.
    [109]Dobele G. Rossinskaja G. Dizhbite T. Telysheva G. Meier D. Faix O.Application of catalysts for obtaining 1.6-anhydrosaccharides from cellulose and wood by fast pyrolysis. J. Anal. Appl. Pyrolysis 2005;74:401-405.
    [110]Scott, D. S.; Majerski. P.; Piskorz. J.; Radlein. D. A second look at fast pyrolysis of biomasssThe RTI process. J. Anal. Appl. Pyrolysis 1999. 51-23.
    [111]Wang. X.; Kersten. S. R. A.; Prins. W.: van Swaaij. W. P. M.Biomass Pyrolysis in a Fluidized Bed Reactor. Part 2: Experimental Validation of Model Results. Ind. Eng. Chem. Res. 2005. 44. 8786.
    [112 J Garcia-Perez. M.; Chaala. A.: Pakdel. H.: Roy. C. SugarcaneBagasse Vacuum Pyrolysis. J. Anal. Appl. Pyrolysis 2002. 65, 111.
    [113]Agblevor F. A, BeslerS, Wiselogei. A. E. Fast Pyrolysis of StoredBiomass Feedstocks. Energy Fuels 1995,9,635.
    [114]Boroson, M. L.; Howard, J. B.; Longwell, J. P.; Peters, W. A.Heterogeneous cracking of wood pyrolysis tars over fresh wood char surfaces. Energy Fuels 1989, 3, 735.
    [115]Kersten, S. R. A.; Wang, X.; Prins, W.; van Swaaij, W. P. M.Biomass Pyrolysis in a Fluidized Bed Reactor: Part 1: Literature Review and Model Simulations. Ind. Eng. Chem. Res. 2005, 44, 8773.
    [116]Wang, X.; Kersten, S. R. A.; Prins, W.; van Swaaij, W. P. M.Biomass Pyrolysis in a Fluidized Bed Reactor. Part 2: Experimental Validation of Model Results. Ind. Eng. Chem. Res. 2005, 44, 8786.
    [117]Diebold, P. E. Review of the Chemical and Physical Mechanismsof the Storage Stability of Fast Pyrolysis Bio-oils. In Fast Pyrolysis ofBiomass: A Handbook; CPL Press: Berks, U.K., 2002; Volume 2, Chapter 11.
    [118]Oasmaa, A.; Leppamaki, E.; Koponen, P.; Levander, J.; Topala,E. Physical characterization of biomass-based pyrolysis liquids. Applicationof Standard Fuel Oil Analyses; VTT Publications 306; VTT Publications: VTT, Finland, 1997.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700