用户名: 密码: 验证码:
地下水渗流环境改变引起含水层变形的机理及计算方法研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本研究针对含水层中地下水开采及地下构筑物引起地下水渗流环境改变造成含水层变形的问题,应用理论分析、室内试验与数值分析相结合的方法研究其发生机理。通过拓展基于Cosserat连续体理论的Budhu地面沉降模型(以下简称Budhu模型),建立了可以分析承压含水层变形的含水层变形拓展模型(以下简称Budhu拓展模型);通过室内试验证明了地下水开采及地下构筑物对地下水渗流环境的影响规律,同时对Budhu模型及拓展模型中的基本假设进行了验证;通过应用Budhu拓展模型分析上海市第IV承压含水层变形及常州市地面沉降问题。本研究的主要内容与创新性成果如下:
     (1)提出了含水层水位下降引起的土层中剪应力累积是造成含水层变形问题的主要原因:由于Cosserat连续体理论考虑了介质尺度的影响,可以计算连续体中的非对称剪应力分布,从而适用于研究复杂应力条件下土体变形的问题。
     (2)建立基于Cosserat连续体理论的Budhu拓展模型:基于Cosserat连续体理论的Budhu模型可用于分析非承压含水层变形,在该模型变形计算中不仅包含了土层的压缩变形,还考虑了由于应力分布不均匀引起的剪切及扭转变形。通过分析非承压含水层与承压含水层之间的区别,以及含水层水位随时间变化的规律,在Budhu模型的基础上建立Budhu拓展模型。
     (3)确立了地下水开采与地下构筑物对地下水渗流环境影响的发生机理:通过室内试验确立了地下水开采与地下构筑物对地下水渗流环境的影响规律,包括含水层水位及渗透系数两个方面。试验结果证明在含水层水位分布较均匀时,采用Budhu和Adiyaman提出的单一多项式拟合最终水位的方法是可行的;当含水层中存在地下构筑物造成水位突变时,采用联立多项式拟合效果更好。同时地下构筑物的存在也会影响一定范围内含水层的渗透系数,根据地下构筑物形式不同而有所区别。
     (4)建立了挡桩群存在时含水层等效渗透系数的计算方法:挡桩群对含水层渗透性的影响在减小渗流面积的同时还延长了渗流路径,因此挡桩群的布置形式会影响等效渗透系数的大小。引入等效渗透系数修正系数对基于有效介质理论所得到的等效渗透系数计算方法进行修正,得到考虑布桩形式后的含水层等效渗透系数计算方法。
     (5)应用本研究提出的Budhu拓展模型分析上海市第IV承压含水层变形及常州市地面沉降问题,结果如下:
     ①Budhu拓展模型可以较好地预测含水层变形的大小和趋势。Budhu拓展模型、渗流压缩模型、基于Cauchy连续体理论的轴对称模型三种模型的计算结果表明,传统模型无论从渗流角度或是土层材料性状角度出发,都无法考虑由于水力梯度引起土层中剪应力累积的过程,特别处于低水位处的剪应力值较大,所以对土层变形模拟结果均偏保守。而Budhu拓展模型由于考虑了上覆隔水层固结过程以及含水层中剪应力累积过程,模拟结果较好,并解释了变形滞后于水位的宏观现象。
     ②通过对上海市第IV承压含水层变形的分析,验证了长时间的循环荷载不是引起含水层变形的主要原因。通过对常州市国棉一厂到龙虎塘之间的地面沉降的分析,验证了在长距离多井抽水情况下,采用联立多项式拟合水位更为准确。并且在大范围地下水开采时,密集建造地下构筑物会明显加大地面沉降。
This study was undertaken to evaluate the deformation of aquifer caused by variationof groundwater seepage environment. In order to investigate the mechanism of thesephenomenons, theoretical analysis, laboratory element tests and numerical simulationswere conducted to analysis deformation found in aquifer. The modified model based onCosserat continuum mechanism was proposed; the variation of seepage environment wasdiscussed in laboratory tests; the modified model was employed to investigate the largedeformation of Aquifer IV in Shanghai and surface settlement in Changzhou. The gist andprimary new findings of this dissertation induces:
     1) One of the main reason causing deformations in aquifer was accumulation of shearstress in aquifer. By considering the scale of soil element, the Cosserat continuummechanism could be applied to calculate the deformantion of aquifer.
     2) A modified model based on Cosserat continuum mechanism was proposed in thisstudy. Budhu and Adiyaman first proposed a model to simulate the deformation ofunconfined aquifer. In this model, the simple shear displacement and rotation of soil hasbeen considerated. Due to the different consolidation procedure between confined andunconfined aquifer, a modified model based on Budhu’s model was proposed in this studyto simulate the deformation of confined aquifer. Especially, new simultaneous polynomialequations were used to fit groundwater head with sudden change or in long distance.
     3) The mechanism of underground structures on the groundwater seepageenvironment was established. A series of laboratory investigation on the disturb behaviorof water pumping and underground constructions in aquifer. The results show thatgroundwater level and equivalent permeability were serious disturbed by water pumpingand underground constructions. According to laboratory tests, the assumption of usingpolynomial to fit groundwater level proposed by Budhu and Adiyaman has been proved asa useful simplifies approach. However, simultaneous polynomial equations were used tofit the groundwater level with sharp variation. The construction of underground structurein aquifer would decrease the equivalent permeability.
     4) The calculation method of equivalent permeability of the aquifer was proposed.The pile foundation not only reduced the seepage area, but also enlarged seepage path.With different arrangement, the blocking effect by pile foundation was also different too.
     5) A series of numerical analysis were conducted to analyze the deformation ofaquifer due to groundwater pumping and underground structures construction found inShanghai and Changzhou. The simulation results were shown below:
     i) The results of modified model based on Cosserat continuum mechanism fit fielddata very well. Three different models, including modified model, flow model and plainstrain model, were introduced for comparing. The consolidation of overburden layer andaccumulation of shear stress in aquifer were both considered in the modified model. Thesimulating results showed that the hydraulic gradient has large influence on deformationof aquifer.
     ii) Based on the field test data of Shanghai, the results proved the cyclic loading wasnot the main reason causing aquifer deformation. Due to shallow depth and large thicknessof Aquifer II in Changzhou, the deformation in aquifer already caused large landsubsidence. The simultaneous polynomial equations were more suitable in water levelfiting for long distance than single equation. The densely constructed undergroundstructures would increase land subsidence.
引文
[1] Freeze, R.A. Social decision making and land subsidence. In: Cabognin, L., Gambolati, G.,Johnson, A.I.(eds) Proceedings of the Sixth International Symposium on Land Susbisdnece,Ravenna, Italy,2000,53-68.
    [2] Whittaker, B.N. and Reddish, D.J. Subsidence occurrence, prediction and control. ElsevierScience Publisher, New York,1989.
    [3] Kagawa, A., Furuno, K., Kusuda, T., Satoh, K., Sakai, Y., Kamura, K., Kazaoka, O., andMorisaki, M. Land subsidence in artificial islands due to liquefaction caused by the Kobeearthquake in1995, Japan. In: Cabognin, L., Gambolati, G., and Johnson, A.I.(eds) Proceedingsof the Sixth International Symposium on Land Subsidence, Ravenna, Italy,2000,45-51.
    [4]张阿根,魏子新.中国地面沉降.上海:上海科学技术出版社,2005.
    [5] Galloway, D., Jones, D.R., and Ingebritsen, S.E. Land subsidence in the United States. U.S.Geological Sruvey Circular1182,1999.
    [6] Holzer, T.L. and Johnson, A.I. Land subsidence caused by ground water withdrawal in urbanareas. Geojournal,1985,11(3):245-255.
    [7]许烨霜.考虑地下构筑物对地下水渗流阻挡效应的地面沉降性状研究[博士学位论文].上海:上海交通大学,2010.
    [8] Li, Y., Rao, X., and Li, Y. Study on land subsidence induced by pumping groundwater withthree-dimensional finite element of water and soil coupling. Land Subsidence, Proceedings ofthe7th International Symposium on Land Subsidence,2005, Shanghai,715-726.
    [9] Ye, S.J., Xue, Y.Q., and Wu, J. Study on the groundwater flow model for land subsidencemodeling in Shanghai. Land Subsidence, Proceedings of the7th International Symposium onLand Subsidence, Shanghai,2005,628-634.
    [10] Wang, F., Miao, L.C., and Lv, W.H. Study on the new deformation characteristics of the pumpedaquifers in Su-Xi-Chang area, China. In: He, Q., and Shen, S.L.(eds) GeoenvironmentalEngineering and Geotechnics (GSP204), ASCE Press, Reston, Virginia,2010,57-62.
    [11]张云,薛禹群,吴吉春,李勤奋.抽灌水条件下上海砂土层的变形特征和变形参数.水利学报,2006,37(5):560-566.
    [12] Cai, Z.Y. The deformation behavior of sand. Yellow River Conservancy Press,2004.
    [13]薛禹群,张云,叶淑君,吴吉春,魏子新,李勤奋,于军.我国地面沉降若干问题研究.高校地质学报,2006,12(2):153-160.
    [14] Xu, Y.S., Shen, S.L., Cai, Z.Y., and Zhou, G.Y. The state of land subsidence and predictionapproaches due to groundwater withdrawal in China. Natural Hazards,2008,45(1):123-135.
    [15]蔡文富,孙永福.上海地下水资源合理开发应用.上海科技建设,1999,1(4):9-10.
    [16]缪晓图.苏锡常地区孔隙II承压水开采条件与水、土应力平衡探讨.江苏地质,2004,28(4),233-237.
    [17]上海隧道工程股份有限公司.上海市轨道交通四号线,浦东南路车站一南浦大桥车站区间隧道修复工程施工大纲.2004,上海.
    [18]杨有海,王建军,武进广,李长山.杭州地铁秋涛路车站深基坑信息化施工监测分析.岩土工程学报,2008,30(10):1550-1554.
    [19]陈顺龙,刘淑美.钱江隧道工程深基坑的盾构施工难点.山西建筑,2011,37(29):171-172.
    [20]王卫东,翁其平,陈峥,徐勍.上海世博500kV地下变电站超深一柱一桩的设计与分析.土木工程学报,2007,40(增):312-318.
    [21]赵陈鹏.轨道交通9号线宜山路站基坑降水对地面沉降的影响及室内模型试验研究[硕士学位论文].上海:同济大学,2007.
    [22]上海市建设委员会.上海八十年代高层建筑.上海:上海科学技术文献出版社,1991.
    [23]上海市城乡建设和交通委员会.地面沉降监测与防治技术规程(J11371-2009).上海,2009.
    [24]上海统计网. http://www.stats-sh.gov.cn/2008shtj/index.asp.2010.
    [25]龚剑,赵锡宏.对101层上海环球金融中心桩筏基础性状的预测.岩土力学,2007,28(8):1695-1699.
    [26]顾建平,王志勇.上海中心大厦项目主楼桩基的选型与评估——特大超长后注浆钻孔灌注桩基础在超高层建筑的应用.建筑施工,2009,37(7):530-532.
    [27]肖伯强,陈超华.黏土层百米超长桩钻孔施工技术.施工技术,2005,(增1):160-163.
    [28] Menon, M.G.K. Foreword. In: Lowland-Development and Management. Edited by Miura, N.,Madhav, M.R., and Koga, K., A.A. Balkema, Rotterdam,1994,7-8.
    [29]刘健利.中国沿海低地人口时空分布及灾害暴露评估[硕士学位论文].上海:上海师范大学,2010.
    [30] Gambolati, G. and Freeze, R.A. Mathematical simulation of the subsidence of Venice:1. Theory.Water Resource Research,1973,9(3):721-733.
    [31] Bear, J. and Corapcioglu, M.Y. Mathematical model for regional land subsidence due topumping1. Integrated aquifer subsidence equations based on vertical displacement only. WaterResources Research,1981,17(4):937-946.
    [32] Shen, S.L., Xu, Y.S., and Hong, Z.S. Estimation of land subsidence based on groundwater flowmodel. Marine Georesources and Geotechnology,2006,24(2):149-167.
    [33] Sakai, A. Land subsidence due to seasonal pumping of groundwater in Saga Plain, Japan.Lowland Technology International,2001,3(1):24-39.
    [34]薛禹群,张云,叶淑君,李勤奋.中国地面沉降及其需要解决的几个问题.第四纪研究,2003,23(6):585-592.
    [35]《上海市地质环境图集》编纂委员会.上海市地质环境图集.北京:地质出版社,2002.
    [36]杨献忠,杨祝良,陈敬中,胡存礼,袁平,魏乃颐.蒙脱石脱水作用与地面沉降关系的研究展望.岩石矿物学杂志,2005,24(6):659-665.
    [37] Budhu, M. and Adiyaman, I.B. Mechanics of land subsidence due to groundwater pumping.International Journal for Numerical and Analytical Method in Geomechanics,2010,34(14):1459–1478.
    [38] Chang, C.S. and Yin, Z.Y. Micromechanical modeling for behavior of silty sand with influenceof fine content, International Journal of Solids and Structures,2011,48:2655-2667
    [39]鞠海燕.砂结构性有限特征比本构关系研究[硕士学位论文].广东:广东工业大学,2005.
    [40]龚士良.上海软黏土微观特性及在土体变形与地面沉降中的作用研究.工程地质学报,2002,10(4):378-384.
    [41]武强,谢海澜,赵增敏,李娟,金晓丽.弱透水层变形机理的研究.北京科技大学学报,2006,28(3):207-210.
    [42]陈戈,阎世骏,李铁锋.天津市深层黏性土对地面沉降的影响及其沉降量计算.北京大学学报(自然科学版),2001,37(6):804-809.
    [43]张云,薛禹群,李勤奋.上海现阶段主要沉降层及其变形特征分析.水文地质工程地质,2003,5:6-11.
    [44]郭萌,陈刚,黄骁,王文霞,郑小燕.北京大兴规划新城地面沉降研究.研究探讨,2011,6(1):17-21.
    [45]杨艳,贾三满,王海刚.北京平原区地面沉降现状及发展趋势分析.上海地质,2010,31(4):23-28.
    [46] Chai, J.C., Shen, S.L., Zhu, H.H., and Zhang X.L. Land subsidence due to groundwaterdrawdown in Shanghai. Géotechnique,2004,54(2):143-147.
    [47] Chai, J.C., Shen, S.L., Zhu, H.H., and Zhang X.L.1D analysis of land subsidence in Shanghai.Lowland Technology International,2005,7(1):33-41.
    [48]贾三满,王海刚,罗勇,杨艳,王荣,冯颖.北京市地面沉降发展及对城市建设的影响.城市地质,2007,2(4):19-23.
    [49]贾三满,王海刚,赵守生,罗勇.北京地面沉降机理研究初探.城市地质,2007,2(1):20-26.
    [50]朱俊高,陆晓平.大面积地面沉降研究现状.地质灾害与环境保护,2001,12(4):74-78.
    [51]彭建兵,陈立伟,黄强兵,门玉明,范文,闫金凯,李珂,姬永尚,石玉玲.地裂缝破裂扩展的大型物理模拟试验研究.地球物理学报,2008,51(6):1826-1834.
    [52] Boling, J. K.1984. Earth-fissure movements in south-central, Arizona, U.S.A. Land subsidence.Proc.,3rd Int. Symp. on Land Subsidence, Taylor and Francis, London,757-766.
    [53] Budhu M. Earth fissure formation from the mechanics of groundwater pumping. InternationalJournal of Geomechanics,2011,11(1):1-11.
    [54]陈立伟.地裂缝扩展机理研究[博士学位论文].西安:长安大学,2007.
    [55]姜振泉,武强,隋旺华.临汾地裂缝的成因及发育环境研究.中国矿业大学出版社,1999.
    [56]耿大玉,李忠生.中美两国的地裂缝灾害.地震学报,2000,(4):433-441.
    [57] Jonhson, D.W. and Pratt, W.E. A local subsidence of the gulf coast of Texas. The GeographicalJournal,1927,69(1):61-65.
    [58] Minor, H.E. Goose Creek oil field. Harris county, Texas. Bull Am Assn Petr Geol,1925(9):286-297.
    [59] Snider, L.C. A suggested explanation for the surface subsidence in the Goose Creek oil and gasfield. American Association of Petroleum Geologists Bulletin,1927,(11):729-745.
    [60] Schumann, H.H. and Cripe, L.S. Land subsidence and earth fissures caused by groundwaterdepletion in southern Arizona, U.S.A. International Symposium on Land Subsidence,International Association of Scientific Hydrology Publication,1986:841-851.
    [61] Jachens, R.C. and Holzer, T.L. Differential compaction mechanism for earth fissures near CasaGrande, Arizona. Geological Society of America Bulletin,1982:998-1012.
    [62]王景明,王春梅,刘科.地裂缝及其灾害研究的新进展.地球科学进展,2008,16(3):303-313.
    [63]董东林,武强,姜振泉,隋旺华,魏学勇,张开军.析临汾地裂缝之地质成因.中国矿业大学学报,2002,31(1):34-38.
    [64]于军,王晓梅,苏小四,余勤.苏锡常地区地裂缝地质灾害形成机理分析.吉林大学学报(地球科学版),2004,34(2):236-241.
    [65]易学发,苏刚,王卫东,唐俊昌.西安地裂缝带的基本特征与形成机制.地震地质,1997,19(4):289-295.
    [66]易学发.西安市地面不均匀沉降及地裂缝成因的讨论.地震学报.1984,(6):50-54.
    [67] Davis, S.N. Origin of earth fissures abs. GSA Abstracts with Programs,1978,102-103.
    [68] Holzer, T.L., Davis, S.N., and Lofgren, B.E. Faulting caused by groundwater extraction insouth-central Arizona. Journal of Geophysical Research,1979,84:603-612.
    [69] Holzer, T.L. Ground failure induced by ground-water withdrawal from unconsolidated sediments.Man-induced land subsidence, Geological Society of America, T. L. Holzer, ed.,1984,67-105.
    [70] Jachens, R.C. and Holzer, T.L. Differential compaction mechanism for earth fissures near CasaGrande, Arizona. Geological Society of America Bulletin,1982,93:998-1012.
    [71] Lofgren, B.E. Hydraulic stresses cause ground movement and fissures. Picacho, Arizona.Geological Society American Abstracts and Programs,1978,113.
    [72] Helm, D.C. Hydraulic forces that play a role in generating fissures at depth. Bulletin of theInternational Association of Engineering Geology,1994,31:293-304.
    [73] Helm, D.C. Fissures in Yucca flat dry lake bed, Nevada test site. In: Looney, B.B., and Falta,R.W.(eds) Vadose zone, science and technology solutions, Battelle Press, Columbus, Ohio,2000.
    [74] Carpenter, M.C. Earth-fissure movements associated with fluctuations in ground-water levelsnear the Picacho Mountains, southcentral Arizona,1980–84. U.S. Geological Surveyprofessional paper, USGS, Washington, D.C.,1993.
    [75] Carpenter, M.C. Part I: South-central Arizona. Land subsidence in the United States. Galloway,D.R., Jones, D.R., and Ingebritsen, S.E.(eds) U.S. Geological Survey Circular No.1182, Reston,Virginia,1999,65-78.
    [76] Sheng, Z.P., Helm, D.C., and Li, J. Mechanisms of earth fissuring caused by groundwaterwithdrawal. Environmental and Engineering Geoscience,2003,94:351-362.
    [77]王卫东,苏刚,易学发.西安地裂缝的数值模拟研究.灾害学,1998,13(3):33-37.
    [78] Budhu, M. Mechanics of earth fissures using the Mohr-Coulomb failure criterion. Environmentaland Engineering Geoscience,2008,144:281-295.
    [79]张云,薛禹群,吴吉春,刘运涛,蒲晓芳.上海砂土蠕变变形特征的试验研究.岩土力学,2009,30(5):1226-1236.
    [80] Chang, C.S. and Yin, Z.Y. Micromechanical modeling for behavior of silty sand with influenceof fine content. International Journal of Solids and Structures,2011,48:2655-2667.
    [81] Lade, P.V. and Bopp, P.A. Relative density effects on drained sand behavior at high pressures.Soils and foundations,2005,45(1):1-13.
    [82] Miura, N., Murata, H., and Yasufuku, N. Stress-strain characteristics of sand in aparticle-crushing region. Soils and Foundations,1984,24(1):77-89.
    [83] Coop, M.R. The mechanics of uncemented carbonate sand. Géotechnique,1990,40(4):607-626.
    [84] Zhang, Y., Xue, Y.Q., Wu, J.C., and Ye, S.J. Stress-strain measurements of deforming aquifersystems that underlie Shanghai, China. Environmental and Engineering Geoscience,2007,13(3):217-228.
    [85] Thevanayagam, S. and Mohan, S. Intergranular state variables and stress-strain behaviour ofsilty sands. Géotechnique,2000,50(1):1-23.
    [86] Thevanayagam, S., Shenthan, T., Mohan, S., and Liang, J. Undrained fragility of clean sands,silty sands and sandy silts. Journal of Geotechnical and Geoenvironmental Engineering, ASCE,2002,128(10):849-859.
    [87] Cosserat, E. and Cosserat, F.1909. Theorie des corps deformables. Herman et fils: Paris.
    [88] Muhlaus, H.B. Application of Cosserat theory in numerical solutions of limit load problems.Archive of Applied Mechanics,1989,59(2):124-137.
    [89] Brown, C.B. and Evans, R.J. On the application of couple-stress theories to granular media.Géotechnique,1972,22(2):356-361.
    [90]余成学,熊文林,陈胜宏.层状岩体的弹粘塑性Cosserat介质理论及其工程应用.水利学报,1996,(4):10-17.
    [91]刘俊,黄铭,葛修润,陈胜宏.层状岩体开挖的空间弹性偶应力理论分析.岩石力学与工程学报,2000,19(3):276-280.
    [92]杨春和,李银平.互层盐岩体的Cosserat介质扩展本构模型.岩石力学与工程学报,2005,24(23):4226-4232.
    [93]杨乐,向文华,吴德伦,谢贵华. Cosserat理论在互层岩体洞室有限元分析中的应用.岩土工程学报,2009,31(2):218-222.
    [94]朱珍德,秦天昊,王士宏,王连国,孙国柱.基于Cosserat理论的柱状节理岩体各向异性本构模型研究.岩石力学与工程学报,2010,29(增2):4068-4076.
    [95] Deng, J.L. Spectrum mapping in grey theory. The Joumal of Grey System,2000,2:116.
    [96] Li, T., Huang, S.L., and Zhou, C.H. Land subsidence prediction by various grey models.Environmental Informatics Archives,2005,3:403-410.
    [97]宫相霖,董荣鑫.灰色系统在地面沉降分析中的应用.上海地质,2003,87(3):16-21.
    [98]张先林.上海市地面沉降动态分析与灰色预测.上海地质,1991(1):42-46.
    [99] Luo, Z.Y., Wei, L., and Xia, J.Z. Grey verhulst prediction of land subsidence. In: Zhang, A.G.,Gong, S.L., Carbognin, L., and Johnson, A.I.(eds) Proceedings of the Seventh InternationalSymposium on Land Subsidence, Shanghai, China. Shanghai Scientific and Techiical Publishers,2005,609-615.
    [100]张序.苏州地面沉降灰色系统预测模型.苏州城建环保学院学报,2000,13(3):53-57.
    [101]王威,陆阳,董克刚.天津市地面沉降的灰色系统-马尔柯夫预测模型应用.城市地质,2008,3(1):41-44.
    [102]张玉祥.岩土工程时间序列预报问题初探.岩石力学与工程学报,1998,17(5):552-558.
    [103]邹友峰,邓喀中,马伟民.矿山开采沉陷工程.北京:中国矿业大学出版社,2003.
    [104] Poland, J.F. Guidebook to studies of land subsidence due to ground-water withdrawal. Publishedby the United Nations Educational, Scientific and Cultural Organization,1984.
    [105] Holzer, T.L. and Bluntzer, R.L. Land subsidence near oil and gas fields, Houston, Texas. GroundWater,1984,22(4):450-459.
    [106]许烨霜,沈水龙,蔡正银.从实测数据推测地下水的可开采量.中国土木工程学会第十届土力学及岩土工程学术会议论文集,2007,514-517.
    [107]王海刚.天津市地面沉降现状及预测[硕士学位论文].北京:中国地质大学,2006.
    [108] Miyabe, N. Directions of research on land subsidence. In: Land Subsidence Proceeding of theTokyo Symposium, Tokyo, Japan. IAHS Pubication No.88,1969,1-11.
    [109] Rivera, A., Ledoux, E., and de Marsily, G. Nonlinear modeling of groundwater flow and totalsubsidence of the Mexico city aquifer-aquitard system. In: Johnson, A.I.(ed) Proceedings of theFourth International Symposium on Land Subsidence, Houston, U.S.A. IAHS Publication No.200,1991,45-58.
    [110] Chen, C.X., Cheng, J.M, Pei, S.P., and Liu, J. Numerical model of land subsidence caused bygroundwater abstraction and its countermeasure-by example of Suzhou City. In: Zhang, A.G.,Gong, S.L., Carbognin, L., and Johnson, A.I.(eds) Proceedings of the Seventh InternationalSymposium on Land Subsidence, Shanghai, China. Shanghai Scientific and Techiical Publishers,2005,672-679.
    [111]冉启全,顾小芸.考虑流变特性的流固耦合地面沉降计算模型.中国地质灾害与防治学报,1998,9(2):99-103.
    [112] Gambolati, G. and Sartobetto, F. A conjugate gradient finite element model of flow for largemultiaquifer systems. Water Resources Research,1986,22(7):1003-1015.
    [113]鎌田烈,村上雅博,原田和彦.準三次元帯水層モデルによる地盤沈下の解析.地球科學,1973,27(4):131-140.
    [114] Teatini, P., Gambolati, G., and Tosi, L. A new3-D non-linear model of the subsidence of Venice.In: Proceedings of the Fifth International Symposium on Land Subsidence, Shanghai, China.Shanghai Scientific and Techiical Publishers,2005,353-361.
    [115] Gambolati, G. and Teatini, P. A block iterative finite element model for non-linear leaky aquifersystems. Water Resources Research,1996,32(1):199-204.
    [116]顾小芸.地面沉降计算的回顾与展望.中国地质灾害与防治学报,1998,9(2):81-85.
    [117]李勤奋,方正,王寒梅.上海市地下水可开采量模型计算及预测.上海地质,2000,(2):36-43.
    [118]魏加华,崔亚莉,邵景力,陈占成,文唐章.济宁市地下水与地面沉降三维有限元模拟.长春科技大学学报,2000,30(4):376-380.
    [119] McDonald, M.G. and Harbaugh, A.W. A modular three-dimensional finite-differenceground-water flow model. USGS, Techniques of Water-Resources Investigations, Book6,Charpter A1, U.S.A. Government printing Office, Washington,1988.
    [120] Onta, P.R. and Gupta, A.D. Regional management modeling of a complex groundwater systemfor land subsidence control. Water Resources Management,1995,9(1):1-25.
    [121] Don, N.C., Araki, H., Yamanishi, H., and Koga, K. Simulation of groundwater flow andenvironmental effects resulting from pumping. Environmental Geology,2005,47(3):361-374.
    [122]许烨霜,沈水龙,唐翠萍,姜弘.基于地下水渗流方程的三维地面沉降模型.岩土力学,2005,26(增):109-113.
    [123]沈水龙,许烨霜,陶野郁雄.海洋沉积环境中地下天然气开采引起地面沉降的计算分析.岩石力学与工程学报,2005,24(增2):5389-5394.
    [124]沈水龙,许烨霜,陶野郁雄.海洋沉积环境中深层地下水溶性天然气开采引起的地面沉降.岩石力学与工程学报,2006,25(6):1094-1098.
    [125] Xu, Y.S., Shen, S.L., Hayashi, S., and Cai, Z.Y. Analysis of groundwater withdrawal and landsubsidence in Shanghai. Lowland Technology International,2007,9(2):2-7.
    [126] Biot, M.A. General theory of three dimensional consolidation. Journal of Applied Physics,1941,12(2):155-164.
    [127] Duncan, J. M. and Chang, C. Y. Non-linear analysis of stress and strain in soils. Journal of SoilMechanics and Foundations Division, ASCE,1970,96(5):1629-1653.
    [128] Roscoe, K.H. and Burland, J.B. On the generalized stress-strain behaviour of “wet” clay. In:Heyman, J. and Leckie, F.A.(eds) Engineering Plasticity, Cambridge University Press,1968,535-609.
    [129] Shen, S.L, Chai, J.C., Hong, Z-S., and Cai, F.X. Analysis of field performance of embankmentson soft clay deposit with and without PVD-improvement. Geotextiles and Geomemberanes,2005,23(6):463-485.
    [130]张建民,王刚,陈杨.海岸岩土工程的物理与数值模拟方法.岩土力学,2004,25(增2):61-74.
    [131]蔡丰锡.软土地层中双圆盾构法施工引起的应力与变形分析[硕士学位论文].上海:上海交通大学,2006.
    [132]何开胜,沈珠江.天然沉积黏土的结构性调查.东南大学学报(自然科学版),2002,32(5):818-822.
    [133] Leroueil, S., Tavenas, F., and Brucy, F. Behavior of destructed natural clays. Proceedings ofASCE,1979,105(6):759-778.
    [134] Leroueil, S. and Vaughan, P.R. The general and congruent effects of structure in natural soils andweak rocks. Géotechnique,1990,40(3):467-488.
    [135] Hvorslev, M.J. Uber die festigkeitseigenschaften gestorter bindiger boden. DanmarksNaturvidenskabelige Samfund: Ingeniorvidenskabelige Skrifter, A,45,1937.
    [136] Rendulic, L. Ein grundgesetz der tonmechanik und sein experimentaer beweis. Der Bauingeneur,18,1937.
    [137] Roscoe, K.H. and Burland, J.B. On the generalized stress-strain behavior of “wet clay”.In:Heyman, J.F.A,. ed. Engineering Plastisity. London:Cambridge University Press,1988.
    [138] Skempton, A.W. Notes on the compressibility of days. Journal of the Geological Society,1944,100:119-135.
    [139] Mitchell, J.K. Fundamentals of soil behavior. New York:Wiley,1976.
    [140]张诚厚,袁文明,戴济群.软黏土的结构性及其对路基沉降的影响.岩土工程学报,1995,17(5):25-32.
    [141] Schmertmann, J.H. The mechanical aging of soils. Journal of the Geotechnical EngineeringDivision, American Society of Civil Engineers,1991, l17(9):1288-1330.
    [142] Leroueil, S. and Vaughan, P.R. The general and congruent effects of structure in natural soils andweak rocks. Géotechnique,1990,40(3):467-488.
    [143] Pusch, R. Microstructural changes in soft quick clay at failure. Canadian Geotechnical Journal,1970,7(1):1-7.
    [144] Takayama, M. Increase in shear strength of soft clay during consolidation. The Japanese Societyof Irrigation, Drainage and Reclamation Engineering,1984,109:61-69.(in Japanese)
    [145] Almeida, S.S., Maria, P.E.L., Martins, I.S.M., Spotti, A.P., and Coelho, L.B.M. Consolidation ofa very soft clay with vertical drains. Géotechnique,2000,50(6):633-643.
    [146] Hong, Z.S. and Onitsuka, K. A method of correcting yield stress and compression index ofAriake clays for sample disturbance. Soils and Foundations,1998,38(2):211-222.
    [147] Nagaraj, T.S. and Miura, N. Soft clay behavior analysis and assessment. A.A.BalkemaPublishers,2252Ridge Road, Brookfield,2001.
    [148] Ma, L., Shen, S.L., Luo, C.Y., and Xu, Y.S. Field evaluation on the strength increase of marineclay under stage-constructed embankment. Marine Georesources and Geotechnology,2011,29:317-332.
    [149] Hong, Z.S., Shen, S.L., Deng, Y., and Negami, T. Loss of soil structure for natural sedimentaryclays. The Proceedings of ICE,2007,160(3):153-159.
    [150]王国欣,肖树芳,黄宏伟,吴春勇.基于扰动状态概念的结构性黏土本构模型研究.固体力学学报,2004,25(2):191-197.
    [151] Chai, J.C., Miura, N., and Zhu, H.H. Compression and consolidation characteristics of structurednatural clays. Canadian Geotechnical Journal,2004,41(6):1250-1258.
    [152] Carter, J.P. and Liu, M.D. Review of the Structure Cam Clay model. Soil constitutive models:evaluation, selection, and calibration. ASCE, Geotechnical Special Publications,2005,128:99-132.
    [153] McDowell, G.R. and Hau, K.W. A simple non-associated three surface kinematic hardeningmodel. Géotechnique,2003,53(4):433-440.
    [154] Horpibulsuk, S., Liu, M.D., Liyanapathirana, D.S., and Suebsuk, J. Behaviour of cemented claysimulated via the theoretical framework of Structured Cam Clay model. Computers andGeotechnics,2010,37(1-2):1-9.
    [155] Gens, A. and Nova, R. Conceptual bases for constitutive model for bonded soil and weak rocks.Balkema,1993.
    [156] Kasama, K., Ochiai, H., and Yasufuku, N. On the stress–strain behaviour of lightly cementedclay based on an extended critical state concept. Soils Foundation,2000,40(5):37-47.
    [157] Suebsuk, J., Horpibulsuk, S., and Liu, M.D. Modified Structured Cam Clay: A generalisedcritical state model for destructured, naturally structured and artificially structured clays.Computers and Geotechnics,2010,37:956-968.
    [158] Yin, Z.Y., Karstunen, M., Chang, C.S., Koskinen, M., and Lojander, M. Modelingtime-dependent behavior of soft sensitive clay. Journal of Geotechnical and GeoenvironmentalEngineering, ASCE,2011,137(11):1103-1113.
    [159]沈珠江.结构性黏土的堆砌体模型.岩土力学,2000,21(1):1-4.
    [160]黄茂松,钟辉虹,李永盛.天然状态结构性软黏土的边界面弹塑性模型.水利学报,2003,12:47-52.
    [161]曾军军,卢廷浩.考虑土体结构性的弹塑性软化模型.岩土力学,2007,28(6):1091-1102.
    [162]王立忠,沈恺伦. K0固结结构性软黏土的本构模型.岩土工程学报,2007,29(4):496-504.
    [163]王国欣,肖树芳,黄宏伟,吴春勇.基于扰动状态概念的结构性黏土本构模型研究.固体力学学报,2004,25(2):191-197.
    [164]张敏江,张丽萍,张树标,关超.结构性软土非线性流变本构关系模型的研究.吉林大学学报(地球科学版),2004,34(2):242-246.
    [165] Rouania, M. and Wood, D.M. A kinematic hardening constitutive model for natural clays withloss of structure. Géotechnique,2000,50(2): l53-164.
    [166]沈珠江.黏土的双硬化模型.岩土力学,1995,16(1): l-8.
    [167]沈珠江.结构性黏土的弹塑性损伤模型.岩土工程学报, l993, l5(3):2l-28.
    [168]沈珠江.结构性黏土的堆砌体模型.岩土力学,2000,21(1): l-4.
    [169] Hashiguchi, K. Subloading surface model in unconventional plasticity. International Journal ofSolids and Structures,1989,25(9):17-45.
    [170] Asaoka, A., Nakano, M., and Noda, T. Superloading yield surface concept for highly structuredsoil behavior. Soils and Foundations,2000,41(2):99-110.
    [171]梁健伟,房营光.极细颗粒黏土渗流特性试验研究.岩石力学与工程学报,2010,29(6):1222-1230.
    [172]朱建群,孔令伟,钟方杰.粉粒含量对砂土强度特性的影响.岩土工程学报,2007,29(11):1647-1652.
    [173] Constantine, A. and Stamatopoulos. An experimental study of the lique faction strength of siltysand sinterms of the stateparameter. Soil Dynamics and Earth quake Engineering,2009,30:662-678.
    [174] Erten, D. and Maher, M. H. Cyclic undrained behavior of silty sand. Soil Dynamics andEarthquake Engineering,1995,14:115-123.
    [175]赵彭年.松散介质力学.1995,北京:地震出版社.
    [176]凌华,傅华,韩华强,王伟.颗粒破碎对堆石料静动力特性影响的试验研究.水利与建筑工程学报,2010,8(4):44-47.
    [177]蒋明镜,郑敏,刘芳,王闯,张熵.颗粒级配对火山灰力学特性影响的试验研究.扬州大学学报(自然科学版),2010,13(1):57-61.
    [178] Polito, C.P. and Martin, J.R. Effect of nonplastic fines on the liquefaction resistance of sands.Journal of Geotechnical and Geoenvironmental Engineering,2001,127(5):408-415.
    [179] Georgiannou, V.N. The undrained response of sands with additions of particles of various shapeand sizes. Géotechnique,2006,56(9):639-649.
    [180]陈国兴,刘雪珠.南京粉质黏土与粉砂互层土及粉细砂的振动孔压发展规律研究.岩土工程学报,2004,26(1):79-82.
    [181]衡朝阳,何满潮,裘以惠.含黏粒砂土抗液化性能的试验研究.工程地质学报,2001,9(4):339-344.
    [182] Yamamuro, J.A. and Lade, P.V. Experiments and modelling of silty sands susceptible to staticliquefaction. Mechanical Cohesion-Friction Material,1999,4:545-564.
    [183] Thevanayagam, S. Effect of fines and confining stress on undrained shear strength of silty sands.Journal of Geotechnical and Geoenvironmental Engineering,1998,124(6):479-491.
    [184] Chu, J. and leong, W.K. Effect of fines on instability behavior of loose sand. Géotechnique,2002,52(10):751-755.
    [185] Jenkins, J.T. Volume change in small strain axisymmetric deformations of a granular material. In:Satake, M., Jenkins, J.T.(eds), Micromechanics of Granular Materials,1988,143-152.
    [186] Wallton, K. The effective elastic moduli of a random packing of spheres. Journal of theMechanics and Physics of Solids,1987,35:213-226.
    [187] Rothenburg, L. and Selvadurai, A.P.S. Micromechanical definitions of the Cauchy stress tensorfor particular media. In: Selvadurai, A.P.S.(Ed.), Mechanics of Structured Media, Amsterdam,Elsevier,1981,469-486.
    [188] Chang, C.S. Micromechanical modeling of constructive relations for granular material. In:Satake, M., Jenkins, J.T.(Eds.), Micromechanics of Granular Materials,1988,271-279.
    [189] Emeriault, F. and Cambou, B. Micromechanical modelling of anisotropic non-linear elasticity ofgranular medium. International Journal of Solids and Structures,1996,33(18):2591-2607.
    [190] Liao, C.L., Chan, T.C., Suiker, A.S.J., and Chang, C.S. Pressure-dependent elastic moduli ofgranular assemblies. International Journal for Analytical and Numerical Methods inGeomechanics,2000,24:265-279.
    [191] Kruyt, N.P. and Rothenburg, L. Micromechanical bounds for the effective elastic moduli ofgranular materials. International Journal of Solids and Structures,2002,39(2):311-324.
    [192] Satake, M. A note on discrete mechanics of granular materials. In: Chang, C.S., Misra, A., Liang,R.Y., Babic, M.(eds), Mechanics of Deformation and Flow of Particulate Materials, ASCE,1997,1-10.
    [193] Oda, M. Inherent and induced anisotropy in plasticity theory of granular soils. Mechanics ofMaterials,1993,16(1-2):35-45.
    [194] Emeriault, F. and Cambou, B. Micromechanical modelling of anisotropic non-linear elasticity ofgranular medium. International Journal of Solids and Structures,1996,33(18):2591-2607.
    [195] Wan, R.G. and Guo, P.J. Drained cyclic behavior of sand with fabric dependence. Journal ofEngineering Mechanics,2001,127(11):1106-1116.
    [196] Nemat-Nasser, S. and Zhang, J. Constitutive relations for cohesionless frictional granularmaterial. International Journal of Plasticity,2002,18:531-547.
    [197] Li, X.S. and Dafalias, Y.F. Constitutive modeling of inherently anisotropic sand behavior.Journal of Geotechnical and Geoenvironmental Engineering,2002,128(10):868-880.
    [198] Jenkins, J.T. and Strack, O.D.L. Mean-field inelastic behavior of random arrays of identicalspheres. Mechanics of Material,1993,16:25-33.
    [199] Matsuoka, H. and Takeda, K. A stress-strain relationship for granular materials derived frommicroscopic shear mechanisms. Soils and Foundation,1980,20(3):45-58.
    [200] Chang, C.S., Misra, A., and Weeraratne, S.P. A slip mechanism based constitutive model forgranular soils. Journal of Engineering Mechanics, ASCE,1989,115(4):790-807.
    [201] Chang, C.S., Kabir, M., and Chang, Y. Micromechanics modelling for the stress strain behaviorof granular soil II: evaluation. Journal of Geotechnical Engineering, ASCE,1992a,118(12):1975-1994.
    [202] Chang, C.S., Misra, A., and Acheampon, K. Elastoplastic deformation of granulates withfrictional contacts. Journal of Engineering Mechanics, ASCE,1992b,118(8):1692-1708.
    [203] Suiker, A.S.J. and Chang, C.S. Modelling failure and deformation of an assembly of sphereswith frictional contacts. Journal of Engineering Mechanics,2004,130(3):283-293.
    [204] Chang, C.S. and Hicher, P.Y. An elasto-plastic model for granular materials with microstructuralconsideration. International Journal of Solids and Structures,2005,42:4258-4277.
    [205]钱家欢,殷宗泽.土工原理与计算(第二版).北京:中国水利水电出版社,1996.
    [206]朱登峰,黄宏伟,殷建华.饱和软黏土的循环蠕变特性.岩土工程学报,2005,27(9):1060-1064.
    [207] Momoya, Y., Ishii, T., and Tatsuoka, F. Strain rate-dependency of deformation of NC clay andprediction of undrained creep. In: Proc. of the33rd Japan National Conference on GeotechnicalEngineering, JGS. Yamaguchi,1998,1:615-616.(in Japanese)
    [208] Momoya, Y., Ishii, T., and Tatsuoka, F. Effecs of ageing and consolidation stress path in tri-axialcompression and extension test on clay. In:Proc. of thr53rd Annual Conference of CivilEngineers, JSCE. Kobe,1998, III-A:74-75.(in Japanese)
    [209]李建中,彭芳乐.描述黏土粘塑性的新参数.岩石力学与工程学报,2005,24(5):859-863.
    [210]李建中,彭芳乐,徐力生.单轴试验条件下黏土的粘塑性与模拟计算.岩石力学与工程学报,2005,24(24):4540-4544.
    [211]李建中,彭芳乐,龙冈文夫.黏土的粘塑性特性试验与三要素本构模型.岩土力学,2005,26(6):915-919.
    [212]李建中,彭芳乐.黏土的蠕变特性试验研究.岩土力学,2006,27(2):214-218.
    [213]李建中,彭芳乐,龙冈文夫.不同含水率黏土在不同试验条件下的应力——应变特性.岩土工程学报,2006,28(3):343-347.
    [214]张云,薛禹群,吴吉春,施小清,何佳佳.江苏太仓浅部淤泥质土层的工程地质特征.水文地质工程地质,2010,37(4):43-47.
    [215]王坤.深圳土体蠕变特性在深基坑工程中的应用.铁道工程学报,2011,8:53-57.
    [216]刘添俊,莫海鸿.不排水循环加载作用下饱和软黏土的蠕变特性.华南理工大学学报(自然科学版),2009,37(8):99-103.
    [217]李文平,张志勇,孙如华,王维理,李小琴.深部黏土高压K0蠕变试验及其微观结构各向异性特点.岩土工程学报,2006,28(10):1185-1190.
    [218]殷建华.等效时间和岩土材料的弹黏塑性模型.岩石力学与工程学报,1999,18(2):124-128.
    [219]金丰年,范华林.岩石的非线性流变损伤模型及其应用研究.解放军理工大学学报(自然科学版),2000,1(3):1-5.
    [220]陈沅江,潘长良,曹平,王文星.基于内时理论的软岩流变本构模型.中国有色金属学报,2003,13(3):735-742.
    [221]廖红建,蒲武川,殷建华.软岩的应变速率效应研究.岩石力学与工程学报,2005,24(18):3218-3223.
    [222]徐卫亚,杨圣奇,褚卫江.岩石非线性粘弹性流变模型(河海模型)及其应用.岩石力学与工程学报,2006,25(3):433-447.
    [223]蒋昱州,徐卫亚,王瑞红,王伟.岩石非线性蠕变损伤模型研究.中国矿业大学学报,2009,38(3):331-335.
    [224]宋丽,廖红建.应变空间的软岩统一弹塑性软化本构模型.西安交通大学学报,2007,41(7):857-861.
    [225]宋丽,廖红建,韩剑.软岩三维弹黏塑性本构模型.岩土工程学报,2009,31(1):83-88.
    [226]宋丽,廖红建,韩剑.软岩三维非线性统一弹黏塑性本构模型有限元分析.应用力学学报,2009,26(1):109-114.
    [227]熊良宵,杨林德.考虑节理面法向蠕变的节理岩体蠕变模型.中南大学学报(自然科学版),2009,40(3):814-821.
    [228] Di, P.C., Imposimato, S., and Vardoulakis, I. Mechanical modeling of drained creep triaxial testson loose sand. Géotechnique,2000,50(1):73-82.
    [229] Leong, W.K. and Chu, J. Effect of undrained creep on instability behavior of loose sand.Canadian Geotechnical Journal,2002,39(6):1399-1405.
    [230] Yamamuro, J.A. and Lade, P.V. Effects of strain rate on instability of granular soils.Geotechnical Testing Journal, ASTM,1993,16(3):304-313.
    [231] Adachi, T. and Oka, F. Constitutive equations for normally consolidated clay based onelasto-viscoplasticity. Soils and Foundations,1982,22(4):57-70.
    [232]彭芳乐,谭轲,龙冈文夫.平面应变加——卸载试验中砂土的黏性特征及本构模型化.岩石力学与工程学报,2011,30(1):184-192.
    [233]袁静,龚晓南,益德清.岩土流变模型的比较研究.岩石力学与工程学报,2001,20(6):772-779.
    [234]孙钧.岩土材料流变及工程应用.北京:建筑工业出版社,1999.
    [235]卢萍珍,曾静,盛谦.软黏土蠕变试验及其经验模型研究.岩土力学,2008,29(4):1041-1044.
    [236]张先伟,王常明.饱和软土的经验型蠕变模型.中南大学学报(自然科学版),2011,42(3):791-796.
    [237] Bjerrum, L. Seventh Rankine Lecture: Engineering geology of Norwegian marine clay as relatedto settlement of buildings. Géotechnique,1967,17(2):81-118.
    [238]殷建华.等效时间和岩土材料的弹粘塑性模型.岩石力学与工程学报,1999,18(2):124-128.
    [239]陈沅江,潘长良,曹平,王文星.基于内时理论的软岩流变本构模型.中国有色金属学报,2003,13(3):735-742.
    [240] Valanis, K.C. A theory of viscoplasticity without a yield surface. Archives of Mechanics,1971,23(5):517-551.
    [241]刘元雪.岩土本构理论的几个基本问题研究.岩土工程学报,2001,23(1):45-48.
    [242]蒋昱州,张明鸣,李良权.岩石非线性黏弹塑性蠕变模型研究及其参数识别.岩石力学与工程学报,2008,27(4):832-839.
    [243] Toupin, R.A. Elastic materials with couple-stresses. Archive for Rational Mechanics andAnalysis,1962,11:385-414.
    [244] Mindlin, R.D. and Tiersten, H.F. Effect of couple-stresses in linear elasticity. Archive forRational Mechanics and Analysis,1962,11:415-448.
    [245] Mindlin, R.D. Influence of couple-stresses on stress concentrations. Experimental Mechanics,1963,3: l-7.
    [246]赵勇,张若京.基于Cosserat理论的应力集中问题的有限元分析.力学季刊,2009,30(3):410-414.
    [247]康新,席占稳.基于Cosserat理论的微梁振动特性的尺度效应.机械强度,2007,29(1):00l-004.
    [248] Truesdell, C. and Toupin, R. The classical field theories. In Handbuch der Physik (ed.S. Flugge),vol.3, Springer,1960.
    [249] Wood, D.M., Drescher, A., and Budhu, M. On the determination of the stress state in simpleshear apparatus. Geotechnical Testing Journal, ASTM,1979,2(4):211-222.
    [250]汪侠,黄贤金,甄峰,钟太洋.城市地下空间资源开发潜力的多层次灰色评价.同济大学学报(自然科学版),2009,37(8):1122-1127.
    [251]徐恒力,支兵发.地下水资源开发过程中的异常涨落和水量失调期.地球科学.2000,25(6):633-637.
    [252] Marsland, A. Model experiments to study the influence of seepage on the stability of a sheetedexcavation in sand. Géotechnique,1953,3(6):223-241.
    [253] Vauclin, M., Khanji, D., and Vachaud, G. Experimental and numerical study of a transient,two-dimensional unsaturated-saturated water table recharge problem. Water Resources Research,1979,15(5):1089-1101.
    [254] Lourenco, S.D.N., Sassa, K., and Fukuoka, H. Failure process and hydrologic response of a twolayer physical model: implications for rainfall-induced landslides. Geomorphology,2006,73(1-2):115-130.
    [255] Ataie-Ashtiani, B., Volker, R.E., and Lockington, D.A. Numerical and experimental study ofseepage in unconfined aquifers with a periodic boundary condition. Journal of Hydrology,1999,222(1-4):165-184.
    [256] Simpson, M.J., Clement, T.P., and Gallop, T.A. Laboratory and numerical investigation of flowand transport near a seepage-force boundary. Ground Water,2003,41(5):690-700.
    [257] Chen, C.X., Wan, J.W., and Zhan, H.B. Theoretical and experimental studies of coupledseepage-pipe flow to a horizontal well. Journal of Hydrology,2003,281(1-2):163-175.
    [258] Liu, J., Feng, X.T., and Ding, X.L. Stability assessment of the Three-Gorges Dam foundation,China, using physical and numerical modeling-Part I: physical model tests. International Journalof Rock Mechanics and Mining Sciences,2003,40(5):609-631.
    [259]丁春林,周顺华,张师德.基于离心试验的承压水基坑变形稳定影响因素.同济大学学报(自然科学版),2005,33(12):1586-1591.
    [260]丁春林,孟晓红.承压水基坑离心模型试验与现场实测分析.同济大学学报(自然科学版),2008,36(1):22-26.
    [261]赵陈鹏.轨道交通9号线宜山路站基坑降水对地面沉降的影响及室内模型试验研究[硕士学位论文].上海:同济大学,2007.
    [262]孙振岳,张嘎,张建民,李国和,郑瑞华.水井抽水引起地基沉降的离心模型试验研究.土木工程学报,2008,41(4):67-72.
    [263]胡琦,凌道盛,詹良通,陈云敏,贾官伟,罗耀武.考虑基桩影响的粉砂地基深基坑流砂破坏模型试验研究.岩石力学与工程学报,2007,26(10):2153-2160.
    [264]王宝田,陈西安.悬挂式防渗墙防渗效果的模拟试验研究.岩石力学与工程学报,2008,27(增1):2766-2771.
    [265]俞伯汀,孙红月,尚岳全.含碎石黏性土边坡渗流系统的物理模拟试验.岩土工程学报,2006,28(6):705-708.
    [266]孙文娟.软土地基中基坑围护结构的挡水作用机理及其工程应用[硕士学位论文].上海:上海交通大学,2010.
    [267]日本地盤工学会.土質試験:基本と手引き(第一回改訂版).東京:地盤工学会,2001.
    [268] ASTM.2002. Standard test method for measurement of hydraulic conductivity of saturatedporous materials using a flexible wall permeater (D5084). In2002Annual Book of ASTMStandards. Vol.04.09. American Society for Testing and Materials, Philadephia, Pa.
    [269] Dagan, G. Models of groundwater flow in statistically homogeneous porous formations. WaterResources Research,1979,15(1):47-63.
    [270] Bear, J. Hydraulics of groundwater. Mc.Graw-Hill, New York,1979.
    [271]薛禹群,吴吉春,张云,叶淑君,施小清,魏子新,李勤奋,于军.长江三角洲(南部)区域地面沉降模拟研究.中国科学D辑:地球科学,2008,38(4):477-492.
    [272]于军,王晓梅,武健强,谢建宝.苏锡常地区地面沉降特征及其防治建议.高校地质学报,2006,12(2):179-184.
    [273]上海市建设和管理委员会.地基基础设计规范(DGJ08-11-1999).上海,1999.
    [274]《上海水利志》编纂委员会.上海水利志.上海:上海社会科学院出版社,1997.
    [275]许烨霜.上海市地下水抽取引起地面沉降的计算分析[硕士学位论文].上海:上海交通大学,2006.
    [276]李勤奋,王寒梅.上海地面沉降研究.高校地质学报,2006,12(2):169-178.
    [277]上海市地质处.上海市地面沉降勘查研究报告(1962-1976).1979.
    [278]上海市建设和管理委员会.岩土工程勘察规范(DGJ08-37-2002).上海,2002.
    [279] Xu, Y.S., Ma, L., Shen, S.L., and Sun, W.J. Evaluation of land subsidence by consideringunderground structures penetrated into aquifers in Shanghai. Hydogeology Journal,2011,accepted.
    [280]黄绍铭,高大钊.软土地基与地下工程(第二版).北京:中国建筑工业出版社,2005.
    [281] Chai, J.C. and Miura, N. Traffic-load-induced permanent deformation of road on soft subsoil.Journal of Geotechnical and Geoenvironmental Engineering, ASCE,2002,128(11):907-916.
    [282]缪晓图,朱兴贤,陆美兰,陈福春,皇甫阿富.苏锡常地区II承压水开采与地面沉降控制研究.中国地质灾害与防治学报,2007,18(2):132-139.
    [283] Wang, G.Y., You, G., Shi, B., Yu, J. and Tuck, M. Long-term land subsidence and stratacompression in Changzhou, China. Engineering Geology,2009,104:109-118.
    [284]苟联盟,任家军.京杭运河常州市区段改线工程土方综合利用地质勘察.现代交通技术,2005,1:85-88.
    [285]姜洪涛.苏锡常地区地面沉降及其若干问题探讨.第四纪研究,2005,25(1):29-33.
    [286]施小清,薛禹群,吴吉春,张云,于军,朱锦旗.常州地区含水层系统土层压缩变形特征研究.水文地质工程地质,2006,3:1-6.
    [287]陆元晶,张文珺,王正鹏.城市地下空间规划若干问题探讨——以常州市为例.地下空间与工程学报,2006,2(7):1105-1110.
    [288] Vardoulakis, I. and Sulem, J. Bifurcation analysis in geomechanics. Chapman&Hall: Glasgow,1995.
    [289] Renard, P. and Marsily, G.D. Calculating equivalent permeability: a review. Advances in WaterResources,1997,20(5-6):253-278.
    [290] Desbarats, A.J. Numerical estimation of effective permeability in sand-shale formation. WaterResources Research,1987,23(2):273-286.
    [291] Yin, Z.Y., Chang, C.S., Karstunen, M., and Hicher, P.Y. An anisotropic elastic–viscoplasticmodel for soft clays. International Journal of Solids and Structures,2010,47:665-677.
    [292] Mitachi, T. and Kitago, S. Undrained triaxial and plane strain behavior. Soils and Foundations,1980,20(1):13-28.
    [293] Perzyna, P. The constitutive equations for work-hardening and rate sensitive plastic materials.Proceedings of the Vibration Problems Warsaw,1963,3:281-290.
    [294] Perzyna, P. Fundamental problems in viscoplasticity. Advances in Applied Mechanics,1966,9:243-377.
    [295] Adachi, T. and Oka, F. Constitutive equations for normally consolidated clay based onelasto-viscoplasticity. Soils and Foundations,1982,22(4):57-70.
    [296] Wheeler, S.J., N t nen, A., Karstunen, M., and Lojander, M. An anisotropic elastoplastic modelfor soft clays. Canadian Geotechnical Journal,2003,40(2):403-418.
    [297] Vermeer, P.A. and Neher, H.P. A soft soil model that accounts for creep. In: Proceedings of thePlaxis Symposium on Beyond2000in Computational Geotechnics, Amsterdam,1999,249-262.
    [298] Yin, J.H., Zhu, J.G., and Graham, J. A new elastic–viscoplastic model for timedependentbehaviour of normally and overconsolidated clays: theory and verification. CanadianGeotechnical Journal,2002,39(1):157-173.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700