用户名: 密码: 验证码:
基于低浓煤层气CH_4/N_2吸附分离微孔材料的合成及其性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
气体能源作为洁净的低碳燃料是全球现今和未来一段时间内重要的能源方式。随着各种非常规天然气(如煤层气和页岩气)相继开发,其在净化分离、富集和储运方面面临诸多需要突破与开发科学问题和技术瓶颈,尤其是在低浓煤层气富集时,CH4/N2成为一对较难分离的气体组合。吸附分离技术以其分离高效和能耗低等优点成为工业上普遍运用的手段,但在低浓煤层气CH4/N2分离中,寻找和开发高效选择性分离吸附剂将是一项长期而复杂的课题。
     微孔材料在作为吸附剂时具有气体吸附特性和面对较难分离的气体组合CH4/N2时表现出的优势,因此本文选择了微孔分子筛和新型微多孔材料金属有机骨架(MOFs)两类材料作为研究内容:从中等硅铝比的小孔沸石分子筛到高硅的憎水性沸石分子筛,从二维的柔性MOFs材料到三维大孔的MIL-101。研究了微孔材料的合成与表征,测试了高压下CH4和N2的吸附特性,分析了作为吸附剂对CH4和N2的吸附选择性。主要研究内容和结论包括:
     (1)分子筛具有均一的孔结构和离子调变多样性使之成为吸附分离领域研究的热点。具有气体直径级别的小孔CHA (Si/Al=2.6)和KFI(Si/Al=4.6)系列中硅分子筛通过水热合成与Na+、Li+和Ca2+交换得到,通过XRD,SEM和元素分析对所制备分子筛进行了表征和分析。实验结果发现具有较低硅铝比的K-CHA中有较多的平衡离子可以交换,因此比表面变化也相对较大;相比而言,K-KFI中硅铝比略高一些,离子交换后比表面变化较小一些。高压下测试研究了CH4和N2在几种分子筛的吸附特性,发现经过Li+和Na+交换的分子筛具有较大的比表面和吸附容量;而K+的存在使的微孔分子筛的孔道堵塞较严重,因此吸附量和比表面较低。通过单组分吸附曲线计算了CH4/N2的选择分离性,从平衡吸附选择性角度分析,经K+交换的分子筛对CH4的吸附较强,因此对于CH4/N2吸附分离效果较好,而Na+和Li+次之。因此对与一价金属离子的分子筛具有的吸附势能顺序为K+>Na+>Li+,较大直径的离子表现出更好的效果。而二价Ca2+交换后使得离子的总数量减少,因此分离效果不明显。
     (2)鉴于高硅沸石分子筛的憎水性和较为“光滑均衡”(含微量平衡离子)的表面势能,因此三个具有微孔结构,主孔道分别为8-10-12元环的高硅分子筛DDR (Deca-dodecasil3R), MFI (Silicalite-1)和BEA (Beta)通过水热方法被合成出来,硅铝比(Si/Al)依次为285,1555和55。XRD,TG和CHN分别对分子筛活化前后进行了详细的表征,确认处理后的分子筛有机物脱除率均在90%以上,而且结构非常稳定。水蒸气吸附测试也表明了所合成并处理过的样品为憎水性吸附材料。分析了三个材料对CH4和N2的吸附性能,并利用单组分气体吸附曲线计算了高硅沸石分子筛对于CH4/N2的分离系数。发现具有10元环主孔道的Silicalite-1具有较高的分离系数,源于它具有最适合的CH4吸附孔径和最高的微孔而积比率。与其他类型材料相比发现所选择的高硅微孔分子筛对CH4/N2的分离系数均高于低硅沸石LTA(5A)分子筛。混合气体穿透性分离实验也显示高硅Silicalite-1具有较好的分离效果。
     (3)鉴于柔性MOFs材料在吸附方面特性,本研究选择两个具有不同层间距的二维柔性MOFs材料[Cu(dhbc)2(bpy)]·H2O]不[Cu(BF4)2(bpy)2],室温下通过金属铜和两种不同结构类型的有机配体配合而成。考察了二维柔性MOFs材料在室温(298K),冰点(273K),干冰(195K)和液氮(77K)四个温度状态下对CH4和N2的吸附性能。首先柔性材料的开口压力随着温度降低而降低,在所测试条件下,CH4和N2在两个柔性材料上均出现开口吸附;其次实验数据显示气体分子可以比较轻松的吸附进入层间距较大的柔性MOFs材料,而当材料的层间距较小时,气体吸附需要更高的压力和更低的温度。此外,层间距较大时,必然依靠较多的有机配体支撑,这些有机配体在气体吸附过程中同时阻挡了更多的分子扩散进入,因此吸附量较小综合分析吸附数据,发现开口压力使柔性MOFs材料表现出了很大的吸附差异,具有特殊的“压力”选择性。尤其当温度降低到干冰温度时,材料在常压下对CH4/N2吸附比会上升到42,远高于已报道材料性能,预示了很好的CH4/N2分离效果.
     (4)具有三维结构和较大孔径(2-3nm)的MOFs材料MIL-101是迄今为止报道的具有较高比表面的材料之一,其中Langmuir比表面高达5900m2/g,对于气体的吸附储存具有一定优势。本研究中通过不同于前人酸性溶液体系(加入氢氟酸)合成出了高纯度的MIL-101(Cr),采用加入碱性溶液的合成体系TMAOH-Cr(NO3)3·H2BDC-H2O,命名为MIL-101TM。这种加入碱性溶液的方法可以抑制原料中H2BDC在反应过程中的重结晶,从而使得到的样品分离难度降低,样品纯度较高,88%的产率高于文献报道的50%产率。另外,测试了高纯度大孔径MIL-101TM在高压下的CH4吸附储存容量,并且与其他两种加入氢氟酸和纯水溶剂的方法进行了对比分析。在经过同样的样品处理方法和活化处理条件下,实验结果发现MIL-101TM在1.8MPa下的CH4吸附储存容量为132.5cm3/g-273K和92.5cm3/g-303K高于MIL-101F-的数据115cm3/g-273K和89.6cm3/g-303K。
Gas energy is a clean and low-carbon fuels, which becomes an promising energy form of energy in the world now and in the future. Nowdays a variety of unconventional gas (such as coalbed methane and shale gas) have been developed, however, there is scientific problems and the technical bottleneck in terms of purification separation, enrichment, storage and transportation. For example, it is extremely difficult to separate methane and nitrogen under low concentration of coalbed methane enrichment conditions.
     (1) We prepared several different surfaces on small pore zeolites by hydrothermal synthesis and ion exchange (Li+, Na+and Ca2+) based on three basic gas diameter grade structures of zeolites:KFI (3.9×3.9A), CHA (3.8×3.8A) and LEV (3.6×4.8A), which were characterized by XRD, SEM, and elemental analysis. The surface area was calculated using the D-R equation based on CO2adsorption at273K. The CHA was synthesized with lower Si/Al and the surfaces were changed greatly by ion exchange. KFI had higher Si/Al and the scope of the surface could be kept smaller. Focusing on the CH4and N2adsorption isotherms at high pressure (1MPa), we found that the samples were exchanged by Li+and Na+with bigger surfaces and greater adsorption volumes. From the viewpoint of the separate adsorption equilibria:Na-zeolites for CO2/N2and CO2/CH4, followed by Li-zeolites, which only had a strong adsorption potential of CO2; K-zeolites had the highest data adsorption separation factor of CH4/N2, based on the strong adsorption of CH4, and followed with Na and Li-zeolites. Conclude that the order of adsorption potential was K-zeolites> Na-zeolites> Li-zeolites, so the bigger ions had a stronger affinity. Divalent ions were less likely to be captured in the structures than univalent ions, so their separation was somewhat poorer.
     (2) Three hydrophobic microporous high-silica zeolites:DDR (8-membered ring), silicalite-1(10-membered ring) and Beta (12-membered ring) were synthesized, and characterized by X-ray diffraction, scanning electron microscopy, thermal gravimetric analysis, water vapor adsorption and volumetric nitrogen adsorption. They were tested for their CH4and N2adsorption properties at pressures of up to1MPa in the288-303K temperature range after activation, and the relationship between their separation factor (calculated from pure components) for CH4/N2and their microporous structures were analyzed. Compared with low-silica zeolites-5A, MIL-101and active carbon under the same conditions, the experimental results showed that the silicalite-1had the most suitable orifices for methane adsorption and the highest separation facter of CH4/N2. The mixed gas penetrating separation experiments also show that high silicon Silicalite-1having better separation efficiency.
     (3) Adsorption of CH4and N2was measured in two differently spaced flexible layer metal-organic frameworks (MOFs),[Cu(dhbc)2(bpy)](kitagawa S,2003) and [Cu(BF4)2(bpy)2](ELM-11, Kaneko K,2002), using a gravimetric method at temperatures of77K,195K,273K and298K with a high pressure2MPa. It was found that the gate-opening pressure was much lower at reduced temperatures in the flexible layer MOFs. Gas molecules were easily adsorbed into the widely spaced layers, but the organic ligands which play a supportive role in the layers prevent the spread of more molecules, because more of the space between the layers was occupied. The experimental results also showed the gate phenomenon and implied that these materials would be applicable for gases separated, especially the adsorption ratio of CH4/N2in [Cu(dhbc)2(bpy)] was up to42at normal pressure when the temperature decreased to195K.
     (4) High pure metal-organic framework chromium terephthalate (MIL-101) was synthesized from TMAOH-Cr(NO3)3-H2BDC-H2O for the first time. Typical synthesized samples were characterized by X-ray diffraction, scanning electron microscopy and thermal gravimetric analysis. CH4adsorption isotherms of the material were studied at273K and303K. The results showed that CH4adsorption was up to132.5cm3/g at273K and92.5cm3/g at303K under1.8MPa which was bigger than the value of MIL-101F-(115cm3/g-273K and89.6cm3/g-303K). It was confirmed that alkaline medium played an important role in this study, on the one hand, it promoted dissolution of the raw material H2BDC in water in the system and the pure sample was obtained easily, on the other hand, the pure sample which was more beneficial was used as the CH4storage material.
引文
[1].康建国,全球天然气市场变化与中国天然气发展策略思考[J].天然气工业,2012(02):12-17.
    [2].胡杰,朱博超,王建明,天然气化工技术及利用[M].第一版,化学工业出版社,2006:1-3.
    [3].张新民,庄军,张遂安,中国煤层气地质与资源评价[M].第一版,科学出版社,2002:1-9.
    [4].国家煤层气(煤矿瓦斯)开发利用“十二五”规划,国家发展与改革委员会和国家能源局2011年12月.
    [5].潘继平,促进中国页岩气勘探开发若干问题的思考——2011年中国页岩气发展回顾与思考[J].国际石油经济,2012(Z1):110-115.
    [6]. J. H. Frantz, V. Jochen,董大忠,北美地区页岩气勘探开发新进展[M].石油工业出版社,2009:3-9.
    [7].李东,袁振宏,孙永明,中国沼气资源现状及应用前景[J].现代化工,2009,(04):7-11.
    [8].周效志,桑树勋,曹丽文,我国垃圾填埋气资源化现状与对策研究[J].可再生能源2012(02):97-100
    [9].宋飞,付加锋,世界主要国家温室气体与二氧化硫的协同减排及启示[J].资源科学,2012,08:1439-1444.
    [10].赵天涛,阎宁,赵由才,环境工程领域温室气体减排与控制技术[M].化学工业出版社,2009:4-12.
    [11].张鸿仁,油田气处理[M].北京:石油工业出版社,1995:78-122
    [12].王遇冬,天然气处理与加工工艺[M].石油工业出版社,1999:45-88.
    [13]. Sircar Shivaji, Basic Research Needs for Design of Adsorptive Gas Separation Processes [J]. Ind. Eng. Chem. Res.,2006,45(16):5435-5448.
    [14].冯明,陈力,徐承科.中国煤层气资源与可持续发展战略[J].资源科学,2007,29(3): 100-104.
    [15]. Ravindra F. P., John B. Saunders and James J. Maloney, Process for separating methane and nitrogen [P]. US.4592767,1986.
    [16]. Ravindra F P. Process to separate nitrogen from natural gas [P]. US.4501600,1985.
    [17]. John B. S., and James J Maloney. Methane recovery process for the separation of nitrogen and methane [P], US.5026408,1991.
    [18]. James R. H. Separation of nitrogen and methane with residue turboexpansion [P]. US. 5041149,1991.
    [19]. Lee J H, and Howard C R. Dephlegmator process for nitrogen removal from natural gas [P]. US.5802871,1998.
    [20]. John V O'Brien. Nitrogen separation from methane in two-column cryogenic distillation for natural gas liquefaction [P]. US.2003/0177786A1,2003.
    [21].余国保,郭开华,梁栋,等.高效煤层气储运及低温液化技术可行性研究[J].油气田地面工程,2008,27(5):9-10.
    [22].蒲亮,孙善秀,程向华,等.几种典型的煤层气液化流程计算及火用分析比较[J].化学工程,2008,36(2):54-58.
    [23].李红艳,贾林祥.煤层气液化技术[J].中国煤层气,2006,3(3):32-33.
    [24].王华北,我国LNG工业发展及应用研究[D].大庆,大庆石油学院,2009.
    [25].陶鹏万.煤矿区煤层气低温分离液化工艺功耗分析[J].中国煤层气,2009,6(1):37-41.
    [26].孙恒,朱鸿梅,舒丹.一种低浓度煤层气低温液化分馏工艺的模拟与分析[J].低温技术,2009,37(8):21-23.
    [27]. Guo Tianmin, Wu Bihao, Zhu Youhai, et al. A review on the gas hydrate research in China [J]. J. Petrol. Sci. Eng,2004,41(1-3):11-20.
    [28].樊拴狮.天然气水合物储存于运输技术[M].北京:化学工业出版社,2005.
    [29].樊拴狮,程宏远,陈光进,等.水合物法分离技术研究[J].现代化工,1999,19(2):11-15.
    [30]. Happel J., Hnatow M. A., and Meyer H. The study of separation of nitrogen from nethane by hydrate formation using a novel apparatus [C]. Annals of the New York Academy of Sciences,1994,715:412-424.
    [31]. Seo Y T, Kang S P, Lee H. Experimental determination and thermodynamic modeling of methane and nitrogen hydrates in the presence of THF, propylene oxide,1,4-dioxane and acetone [J]. Fluid Phase Equilibria,2001,189:99-110.
    [32].赵建忠,石定贤,赵阳升.煤层气水合物定容生成实验研究[J].化学工程,2007,35(3):68-70.
    [33]. Zhang Baoyong, and Wu Qiang. Thermodynamic Promotion of Tetrahydrofuran on Methane Separation from Low-Concentration Coal Mine Methane Based on Hydrate [J]. Energy & Fuels,2010,24(4):2530-2535.
    [34].吴强,张保勇,孙登林,等.利用水合原理分离矿井瓦斯实验[J].煤炭学报,2009,34(3):361-365.
    [35]. Ganji H., Manteghian M., Sadaghiani K. Z., et al. Effect of different surfactants on methane hydrate formation rate, stability and storage capacity [J]. Fuel,2007,86: 434-441.
    [36]. Mehra Y. R., Processing nitrogen-rich gases with physical solvents [P]. US.4883514, 1989.
    [37]. Friesen D T, Babcock W C, Edlund D J, et al. Liquid absorbent solutions for separating nitrogen from natural gas [P]. US.6136222,2000.
    [38].吴晓萍,刘志平,汪文川.分子模拟研究气体在室温离子液体中的溶解度[J].物理化学学报,2005,21(10):1138-1142.
    [39]. Cui Ying, Hidetoshi K, Ken-ichi O. Preparation and gas separation performance of zeolite T membrane [J]. J. Mater. Chem.,2004,14:924-932.
    [40]. Johan B., Marjo M. H., and Freek K. Modeling permeation of CO2/CH4, N2/CH4, and CO2/air mixtures across a DD3R zeolite membrane [J]. J. Phy. Chem. C.,2010,114(20): 9379-9389.
    [41]. Baker R. W., and Lokhandwala K. Natural gas processing with membranes:An Overview [J]. Ind. Eng. Chem. Res.,2008,47 (7):2109-2121.
    [42].邢卫红,范益群,徐南平,等.面向过程工业的陶瓷膜制备与应用进展[J].化工学报,2009,11:2679-2688.
    [43]. Lai Zhiping, Griselda B, Isabel D, et al. Microstructural Optimization of a Zeolite Membrane for Organic Vapor Separation [J]. Science,2003,300:456-460.
    [44]. Jungkyu C, and Michael T. MCM-22/silica selective flake nanocomposite membranes for hydrogen separations [J]. J. Am. Chem. Soc.,2010,132 (2):448-449.
    [45]. Himeno S, Tomita T. Synthesis and permeation properties of a DDR-type zeolite membrane for separation of CO2/CH4 gaseous mixtures [J]. Ind. Eng. Chem. Res.,2007, 46(21):6989-6997.
    [46]. Li Shiguang, Falconer J. L., Noble R. D., etal. Modeling permeation of CO2/CH4, CO2/N2, and N2/CH4 mixtures across SAPO-34 membrane with the maxwell-stefan equations [J]. Ind. Eng. Chem. Res.,2007,46(12):3904-3911.
    [47]. Wijmans J. G., Baker R. W. Natural gas separation using nitrogen-selective membranes of modest selectivity [P]. US.6572678B1,2003.
    [48]. Baker R. W., Lokhandwala K. A nitrogen removal from natural gas using two types of membranes [P]. US.6630011B1,2003.
    [49]. Lokhandwala K. Membrane augmented cryogenic methane nitrogen separation [P]. US. 5647227,1997.
    [50]. Baker R. W., Lokhandwala K., Pinnau I., Methane/nitrogen separation process [P]. US. 5669958,1997.
    [51]. Stark T. M. Gas separation by adsorption process [P]. US.3252268A,1966.
    [52]. Davis M. M., Gray R. L., Kirit P. Process for the purification of natural gas [P]. US. 5174796,1992.
    [53]. Herbert E. R., Knaebke K. S., Huber M., et al. Separation of gases by pressure swing adsorption [P], US.5792239,1998.
    [54].龚肇元,王宝林,陶鹏万,等.变压吸附法富集煤矿瓦斯气中甲烷[P].中国.85103557,1986.
    [55].辜敏,鲜学福,张代均,等.变压吸附技术分离CH4/N2气体混合物[J].煤炭学报,2002,27(2):197-200.
    [56].辜敏,鲜学福.矿井抽放煤层气中甲烷的变压吸附提浓[J].重庆大学学报(自然科学版),2007,30(4):29-33.
    [57].辜敏,鲜学福.提高煤矿抽放煤层气甲烷浓度的变压吸附技术的理论研究[J].天然气化工,2006,31(6):6-10.
    [58]. Baksh M. A., Kapoor A., Yang R. T. New composite sorbent for methane/nitrogen separation by adsorption [J]. Sep. Sci. Technol.,1990,25 (7/8):845-868.
    [59]. Li J R, Ryan J K, and Zhou Hong-Cai. Selective gas adsorption and separation in metal-organic frameworks [J]. Chem. Soc. Rev.,2009,38:1477-1504.
    [60]. Kuppler R. J., Timmons D. J., Zhou Hong-Cai, et al. Potential applications of metal-organic frameworks [J]. Coordin. Chem. Rev.,2009,253(23-24):3042-3066.
    [61]. Jian-Rong Li, Yuguang Ma, M. Colin McCarthy, et al. Carbon dioxide capture-related gas adsorption and separation in metal-organic frameworks [J]. Coordin. Chem. Rev., 2011,(255):1791-1823.
    [62]. Olajossy A., Gawdzik A., Budner Z., et al. Methane separation from coal mine methane gas by vacuum pressure swing adsorption [J]. Chem. Eng. Res. Des.,2003,81:474-482.
    [63]. Quinn D. F. Supercritical adsorption of "permanent" gases under corresponding states on various carbons [J]. Carbon.2002,40:2767-2773.
    [64]. Kluson P., Scaife S., Quirke N., The design of microporous graphitic adsorbents for selective separation of gases [J]. Sep. Purif. Technol.,2000,20:15-24.
    [65]. Harlick P. J. E., Tezel F. H., Adsorption of carbon dioxide, methane, and nitrogen:Pure and binary mixture adsorption by ZSM-5 with SiO2/Al2O3 ratio of 30 [J]. Sep. Sci. Technol..2002.37:33-60.
    [66]. Rittig F., Aurentz D. J., Coe C. G., et al. Pure-and mixed-gas sorption measurements on zeolitic adsorbents via gas-phase nuclear magnetic resonance [J]. Ind. Eng. Chem. Res., 2002,41:4430-4434.
    [67]. Predescu L., Tezel F. H., Chopra S., Adsorption of Nitrogen, Methane, Carbon Monoxide, and their binary mixtures on aluminophospahe molecular sieves [J]. Adsorption.,1996,3:7-25.
    [68]. Martin J. M., Craig D. W. Separating nitrogen/methane on zeolite-like molecular sieves [J]. Micropor. Mesopor. Mat.,2008,111:627-631.
    [69]. Melnitchenko A., Thompson J., Volzone C., et al. Selective gas adsorption by metal exchanged amorphous kaolinite derivatives [J]. Appl. Clay. Sci.,2000,17:35-53.
    [70]. Kuznicki S. M., Bell V. A., Hugh W., etal. A titanosilicate molecular sieve with adjustable pores for size-selective adsorption of molecules [J]. Nature,2001,412: 720-724.
    [71]. Yang R. T. Adsorbents fundmentals and applications [M]. A JOHN WILEY & SONS. 2003.
    [72]. Dipendu Saha, Zongbi Bao, Feng Jia. Adsorption of CO2, CH4, N2O, and N2 on MOF-5, MOF-177, and Zeolite 5A [J]. Environ. Sci. Technol.,2010,44(5):1820-1826.
    [73]. Phani Rallapalli, Prasanth K. P., Dinesh Patil, et al. Sorption studies of CO2, CH4, N2, CO, O2 and Ar on nanoporous aluminum terephthalate [MIL-53(Al)] [J]. J.Porous. Mat., 2011,18(2):205-210.
    [74]. Hongliang Huang, Wenjuan Zhang, Dahuan Liu, et al. Effect of temperature on gas adsorption and separation in ZIF-8:A combined experimental and molecular simulation study [J]. Chem. Eng. Sci.2011,66(23):6297-6305.
    [75].辜敏,鲜学福,张代均,等.变压吸附技术分离CH4/N2气体混合物[J].煤炭学报,2002,27:197-200.
    [76].刘应书,郭广栋,李永玲,等.变压吸附浓缩低甲烷浓度煤层气的实验研究[J].低温与特气,2010,128:5-8.
    [77].徐如人,庞文琴.分子筛与多孔材料[M].科学出版社,2004,39-68.
    [78]. Henry W. H. Remove nitrogen from natural gas [P]. US.2843219,1958.
    [79]. Baksh M. A., Kapoor A., Yang R. T. New composite sorbent for methane/nitrogen separation by adsorption [J]. Sep. Sci. Technol.,1990,25 (7/8):845-868.
    [80].徐如人,庞文琴.分子筛与多孔材料[M].科学出版社,2004,5-6.
    [81]. High-Pressure Methane adsorption on NaX and NaY zeolites wiht different Si/Al ratios: Adsorption Science and Technology [M], American Chemical Society,1991:209-216.
    [82]. ReedT. B., and Breck D.W., Crystalline Zeolites. Ⅱ. Crystal Structure of Synthetic Zeolite, Type A [J]. J. Am. Chem. Soc.,1956 (78):5972-5977.
    [83]. Hiroshi Ichihashi, Masaru Kitamura, Some aspects of the vapor phase Beckmann rearrangement for the production of ε-caprolactam over high silica MFI zeolites [J]. Cataly. Today.,2002, (73):23-28.
    [84]. Ackley M. W., Yang R. T. Diffusion in ion-exchanged clinoptilolites [J]. AICHE. J. 1991,37(11):1645-1656.
    [85]. Gelacio A. A., Guadalupe H. R., Erika F. L., et al. Adsorption kinetics of CO2, O2, N2, and CH4 in cation-exchanged clinoptilolite [J]. J. Phy. Chem. B.,2001,105(7): 1313-1319.
    [86]. Jodie E. G., and Craig D. W. Efficient methane/nitrogen separation with low-sodium clinoptilolite [J]. Chem.Commun.,2002,2870-2871.
    [87]. Lei Liu, Yang Li, Haibo Wei, et al. Ionothermal Synthesis of Zirconium Phosphates and Their Catalytic Behavior in the Selective Oxidation of Cyclohexane [J]. Angew. Chem. Int. Ed.,2009,48:2206-2209.
    [88]. LiuLei, YangJiangfeng, Li Jinping, et al. Ionothermal Synthesis and Structure Analysis of an Open-Framework Zirconium Phosphate with a High CO2/CH4 Adsorption Ratio [J]. Angew. Chem. Int. Ed.,2011,50(35):8139-8142.
    [89]. Barrett P. A., Sankar G., Catlow C. R. A., X-ray Absorption Spectroscopic Study of Br(?)nsted, Lewis, and Redox Centers in Cobalt-Substituted Aluminum Phosphate Catalysts [J]. J. Phy. Chem.,1996, (21):8977-8985.
    [90]. Chen Y. W., Hsu W. C., Lin C. S., et al. Hydrodesulfurization reactions of residual oils over cobalt-molybdenum/alumina-aluminum phosphate catalysts in a trickle bed reactor [J]. Ind. Eng. Chem. Res.,1990, (9):1830-1840.
    [91]. Rachel B. Getman, Youn-Sang Bae, Christopher E. Wilmer, et al. Review and Analysis of Molecular Simulations of Methane. Hydrogen, and Acetylene Storage in Metal-Organic Frameworks [J]. Chem. Rev.,2012,112 (2):703-723.
    [92]. Kenji Sumida. David L. Rogow, Jarad A. Mason, et al. Carbon Dioxide Capture in Metal-Organic Frameworks [J]. Chem. Rev.,2012,112 (2):724-781
    [93]. Jian-Rong Li, Julian Sculley, and Hong-Cai Zhou, Metal-Organic Frameworks for Separations [J]. Chem. Rev.,2012,112 (2):869-932
    [94]. H Li, M Eddaoudi, M O'Keeffe, et al. Design and synthesis of an exceptionally stable and highly porous metal-organic framework [J]. Nature.,1999,402:276-279.
    [95]. G. Ferey, C. Mellot-Draznieks, C. Serre, et al. A Chromium Terephthalate Based Solid with Unusually Large Pore Volumes and Surface Area [J]. Science.,2005,309: 2040-2042.
    [96]. Taylor-Pashow K. M. L., Della Rocca J., Xie Z., et al. Postsynthetic Modifications of Iron-Carboxylate Nanoscale Metal-Organic Frameworks for Imaging and Drug Delivery [J].J. Am. Chem. Soc.,2009,131:14261-14263.
    [97]. Ferey G, Serre C, Mellot-Draznieks C, et al. A Hybrid Solid with Giant Pores Prepared by a Combination of Targeted Chemistry, Simulation, and Powder Diffraction [J]. Angew. Chem. Int. Ed.,2004,43:6296-6301.
    [98]. Patricia Horcajada, Suzy Surble, Gerard Ferey, et al. Synthesis and catalytic properties of MIL-100(Fe), an iron(III) carboxylate with large pores [J]. Chem. Commun.,2007, 2820-2822
    [99]. Christophe Volkringer, Dimitry Popov, Thierry Loiseau, et al. Synthesis, Single-Crystal X-ray Microdiffraction, and NMR Characterizations of the Giant Pore Metal-Organic Framework Aluminum Trimesate MIL-100 [J]. Chem. Mater.,2009,21(24):5695-5697.
    [100]. Peipei Long, Jinping Li, Jinxiang Dong, et al. Solvent effect on the synthesis of MIL-96(Cr) and MIL-100(Cr) [J]. Micropor. Mesopor. Mat.,2011,142 (2-3):489-493.
    [101]. Latroche M, Surble S, Serre C, et al. Hydrogen Storage in the Giant-Pore Metal-Organic Frameworks MIL-100 and MIL-101 [J]. Angew. Chem. Int. Ed.,2006, 45:8227-8231.
    [102]. K Uemura, S Kitagawa, M Kondo, Novel Flexible Frameworks of Porous Cobalt(II) Coordination Polymers That Show Selective Guest Adsorption Based on the Switching of Hydrogen-Bond Pairs of Amide Groups [J]. Chem-Eur. J.,2002, (16):3585-3600.
    [103]. Jie-Peng Zhang, Yan-Yong Lin, Wei-Xiong Zhang, et al. Temperature-or Guest-Induced Drastic Single-Crystal-to-Single-Crystal Transformations of a Nanoporous Coordination Polymer [J]. J. Am. Chem. Soc.2005,127:14162-14163.
    [104]. Shengqian Ma, Daofeng Sun, and Hong-Cai Zhou. A mesh-adjustable molecular sieve for general use in gas separation [J]. Angew. Chem. Int. Ed.,2007,46:2458-2462.
    [105]. Serre Christian, Millange Franck, Thouvenot Christelle, et al. Very Large Breathing Effect in the First Nanoporous Chromium(III)-Based Solids:MIL-53 or CrⅢ(OH).{O2C-C6H4-CO2}.{HO2C-C6H4-CO2H}x·H2Oy [J]. J. Am. Chem. Soc., 2002,124(45):13519-13526.
    [106]. Bourrelly S., Llewellyn P. L., Serre C., et al. Different Adsorption Behaviors of Methane and Carbon Dioxide in the Isotypic Nanoporous Metal Terephthalates MIL-53 and MIL-47 [J]. J. Am. Chem. Soc.,2005,127:13519-13521.
    [107]. LlewellynPhilip L., Bourrelly Sandrine, SerreChristian, et al. How Hydration Drastically Improves Adsorption Selectivity for CO2 over CH4 in the Flexible Chromium Terephthalate M1L-53 [J], Angew. Chem. Int. Ed.,2006,45(46): 7751-7754.
    [108]. Ryo Kitaura, Kenji Seki, and Susumu Kitagawa. Porous coordination-polymer crystals with gated channels specific for supercritical gases [J]. Angew. Chem. Int. Ed.,2003, 42:428-431.
    [1]. Kikkinides E. S., Yang R. T., Cho S. H., Concentration and recovery of CO2 from flue gas by pressure swing adsorption [J]. Ind. Eng. Chem. Res.,1993,32:2714-2720.
    [2]. Hao G. P., Li W. C., Qian D., et al. Structurally Designed Synthesis of Mechanically Stable Poly(benzoxazine-co-resol)-Based Porous Carbon Monoliths and Their Application as High-Performance CO2 Capture Sorbents [J]. J. Am. Chem. Soc., 2011,133(29):11378-11388.
    [3]. Matranga, K. R.; Myers, A. I.; Glandt, E. D. Storage of natural gas by adsorption on activated carbon [J]. Chem. Eng. Sci.,1992,47 (7):1569-1579.
    [4]. Matranga K. R., Stella A., Myers A. L., et al. Molecular simulation of adsorbed natural gas [J]. Sep. Sci. Technol.,1992,27 (14):1825-1836.
    [5]. Liu Y., Wilcox J., Effects of Surface Heterogeneity on the Adsorption of CO2 in Microporous Carbons [J]. Environ. Sci. Technol.,2012,46 (3):1940-1947.
    [6]. Chen J., Loo L. S., Wang K., An Ideal Absorbed Solution Theory (IAST) Study of Adsorption Equilibria of Binary Mixtures of Methane and Ethane on a Templated Carbon [J]. J. Chem. Eng. Data.,2011,56(4):1209-1212.
    [7]. Ducrot-Boisgontier C., Parmentier J., Faour A., et al. FAU-Type Zeolite Nanocasted Carbon Replicas for CO2 Adsorption and Hydrogen Purification [J]. Energy. Fuels.,2010, 24 (6):3595-3602
    [8]. Jayaraman A., Hernandez-Maldonado A. J., Yang R. T., et al. Clinoptilolites for nitrogen/methane separation [J]. Chem. Eng. Sci.,2004,59(12),2407-2417.
    [9]. Wang Y., Le Van M. D., Adsorption Equilibrium of Binary Mixtures of Carbon Dioxide and Water Vapor on Zeolites 5A and 13X [J]. J. Chem. Eng. Data.,2010,55(9): 3189-3195.
    [10]. Bao Z., Yu L., Dou T., et al. Adsorption Equilibria of CO2, CH4, N2, O2, and Ar on High Silica Zeolites [J]. J. Chem. Eng. Data.,2011,56(11):4017-4023.
    [11]Coudert F. O.-X., Mellot-Draznieks C., Fuchs A. H., et al. Prediction of Breathing and Gate Opening Transitions Upon Binary Mixture Adsorption in Metal-Organic Frameworks [J]. J. Am. Chem. Soc.,2009,131 (32):11329-11331.
    [12]Zheng S. T.. Bu J. T., Li Y., et al. Pore Space Partition and Charge Separation in Cage-within-Cage Indium-Organic Frameworks with High CO2 Uptake [J]. J. Am. Chem. Soc.,2010,132:17062-17064.
    [13]. He Y., Xiang S., Chen B., A Microporous Hydrogen-Bonded Organic Framework for Highly Selective C2H2/C2H4 Separation at Ambient Temperature [J]. J. Am. Chem. Soc., 2011,133:14570-14573.
    [14]. Sumida K., Rogow D. L., Mason J. A., et al. Carbon Dioxide Capture in Metal-Organic Frameworks [J]. Chem. Rev.,2012,112:724-781.
    [15]. Gemma L. H., Edward B., Martin C. S., et al. High-Pressure and-Temperature Ion Exchange of Aluminosilicate and Gallosilicate Natrolite [J]. J. Am. Chem. Soc.,2011, 133(35):13883-13885.
    [16]. Aguilar-Armenta G., Hernandez-Ramirez G, Flores-Loyola E., et al. Adsorption Kinetics of CO2, O2, N2, and CH4 in Cation-Exchanged Clinoptilolite [J]. J. Phys. Chem. B.,2001,105(7):1313-1319.
    [17]. Walton K. S., Abney M. B., LeVan D. M., CO2 adsorption in Y and X zeolites modified by alkali metal cation exchange [J]. Micropor. Mesopor. Mat.2006,91(1-3):78-84.
    [18]. Yang R. T., Adsorbents:Fundamentals and Applications. Willey-Interscience:New York. 43,2003.
    [19]. Baksh M. S. A., Kikkinde E. S., Yang R. T., Lithium Type X Zeolite as a Superior for Air Separation [J]. Sep. Sci. Technol.,1992,27(3):277-294.
    [20]. Kuznicki S. M., Bell V. A., Nair S., etal. A titanosilicate molecular sieve with adjustable pores for size-selective adsorption of molecules [J]. Nature.,2001,412(6848):720-724.
    [21]. Marathe R. P., Farooq S., Srinivasan M. P., Modeling Gas Adsorption and Transport in Small-Pore Titanium Silicates [J]. Langmuir.,2005,21(10):4532-4546.
    [22]. Pillai R. S., Peter S. A., Jasra R. V., Adsorption of carbon dioxide, methane, nitrogen, oxygen and argon in NaETS-4 [J]. Micropor. Mesopor. Mat.,2008,113(1-3):268-276.
    [23]. Parise J.B., Shannon R.D., Prince E., et al. The crystal structures of the synthetic zeolites (Cs, K)-ZK-5 and (Cs, D)-ZK-5 determined from neutron powder diffraction data, Zeitschrift fur Kristallographie [J].1983,(165):175-190.
    [24]. Dent L.S., and Smith J.V.. Crystal structure of chabazite, a molecular sieve [J]. Nature., 1958,(181):1794-1796.
    [25]. Altwasser S., Welker C., Traa Y., et al. Catalytic cracking of n-octane on small-pore zeolites [J]. Micropor. Mesopor. Mat.,2005,83(1-3):345-356.
    [26]. Krishna R., van Baten J. M., Onsager coefficients for binary mixture diffusion in nanopores [J]. Chem. Eng. Sci.,2008,63(12):3120-3140.
    [27]. Saxton C. G., Kruth A., Castro M., et al. Xenon adsorption in synthetic chabazite zeolites [J]. Micropor. Mesopor. Mat.,2010,129(1-2):68-73.
    [28]. Singh R. K., Adsorption of N2.02, and Ar in Potassium Chabazite [J]. Adsorption., 2005,11:173-177.
    [29]. JohannesV., zeolite ZK-5 [P]. US.4994249,1991.
    [30]. RobsonH., How to read a patent [J]. Micropor. Mesopor. Mat.,1998,22(4-6):551-662.
    [31]. Schwarz S., Corbin D. R., Sonnichsen G. C., The effect of crystal size on the methylamines synthesis performance of ZK-5 zeolites [J]. Micropor. Mesopor. Mat.,1998, 22(1-3):409-418.
    [32]. Zhang J., Singh R., Webley P. A., Alkali and alkaline-earth cation exchanged chabazite zeolites for adsorption based CO2 capture [J]. Micropor. Mesopor. Mat.,2008,111(1-3): 478-487.
    [33]. Dubinin M. M., Microporous structures and absorption properties of carbonaceous adsorbents [J]. Carbon.,1983,21:359-366.
    [34]. Dubinin M. M., Progress in Surface and Membrane Science [M], Academic Press, New York,1975.
    [35]. Cracknell R. F., Gordon P., Gubbins K. E., Influence of pore geometry on the design of microporous materials for methane storage [J]. J. Phys. Chem.,1993,97 (2):494-499.
    [36]. Saha D., Bao Z., Jia F., et al. Adsorption of CO2, CH4, N2O, and N2 on MOF-5, MOF-177, and Zeolite 5A [J]. Environ. Sci. Technol.,2010,44(5):1820-1826.
    [1]. Ian P.. Coal bed methane completions:A world view [J]. Int. J. Coal. Geol.,2010,82(3-4): 184-195.
    [2]. Sircar S., Basic research needs for design of adsorptive gas separation processes [J]. Ind. Eng. Chem. Res.,2006,45(16):5435-5448.
    [3]. Baksh M. A., Kapoor A., Yang R. T., New composite sorbent for methane/nitrogen separation by adsorption [J]. Sep. Sci. Technol.,1990,25:845-866.
    [4]. Yang R.T., Adsorbents:Fundamentals and Applications [M]. Willey-Interscience:New York.,2003,43.
    [5]. Ackley M.W., Yang R. T., Adsorption characteristics of high-exchange clinoptilolites [J]. Ind. Eng. Chem. Res.,1991,30:2523-2530.
    [6]. Gies H., Studies on clathrasils IX Crystal structure of deca-dodecasil 3R, the missing link between zeolites and clathrasils [J]. Z. Kristallogr.,1986,175:93-104.
    [7]. Kokotailo G. T., Lawton S. L., Olson D.H., et al. Structure of synthetic zeolite ZSM-5 [J]. Nature.,1978,272:437-438.
    [8]. Olson D. H., Kokotailo G. T., Lawton S. L., et al. Crystal structure and structure-related properties of ZSM-5 [J]. J. Phys. Chem.,1981,85:2238-2243.
    [9]. Higgins J. B., LaPierre R. B., Schlenker J. L., et al. The framework topology of zeolite Beta [J]. Zeolites.,1988,8:446-452.
    [10]. Bolis V., Busco C., Ugliengo P. J., Thermodynamic study of water adsorption in high-silica zeolites [J]. J. Phys. Chem. B.,2006,110:14849-14859.
    [11]. Kuhn J., Castillo-Sanchez J., Gascon J., Calero S., et al. Adsorption and diffusion of water, methanol, and ethanol in all-silica DD3R:experiments and simulation [J]. J. Phy. Chem. C.,2009,113:14290-14301.
    [12]. Ahunbay M. G., Monte Carlo simulation of water adsorption in hydrophobic MFI zeolites with hydrophilic sites [J]. Langmuir.,2011,27:4986-4993.
    [13]. Ackley M.W., Yang R.T., Diffusion in ion-exchanged clinoptilolites [J]. AIChE J.,1991, 37:1645-1656.
    [14]. Huang Z., Xu L., Li J. H., et al. Adsorption equilibrium of carbon dioxide and methane on [3-zeolite at pressures of up to 2000 kPa using a static volumetric method [J]. J. Chem. Eng. Data.,2009,55:2123-2127.
    [15]. Li P., Tezel H. F., Adsorption separation of N2, O2, CO2 and CH4 gases by [Beta]-zeolite [J]. Micropor. Mesopor. Mat.,2007,98(1-3):94-101.
    [16]. Pillai R. S., Sethia G., Jasra R.V., Sorption of CO, CH4, and N2 in alkali metal ion exchanged zeolite-X:Grand Canonical Monte Carlo simulation and volumetric measurements [J]. Ind. Eng. Chem. Res.,2010,49:5816-5825.
    [17]. Walton K. S., Abney M. B., Douglas L. M., CO2 adsorption in Y and X zeolites modified by alkali metal cation exchange [J]. Micropor. Mesopor. Mat.,2006,91:78-84.
    [18]. Himeno S., Takenaka M., Shimura S., Light gas adsorption of all-silica DDR-and MFI-type zeolite:computational and experimental investigation [J]. Mol. Simulat.,2008, 34:1329-1336.
    [19]. Jee S. E., Sholl D.S., Carbon dioxide and methane transport in DDR zeolite:insights from molecular simulations into carbon dioxide separations in small pore zeolites [J]. J. Am. Chem. Soc.,2009,131(22):7896-7904.
    [20]. Kiselev A.V., Lopatkin A. A., Shulga A. A., Molecular statistical calculation of gas adsorption by silicalite [J]. Zeolites.,1985,5:261-267.
    [21]. Rees L. V. C., Bruckner P., Hampson J., Sorption of N2, CH4 and CO2 in Silicalite-1[J]. Gas. Sep. Purif.,1991,5:67-76.
    [22]. Yang Q. L., Zhong S. L., Lin X., Synthesis of DDR-Type Zeolite in Fluoride Medium [J]. Chinese. J. Inorg. Chem.,2009,25:191-194.
    [23]. Alex K., Susan N., Scott O., et al. Non-aqueous Synthesis of Giant Crystal of Zeolites and Molecular Sieves [J]. Nature.,1993,365:239-242.
    [24]. Miguel A. C., Avelino C., Susana V., Spontaneous nucleation and growth of pure silica zeoliteβ-free of connectivity defects [J]. Chem. Cornmun.,1996.20:2365-2366.
    [25]. Bolis V., Busco C., Ugliengo P., Thermodynamic Study of Water Adsorption in High-Silica Zeolites [J]. J. Phys. Chem. B.,2006,110:14849-14859.
    [26]. Olson D. H., Haag W. O., Borghard W. S., Use of water as a probe of zeolitic properties: interaction of water with HZSM-5 [J]. Micropor. Mesopor. Mat.,2000,35-36:435-446.
    [27]. Oumi Y., Miyajima A., Miyamoto J., et al. Binary mixture adsorption of water and ethanol on silicalite [J], Stud. Surf. Sci. Catal.,2002,142:1595-1602.
    [28]. Soulard M., Patarin J., Eroshenko V., et al. Molecular spring or bumper:A new application for hydrophobic zeolitic materials [J]. Stud. Surf. Sci. Catal.,2004,154: 1830-1837.
    [29]. Giaya A., Thompson R.W., Single-component gas phase adsorption and desorption studies using a tapered element oscillating microbalance [J]. Micropor. Mesopor. Mat. 2002,55:265.
    [30]. Dong F., Lou H., Kodama A., et al. The Petlyuk PSA process for the separation of ternary gas mixtures:exemplification by separating a mixture of CO2-CH4-N2 [J]. Sep. Purif. Technol.,1999,16:159-166.
    [31]. Roger F. C., Peter G., Keith E. G., Influence of pore geometry on the design of microporous materials for methane storage [J]. J. Phys. Chem.,1993.97:494-499.
    [32]. Dong J., Wang X., Xu H., et al. Hydrogen storage in several microporous zeolites [J]. Int. J. Hydrogen. Energ.,2007,32:4998-5004.
    [33]. Saha D., Bao Z., Jia F., et al. Adsorption of CO2, CH4, N2O, and N2 on MOF-5, MOF-177, and Zeolite 5A [J]. Environ. Sci. Technol.,2010,44(5):1820-1826.
    [34]. Hill T. L., Statistical Mechanics of Adsorption.V. Thermodynamics and Heat of Adsorption [J]. J. Chem. Phys.,1949,17:520-535.
    [1]. Li H. L., M. Eddaoudi, M. O'Keeffe. O. M. Yaghi, Design and synthesis of an exceptionally stable and highly porous metal-organic framework [J]. Nature.,1999,402: 276-279.
    [2]. G. Ferey. Microporous Solids:From Organically Templated Inorganic Skeletons to Hybrid Frameworks Ecumenism in Chemistry [J]. Chem. Mater.,2001,13:3084-3098.
    [3]. M. J. Rosseinsky, Recent developments in metal-organic framework chemistry:design, discovery, permanent porosity and flexibility [J]. Micropor. Mesopor. Mat.,2004,73: 15-30.
    [4]. K. Cheetham, C. N. R. Rao, R. K.Feller, Structural diversity and chemical trends in hybrid inorganic-organic framework materials [J]. Chem. Commun.,2006,46: 4780-4795.
    [5]. G. Ferey, Hybrid porous solids:past, present, future [J]. Chem. Soc. Rev.,2008,37: 191-214.
    [6]. S. Horike, D. Tanaka, K. Nakagawa, S. Kitagawa, Selective guest sorption in an interdigitated porous framework with hydrophobic pore surfaces [J]. Chem. Commun., 2007,32:3395-3397.
    [7]. J. Seo, H. Sakamoto, R. Matsuda, S. Kitagawa, Chemistry of Porous Coordination Polymers Having Multimodal Nanospace and Their Multimodal Functionality [J] J. Nanosci. Nanotechno.,2010,10:3-20.
    [8]. P. Barcia, L. Bastin, E. Hurtado, et al. Single and Multicomponent Sorption of CO2, CH4 and N2 in a Microporous Metal-Organic Framework [J], Sep. Sci. Technol.,2008,43: 3494-3521.
    [9]. S. R. Venna, M. A. Carreon, Highly Permeable Zeolite Imidazolate Framework-8 Membranes for CO2/CH4 Separation [J]. J. Am. Chem. Soc.,2009,132:76-78.
    [10]. S. Wang, Q. Yang, C. Zhong, Adsorption and separation of binary mixtures in a metal-organic framework Cu-BTC:A computational study [J]. Sep. Purif. Technol.,2008, 60:30-35.
    [11]. L. Hamon, P. L. Llewellyn, T. Devic, et al. Co-adsorption and Separation of CO2-CH4 Mixtures in the Highly Flexible MIL-53(Cr) MOF [J]. J. Am. Chem. Soc.,2009,131: 17490-17499.
    [12]. S. Ma, D. Sun, X. S. Wang, H.C. Zhou, A Mesh-Adjustable Molecular Sieve for General Use in Gas Separation [J]. Angew. Chem. Int. Ed.,2007,46:2458-2462.
    [13]. J. R. Li. R. J. Kuppler, H. C. Zhou, Selective gas adsorption and separation in metal-organic frameworks [J]. Chem. Soc. Rev.,2009,38:1477-1504.
    [14]. A. Kondo, A. Chinen, H. Kajiro, et al. Metal-Ion-Dependent Gas Sorptivity of Elastic Layer-Structured MOFs [J]. Chem-Euro. J.,2009,15:7549-7553.
    [15]. R. Kitaura, K. Seki, G. Akiyama, S. Kitagawa, Porous Coordination-Polymer Crystals with Gated Channels Specific for Supercritical Gases [J]. Angew. Chem. Int. Ed.,2003. 42:428-431.
    [16]. A. J. Blake, S.J. Hill, P. Hubberstey, et al. Rectangular grid two-dimensional sheets of copper(Il) bridged by both co-ordinated and hydrogen bonded 4,4[prime or minute]-bipyridine (4,4[prime or minute]-bipy) in [Cu([small micro]-4,4[prime or minute]-bipy)(H2O)2(FBF3) 2][middle dot]4,4[prime or minute]-bipy [J]. J. Chem. Soc. Dalton. T.,1997,6:913-914.
    [17]. S. Ohnishi, T. Ohmori, T. Ohkubo, et al. Hydrogen-bond change-associated gas adsorption in inorganic-organic hybrid microporous crystals [J]. Appl. Surf. Sci.,2002, 196:81-88.
    [18]. H. Kanoh, A. Kondo, H. Noguchi, et al. Elastic layer-structured metal organic frameworks (ELMs) [J]. J. Colloid. Interf. Sci.,2009,334:1-7.
    [19]. D. Li, K. Kaneko, Hydrogen bond-regulated microporous nature of copper complex-assembled microcrystals [J]. Chem. Phys. Lett.,2001,335:50-56.
    [20]. H. Kajiro, A. Kondo, K. Kaneko, et al. Flexible Two-Dimensional Square-Grid Coordination Polymers:Structures and Functions [J]. Int. J. Mol. Sci.,2010,11: 3803-3845.
    [21]. Y. Cheng, A. Kondo, H. Noguchi, et al. Reversible Structural Change of Cu-MOF on Exposure to Water and Its CO2 Adsorptivity [J]. Langmuir.,2009,25:4510-4513.
    [22]. A. Kondo, H. Noguchi, S. Ohnishi, et al. Novel Expansion/Shrinkage Modulation of 2D Layered MOF Triggered by Clathrate Formation with CO2 Molecules [J]. Nano. Lett., 2006,6:2581-2584.
    [23]. H. Noguchi, A. Kondo, Y. Hattori, et al. Evaluation of an Effective Gas Storage Amount of Latent Nanoporous Cu-Based Metal-Organic Framework [J]. J. Phys. Chem. C.,2007, 111:248.
    [24]. H. Noguchi, A. Kondoh, Y. Hattori, et al. Clathrate-Formation Mediated Adsorption of Methane on Cu-Complex Crystals [J]. J. Phys. Chem. B.,2005,109:13851-13853.
    [25]. B. Chen, S. Ma, F. Zapata, et al. Rationally Designed Micropores within a Metal-Organic Framework for Selective Sorption of Gas Molecules [J]. Inorg. Chem., 2007,46:1233-1236.
    [26]. K. Seki, Dynamic channels of a porous coordination polymer responding to external stimuli [J]. Phys. Chem. Chem. Phys.,2002.10:1968-1971.
    [27]. C. Reichenbach, G. Kalies, J. Lincke, et al. Unusual adsorption behavior of a highly flexible copper-based MOF [J]. Micropor. Mesopor. Mat.,2011,142:592-600.
    [28].于秋红,铜/4,4'-联吡啶金属骨架结构的合成及其甲烷、氢气和二氧化碳的吸附储存研究[D],太原,太原理工大学,2012:26-29.
    [29]. Y. Inubushi, S. Horike, T. Fukushima, et al. Modification of flexible part in Cu2+ interdigitated framework for CH4/CO2 separation [J]. Chem. Commun.,2010,46: 9229-9231.
    [1]. G. Ferey, Hybrid porous solids:past, present, future [J]. Chem. Soc. Rev.,2008,37: 191-214.
    [2]. Li H. L., M. Eddaoudi, M. O'Keeffe, O. M. Yaghi, Design and synthesis of an exceptionally stable and highly porous metal-organic framework [J]. Nature.,1999,402: 276-279.
    [3]. Chui Stephen S.-Y., Lo Samuel M.-F., Charmant Jonathan P., et al. A Chemically Functionalizable Nanoporous Material [Cu3(TMA)2(H2O)3]n [J]. Science.,1999,283: 1148-11650.
    [4]. Rachel B. Getman, Youn-Sang Bae, Christopher E. Wilmer, et al. Review and Analysis of Molecular Simulations of Methane, Hydrogen, and Acetylene Storage in Metal-Organic Frameworks [J]. Chem. Rev.,2012,112 (2):703-723.
    [5]. Kenji Sumida, David L. Rogow, Jarad A. Mason, et al. Carbon Dioxide Capture in Metal-Organic Frameworks [J]. Chem. Rev.,2012,112 (2):724-781
    [6]. G. Ferey, C. Mellot-Draznieks, C. Serre, et al. A Chromium Terephthalate Based Solid with Unusually Large Pore Volumes and Surface Area [J]. Science.2005,309: 2040-2042.
    [7]. A. Henschel, K. Gedrich, R. Kraehnert, et al. Catalytic properties of MIL-101 [J]. Chem. Commun.,2008,35:4192-4194.
    [8]. N. V. Maksimchuk, M. N. Timofeeva, M. S. Melgunov, et al. Heterogeneous selective oxidation catalysts based on coordination polymer MIL-101 and transition metal-substituted polyoxometalates [J]. J. Cataly.,2008,257:315-323.
    [9]. M. Latroche, S. Surbl, C. Serre, et al. Hydrogen Storage in the Giant Pore Metal-Organic Frameworks MIL-100 and MIL-101 [J]. Angew. Chem. Int. Ed.,2006,118:8407-8411.
    [10]. I. Senkovska, S. Kaskel. High pressure methane adsorption in the metal-organic frameworks Cu3(btc)2, Zn2(bdc)2dabco, and Cr3F(H2O)2O(bdc)3 [J]. Micropor. Mesopor. Mat.,2008,112(1-3):108-115.
    [11]. P. L. Llewellyn. S. Bourrelly, C. Serre, et al. High Uptakes of CO2 and CH4 in Mesoporous Metal Organic Frameworks MIL-100 and MIL-101 [J]. Langmuir.,2008,24: 7245-7250.
    [12]S. H. Jhung, J. H. Lee, J. W. Yoon, et al. Microwave Synthesis of Chromium Terephthalate MIL-101 and Its Benzene Sorption Ability [J]. Adv. Mater.,2007,19: 121-124.
    [13]P. Horcajada, C. Serre, M. Vallet-Regi, et al. Metal-Organic-Frameworks as Efficient Materials for Drug Delivery [J]. Angew. Chem. Int. Ed.,2006,45:5974-5978.
    [14]. Y. Y. Liua, J. L. Zenga, J. Zhanga, et al. Improved hydrogen storage in the modified metal-organic frameworks by hydrogen spillover effect [J]. Int. J. Hydrogen Energ.2007, 32:4005-4010.
    [15]. K. Nazmul Abedin, K. In Joong, S. Hwi Young, et al. Facile synthesis of nano-sized metal-organic frameworks, chromium-benzenedicarboxylate, MIL-101 [J]. Chem. Eng. J., 2011,166(3):1152-1157.
    [16]. SheehanR. J., Terephthalic acid, dimethyl phthalate and isophthalic acid. In:Ullmann's encyclopedia of industrial chemistry [M].5th completely revised ed, VCH Verlagsgesellschaft,1995, A26:193-204.
    [17]. Li Jinping, Cheng Shaojuan, Zhao Qiang, et al. Synthesis and Hydrogen Storage Behavior of Metal-Organic Framework MOF-5, Int. J. Hydrogen. Energ.,2009, 34:1377-1382.
    [18].吴华伟,微孔材料的甲烷吸附研究[D].太原,太原理工大学,2009

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700