用户名: 密码: 验证码:
基于精密水准数据的青藏高原东缘现今地壳垂直运动与典型地震同震及震后垂直形变研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
发生在新生代早期的印度板块和欧亚板块间的碰撞不仅形成了喜马拉雅造山带,还造就了一个以独特的地势高度、地貌、地质环境、自然环境等特征而闻名于世的青藏高原。自19世纪中期普拉特和艾利等创立地壳均衡论以来,青藏高原的形成、演化及隆升机制的问题一直就是国际大陆动力学理论研究的核心和前缘热点。目前,已有许多学者提出了各种动力学模型试图解释青藏高原的隆升、演化之谜,这些模型和模式的提出对我们理解青藏高原的隆升机制起到了积极的启发和推动作用。不同的隆升机制会在青藏高原周缘尤其是东缘地区产生完全不同的形变模式。因此,研究青藏高原东缘三维地壳形变可为高原深部结果和动力学演化过程提供重要的定量数值边界条件,有助于理解高原隆升的地球动力学机制。
     作为青藏高原东边界和中蒙大陆中轴构造带中南段的青藏高原东缘地区,北起鄂尔多斯地块西缘,跨越秦岭,穿过龙门山,再沿安宁河-小江断裂带向南延至缅甸境内,成为分隔中国大陆东部相对稳定的鄂尔多斯高原、四川盆地和华南地块与西部强烈隆升的青藏高原之间的边界活动构造带。深部地球物理探测表明,西部青藏高原的地壳厚度达60~70km,东部华南和华北的地壳厚度只有40~50km,高原东缘地区则为非常明显的重力梯度带和地壳厚度突变带。晚新生代和现今构造变形在高原东缘两侧的差异非常明显,规模巨大的活动断裂和强烈地震主要发生在该带以西,而其以东不仅不发育大规模活动断裂,强震活动水平也远远低于西部。2008年5月12日,在龙门山地区发生了Ms8.0级地震,更证明了青藏高原东缘地区的构造活动性。
     由于青藏高原地震地质构造复杂等多种原因,利用地质学和地球物理学方法确定其构造变形的运动场在短时间内很难做到,近年来发展起来的GPS观测技术为测定现今构造变形的速度场提供了前所未有的有效手段。一些学者已经利用GPS观测获取了青藏高原东缘地区高分辨率的水平运动速度场图像。虽然GPS观测技术可以提供三维的地壳运动信息,但由于大气折射、发射和接收天线相位中心误差等因素的存在,GPS垂向定位精度较低。另一方面,GPS观测技术真正在我国开始大规模实施是在1999年中国地壳运动观测网络项目的运行,距今也就是十多年的时间。而我国地震水准监测网开始大规模观测始于1966年邢台地震之后,至今已有近50年的历史。因此,在地震科学各领域内以精密水准测量为主要手段的地壳垂直形变研究仍占重要地位。
     利用精密水准数据研究青藏高原东缘地区的地壳垂直形变是贯穿本文的一条主线,可分为以下两个研究内容。
     1青藏高原东缘地区现今地壳垂直运动研究
     利用青藏高原东缘地区40年的精密水准观测资料,获取了研究区内的现今地壳垂直运动速度场图像,为区域地壳垂直运动和强震中长期危险性预测研究提供了重要基础资料。在获取的区域垂直运动速度场基础上,结合前人得出的该地区现今地壳水平运动速度场结果,综合分析青藏高原东缘地区三维地壳运动速度场特征,并对地壳形变的动力学机制进行了初步探讨。取得的主要结论如下:
     (1)收集、整理青藏高原东缘地区的精密水准测量数据,包括1970年以来的地震水准监测网(主要资料来源)、全国二期和二期复测水准网(占比例较小)和“中国综合地球物理场观测-青藏高原东缘地区”项目于2010~2011年在滇中和滇西地区的观测资料,做出所有高差观测值随时间变化的曲线,剔除由于地震事件、地下水抽取等因素导致的不稳定水准点。共找出重复观测的水准点3439个,一等水准观测高差占总观测数据的97.5%,二等观测高差占2.5%。
     (2)在整体平差处理之前,我们选择于2010~2011年在滇中和滇西地区(26°N以南)观测的水准网来估计高差每公里的中误差。由于观测时间间隔短,基本保证了观测时间的同步性,可以采用静态平差方法。平差后得到高差改正数的每公里中误差为1.2mm。
     根据青藏高原东缘地区构造变形强烈和水准资料多年、多期复杂的特点,我们采用线性动态平差模型,以研究区内9个GPS测站(网络工程中的基准站和基本站)垂直运动速度结果作为先验约束,可以有效减小水准测量中系统误差的累计,统一处理获取了青藏高原东缘地区现今地壳垂直运动速度场图像。整体平差后得到的验后每公里高差改正数的中误差为0.97mm,与验前每公里中误差1.2mm相近,从小范围区域证明了结果的可靠性。
     (3)垂直运动速度场结果揭示出,青藏东缘地区地壳长期垂直运动趋势与已有地质学方法、GPS和水准观测得到的结果一致。青藏高原东缘大部分区域都存在上升趋势,其中贡嘎山地区上升速率最大达到了5.7mm/a,而西秦岭天水地区垂直速率最大达到6.4mm/a。
     (4)从横跨断裂带的垂直运动速度剖面上可以估计出断裂带的垂直滑动速率,可为一些不易于通过地质学方法得出垂向滑动量的断层提供定量约束。结果表明,垂直滑动速率最大的为龙门山断裂达到3.4±0.4mm/a,其次为大凉山断裂带,垂直滑动速率为2.0±0.4mm/a。贺兰山东麓、六盘山、龙日坝和小江断裂的垂直滑动速率为1~1.6mm/a,而则木河和红河断裂的垂直滑动速率不明显。
     (5)利用小波分解技术获取了青藏高原东缘不同波长的垂直运动速度场图像。其中,长波长(500-1000公里)的地壳垂直变形运动可能与青藏高原深部地幔的变形有关,区域短波长的变形则主要与地壳的变形有关。
     (6)将获取的青藏高原东缘地区现今地壳垂直运动速度场,与网络工程1999~2007年该区域的长期水平运动速度场相结合,分析和研究东缘地区的地壳运动学特征和地壳形变的动力学机制。物质通量分析表明,区域内大部分地区存在上下地壳差异性运动,即维持当今各地块隆升速率需要下地壳与上地幔物质注入速率高于上地壳物质注入速率,为本地区下地壳流的存在提供佐证。例如松潘-甘孜地块西部的隆起速率为0~1mm/a,其中部地区隆起速率增大至2~3mm/a,到其东部靠近四川盆地地区垂直速率下降为0~1mm/a,而如果假定岩石圈内物质水平运动均一则只能解释本地区平均~0.7mm/a的隆升。这种垂直运动现象可能揭示出在松潘-甘孜地块中下地壳存在管流层。可以认为青藏高原内部地壳物质向东扩展,由于受到四川盆地强硬地壳的阻挡,中下地壳物质以塑性流变的方式在龙门山及其以西川西高原之下堆积,导致川西高原中下地壳的显著增厚,并对上部脆性地壳施加垂直隆升作用,从而造成龙门山和川西高原的隆升。
     (7)区域三维地壳运动速度场结果揭示,贺兰山上升、银川地堑继承性沉陷;六盘山地区的抬升速率主要以地壳缩短的形式实现;川滇地块中南部地区由于东西向水平拉张而表现为下沉运动。
     (8)通过区域垂直形变速率场,结合5级地震震中分布,发现了滇西南地区龙陵-澜沧活动断裂带永德-镇康地震空段的现今高速率异常隆起特征,揭示了该地震空段的强震中长期危险性。
     2研究区内两大典型地震的同震及震后垂直形变研究
     利用水准数据分析和研究发生在青藏高原东缘地区的两次典型地震的同震及震后垂直形变,取得的主要结论如下:
     (1)利用1990年4月26日青海共和Ms7.0级地震同震垂直形变资料,在已有结论的基础上,修正了此次地震的同震滑动模型。基于震后多期精密水准数据,发现震后相邻测站高差观测值的时间序列明显具有对数衰减特征或指数衰减特征。发展了一个利用水准数据研究震后形变的方法。这种方法从相邻水准点之间的高差出发,可以有效减少系统误差累积带来的偏差并充分利用观测到的水准数据。发展了一个流变学形变模型解释共和地震震后形变。模型结果表明,震后滑移模型和粘弹性松弛模型共同导致了震后产生的地表垂直形变。滑移主要发生在同震破裂断层面及沿原断层面向上和向西北方向的延伸部分;粘弹性松弛主要出现在下地壳与上地幔,其粘滞系数为9×10~(19)Pa·s。这个结果揭示出柴达木盆地底部的下地壳和上地幔要比以往研究预想的脆性强、粘滞性高。
     (2)基于2008年5月12日四川汶川Ms8.0级地震GPS获取的中远场同震水平、垂直形变和精密水准测量获取的近场同震垂直形变,对同震断层的几何破裂模型以及断层面上的滑动分布进行反演。反演结果除了与前人已有结论一致外,还发现北川断裂深部15~18km范围内的滑动量值也比较大,约为2~4m。根据震后2008~2011年龙门山断裂带及周缘地区的GPS区域站观测资料获取了汶川地震震后水平形变的弛豫过程(对数松弛时间为12天),有助于认识汶川地震破裂机制,为深入研究震后形变的物理学机制提供基础资料。利用震后2008~2011年的龙门山断裂带附近的精密水准观测得到了震后垂直形变场的演化过程。
The collision between Indian and Eurasian plates that occurred in the earlyCenozoic not only formed the Himalayan orogenic belt, but also created the Tibetanplateau, which is famous for the unique elevation, geomorphology, geologicalenvironment and natural environment in the world. Since the mid-19th century Prattand Airy founded the isostasy theory, the formation, evolution and uplift mechanismof the Tibetan Plateau is one of the focused international studies of continentaldynamics. At present, many scientists have proposed a variety of geophysicaldynamic models and attempted to explain the uplift of the Tibetan Plateau. Thesemodels have played a positive inspiration and impetus to understanding of the upliftmechanism. Different models suggest rather different crustal deformation patterns inthe vicinity of the plateau, especially around its east margin. Thus, precisemeasurement of the three-dimensional crustal deformation in this region can provideimportant quantitative numerical boundary conditions for the dynamic evolution, andhelp to understand the kinematic and geodynamic models.
     As the eastern border of the Tibetan Plateau and the central and southern section ofthe Chinese-Mongolian continental mid-axis tectonic belt, the northern part of theeastern margin of the Tibetan Plateau is located on the western margin of the Ordosblock, and its central part crosses Qinling and through the Longmen Shan, its southernpart goes through the Anninghe-Xiaojiang fault. The eastern margin of the TibetanPlateau separates stable blocks of the Ordos, Sichuan basin and South China from thestrong uplift of the Tibetan Plateau. The deep geophysical exploration shows that thecrustal thickness of the Tibetan Plateau is about60~70km, while the crustal thicknessof North and South China is only about40~50km. The eastern margin of the TibetanPlateau is the gravity gradient and abnormal crustal thickness zone. Late Cenozoicand contemporary tectonic deformation on both sides of the eastern margin of theTibetan Plateau is obviously different. Large-scale active faults and strong earthquakes mainly occurred in the west of the zone, while its east does not hostlarge-scale active faults and the earthquake activity is much lower. On May12,2008,a devastating Ms8.0earthquake occurred in the Longmen Shan region, the middle partof the eastern margin of the Tibetan Plateau. This earthquake proves the tectonicactivity in the eastern margin of the Tibetan Plateau.
     Because of the complicated seismic geological structure in the Tibetan Plateau, it isdifficult to determine the tectonic deformation field by the use of geologic andgeophysic method in a short period. However, with the development of GPStechnique in recent years, it provides an unprecedented effective approach foracquiring the velocity field of the tectonic deformation. The image of thehigh-resolution velocity field for the eastern Tibetan Plateau has been obtained byGPS. Although GPS measurements can provide three-dimensional crustal deformation,due to the atmospheric refraction, the antenna phase centers of satellite and receiver,the accuracy of vertical positioning is lower than the horizontal. On the other hand,with the operation of Crustal Movement Observation Network of China (CMONOC)in1999, the observation history of GPS in China is only more than a decade. Bycontrary, the precise leveling networks were measured after the1966Xingtaiearthquake for nearly50years. Therefore, the precise leveling measurement is still amajor technique for obtaining the crustal vertical deformation which could be studiedin various fields of earthquake science research.
     Using precise leveling observations to study the vertical crustal deformation of theeastern margin of the Tibetan Plateau is a main theme through out this thesis, and thecontent can be divided into the following two aspects.
     1Present crustal vertical deformation of the eastern margin ofTibetan Plateau
     Based on the regional leveling observations collected in the eastern margin of theTibetan Plateau, we obtain the present crustal vertical velocity field, which couldprovide important basic information for the long-and middle-term seismic riskprediction. Combining the vertical velocity field acquired in this work and horizontal velocity obtained by previous studies, we analyze the characteristics of thethree-dimensional crustal movement of the eastern Tibetan Plateau, and discuss thegeodynamic mechanism of crustal deformation. The primary conclusions are asfollows.
     (1) The precise leveling data observed around the eastern margin of the TibetanPlateau are collected, including the leveling networks used in monitoring tectonicdeformation of main active faults in China since1970, the national leveling networksof China observed in1980s and1990s separately, and the central and western Yunnanregion surveyed between2010and2011which is a part of “Integrated GeophysicalField Observation–the eastern margin of Tibetan Plateau” project. All the heightdifferences between adjacent two benchmarks are plotted over time, so the instablebenchmarks caused by earthquake events or ground water drawing could be removed.Finally, there are3439benchmarks of which the ratio of first-order height differencesis97.5%, and the ratio of second-order is2.5%.
     (2) Before overall adjustment, we choose the leveling network located in the centraland western Yunan region (south of26°N) to estimate the prior uncertainty of eachkilometer of height difference. This leveling network was surveyed between2010and2011, and the movement of benchmarks can be considered as zero. So we can get theadjusted height elevation using the static adjustment. The result shows that theuncertainty of one kilometer of height difference is1.2mm.
     Because of the strong tectonic deformation in the studied region and the complexityof leveling data, the linear dynamic adjustment model is used to estimate the unknownparameters. The vertical velocities of9GPS stations within this region are as a prioriconstraints which can effectively reduce the accumulated systematic errors along theleveling routes. As a result, the present crustal vertical velocity field image is obtained.It shows that the posteriori uncertainty is0.97mm, which is consistent with the prioruncertainty. This indicates the reliability of velocity field result from a small region.
     (3) The trend of long-term crustal vertical movement obtained in this thesis isconsistent with existing results inferred from geological methods, GPS and levelingmeasurements. Most regions of the eastern margin of the Tibetan Plateau are in the status of uplift, especially Gonggashan uplifts at a rate of5.7mm/a, and the uplift rateof the western Qinling is up to6.4mm/a.
     (4) The vertical velocity profile across the fault can be used to estimate its verticalslip rate, which is difficult to derive from the geologic method and can providequantitative constraint. The result shows that the vertical slip rate of the LongmenShan fault is up to3.4±0.4mm/a, followed by the Daliang Shan fault with the rate of2.0±0.4mm/a. The vertical slip rates of the Helan Shan, Liupan Shan, Longriba andXiaojiang faults are between1and1.6mm/a. There is no significant vertical slipacross the Zemuhe and Red River faults.
     (5) The wavelet decomposition technique is applied to obtain different wavelengthsof the vertical velocity field for the eastern margin of the Tibetan Plateau. The crustalvertical deformation of long wavelength (500-1000km) can be related to the deepmantle under the Tibetan Plateau, while the regional deformation of short wavelengthmay be related to the crsutal deformation.
     (6) Combining the present crustal vertical velocity field with horizontal velocityfield obtained in the eastern margin of the Tibetan Plateau, we investigate thecharacteristics of crustal movement and corresponding dynamic mechanism. Thehorizontal material influx result shows that the movement of upper and lower crust israther different in most regions, namely, to maintain the uplift rate of each sub-blockrequires the influx rate of the lower crust and upper mantle higher than that of theupper crust, which provides the evidence for the existence of lower crustal flow in thisregion. For example, the uplift rate of the western Songpan-Ganzi block is0~1mm/a,the uplift rate of its central part increases to2~3mm/a, and the vertical rate of itseastern part which is close to the Sichuan Basin drops to0~1mm/a. However, theaverage horizontal movement of material in the lithosphere can only lead to an upliftrate of~0.7mm/a. This vertical movement may reveal the existence of channel flowin the middle and lower crust under the Songpan-Ganzi block. While the TibetanPlateau moves eastward, due to the blocking of stable crust of the Sichuan Basin, thelower crustal material accumulated under the Longmen Shan and western Sichuanplateau in the way of plastic flow. Therefore, the middle and lower crust of the western Sichuan plateau thickened significantly, and exerted a vertical uplift to theupper brittle crust, which resulted in the uplift of the Longmen Shan and westernSichuan plateau.
     (7) The regional three-dimensional velocity field indicates that the Helan Shan isuplifting and the Yinchuan graben is subsiding. The crustal shortening of the LiupanShan region is the primary drive for uplift. The subsidence of the central and southernSichuan-Yunnan fragment is caused by the near east-west extension.
     (8) Through the regional vertical velocity field, combining with epicenterdistribution of more than Ms5.0earthquakes, we find an abnormal zone near theYongde-Zhenkang town with a high uplift rate, which is an earthquake gap on theLongling-Lancang fault.
     2Coseismic and postseismic vertical deformation of two typicalearthquakes occurred in the eastern margin of the TibetanPlateau
     Leveling data are used to analyze and study the coseismic and postseismic verticaldeformation of two typical earthquakes that occurred in the eastern margin of theTibetan Plateau. The main conclusions are described as follows.
     (1) We model leveling deformation data observed following the1990Ms7.0Gonghe earthquake in Qinghai Province to infer postseismic deformation sources andmechanisms. Using coseismic vertical displacements and previous study resultobtained from seismic body wave inversion, we update the main shock rupture model.Time series of elevation change between adjacent benchmarks can be modeled by alogarithmic or an exponential relaxation function. To model the postseismicdisplacements, we utilize the raw observations of elevation differences betweenadjacent benchmarks, not their integrals with respect to a reference benchmark, toconstrain a dislocation model in a continuum. It makes full use of the leveling dataand effectively reduces biases introduced from cumulative errors due to dataintegration. The postseismic modeling result suggests that two mechanisms operate simultaneously to produce the postseismic vertical deformation observed at thesurface: afterslip on the coseismic rupture fault plane of the main shock and itsperipheral extension, particularly upward into the sediment layer above the mainrupture, and viscoelastic relaxation of the lower crust and upper mantle, with aviscosity of9×10~(19)Pa·s. The result suggests more brittle and less viscous lower crustand upper mantle underneath the Qaidam basin than some of previous studiesenvisioned.
     (2) Using the coseismic displacements from GPS and near-field precise levelingmeasurements before and after the2008Ms8.0Wenchuan earthquake, the cosesimicfault geometry and slip distribution are modeled. Besides the similar results withprevious studies, we find that the slip at the depth of15~18km under the Beichuanfault is as large as2~4m. The postseimic relaxation process is acquired by utilizingthe GPS data observed around the Longmenshan fault between2008and2011. It ishelpful to understand the rupture mechanism of this quake, and provides basicinformation for the physical mechanisms of postseismic deformation. The evolutionof postseimic vertical deformation is derived based on precise leveling measuredbetween2008and2011near the rupture.
引文
Allen, C.R., Z. L, H. Q, et al.1991. Field study of a highly active fault zone: the Xianshuihe faultof southwestern China. Bulletin of the Geological Society of America,103(9),1178-1199
    Boehm J., B. Werl, H. Schuh.2006. Troposphere mapping functions for GPS and very longbaseline interferometry from European Centre for Medium–Range Weather Forecasts operationalanalysis data. J. Geophys. Res.,111, B02406
    Boehm J., Heinkelmann R., H. Schuh.2007. Short Note: A global model of pressure andtemperature for geodetic applications. Journal of Geodesy,81(10),679–683,
    Burchfiel B.C., Chen Z, Liu Y, et al.1995. Tectonics of the Longmenshan and adjacent regions,central China. Int Geol Rev,37(8):661–735
    Burchfiel B.C., Royden L. H., van der Hilst R D, et al. A geological and geophysical context forthe Wenchuan earthquake of12May2008, Sichuan, People’s Republic of China. GSA Today,2008,18(7):4–11
    Chen Z., Burchfiel B.C., Lin Y., et al.2000. Global positioning system measurements fromEastern Tibet and their implications for India/Eurasia intercontinental deformation. Journal ofGeophysical Research,105(B7):16215–16227
    Chen, Y.T., Xu, L.S., Li, X.1996. Source process of the1990Gonghe, China, earthquake andtectonic stress fi eld in the Northeastern Qinghai–Xizang (Tibetan) Plateau. Pure and AppliedGeophysics146,697–715
    Clark M K, Royden L H.2000. Topographic ooze: Building the Eastern margin of Tibet by lowercrustal flow. Geology,28(8):703–706
    Clark M, Royden L, Burchfiel B C, et al.2003. Late Cenozoic uplift of southeastern Tibet:Implication for lower crustal flow. Geophys Res Abs,5:12969
    Deng, J., Gurnis, M., Kanamori, H., et al.1998. Viscoelastic flow in the lower crust after the1992Landers, California, earthquake. Science282,1689–1692
    Dong D.1998. QOCA software online manual. In: http://gipsy.jpl.nasa.gov/qoca
    Duong, C., K. L. Feigl.1999. Geodetic measurement of horizontal strain across the Red Riverfault near Thac Ba, Vietnam,1963–1994. J. Geod.,73,298–310
    E. D'Anastasio, P.M. De Martini, G. Selvaggi, et al.2006. Short-term vertical velocity field in theApennines (Italy) revealed by geodetic levelling data. Tectonophysics, Volume418,219-234
    Enkin R.J.1991. The stationary Cretaceous paleomagnetic pole of Sichuan (South China block).Tectonic,10(3):547–559
    Feigl, K. L., C. Duong, M. Becker, et al.2003. Insignificant horizontal strain across the Red Riverfault near Thac Ba, Vietnam from GPS measurements1994–2000. Geophys. Res. Abstr.,5,Abstract04707
    Freymueller, J.T., Fu, Y., Wang, Q., et al.2010. Present-day vertical motion of the Tibetan Plateauand surrounding area, in Leech, M.L., and others, eds., Proceedings for the25th
    Himalaya-Karakoram-Tibet Workshop: U.S. Geological Survey, Open-File Report2010-1099,1p.G. S. El-Fiky, Teruyuki Kato, Yoichiro Fujii.1997. Distribution of vertical crustal movement ratesin the Tohoku district, Japan, predicted by least-squares collocation. Journal of Geodesy. Volume71, Number7,432-442
    Hao M., Shen Z.K., Wang Q.L., Cui D.X.2012. Postseismic deformation mechanisms of the1990Mw6.4Gonghe, China earthquake constrained using leveling measurements. Tectonophysics,Volume532,205-214
    Hardy RL.1978. The application of multiquadric equations and point mass anomaly models tocrustal movement studies. NOAA Technical Report, NOS76, NGS11
    Hein G.1986. A model comparison in vertical crustal motion estimation using leveling data.NOAA Technical Report, NOS117, NGS35
    Herring T.A., King R.W., McClusky S.C.2009. GAMIT reference manual, Release10.35.Massachusetts Institute of Technology
    Huang, Z.X., Su, W., Peng, Y.J., et al.2003. Rayleigh wave tomography of China and adjacentregions. Journal of Geophysical Research108. doi:10.1029/5372001JB001696.
    J.C. Wu, H.W. Tang, Y.Q. Chen, et al.2006. The current strain distribution in the North Chinabasin of eastern China by least square collocation. Journal of Geodynamics,41(5):462-470
    Jackson, D.D., M. Matsu'Ura.1985. A bayesian approach to nonlinear inversion. J. Geophys. Res.,90(B1),581-591
    Johanson, I.A., Fielding, E.J., Rolandone, F., et al.2008. Coseismic and postseismic slip of the2004Park field earthquake from space–geodetic data. Bulletin of the Seismological Society ofAmerica96(4B), S269–S282
    Judith Hubbard, John H. Shaw.2009. Uplift of the Longmen Shan and Tibetan plateau, and the2008Wenchuan (M=7.9) earthquake. Nature458,194-197
    Kind, R., Seidl, D.1982. Analysis of broadband seismograms from the Chile–Peru area. Bulletinof the Seismological Society of America72,2131–2145.
    King R.W., Shen F., Burchfiel B.C., et al.1997. Geodetic measurement of crustal motion insouthwest China. Geology,25(2):179–182
    Kirby, E., K. X. Whipple, W. Tang, et al.2003. Distribution of active rock uplift along the easternmargin of the Tibetan Plateau: Inferences from bedrock channel longitudinal profiles, J. Geophys.Res.,108(B4),2217
    Kirby, E., P. Reiners, M. Krol, et al.2002. Late Cenozoic uplift and landscape evolution along theeastern margin of the Tibetan Plateau: Inferences from40Ar/39Ar and (U-Th)/He thermochronology.Tectonics,21(1),1001
    Lease R.O., Burbank D.W., Clark M.K., et al.2011. Middle Miocene reorganization ofdeformation along the northeastern Tibetan Plateau. Geology,39(4):359-362
    Lee, J.–C., Chu, H.–T., Angelier, J., et al.2006. Quantitative analysis of surface coseismic faultingand postseismic creep accompanying the2003, Mw=6.5, Chengkung earthquake in eastern Taiwan.Journal of Geophysical Research111, B02405
    Li Yong, Ellis M., Densmore A.L., et al.2001. Evidence for active strike–slip faults in theLongmen Shan, eastern margin of Tibet. EOS Transactions of American Geophysical Union,82(47):1104
    Lyard F., F. Lefevre, T. Letellier, et al.2006. Modelling the global ocean tides: modern insightsfrom FES2004. Ocean Dynamics,56(5):394–415
    M.K. Clark, M.A. House, L.H. Royden, et al. Late Cenozoic uplift of southeastern Tibet. Geology,v.33, no.6, p.525–528
    Marone, C., Scholz, C.H., Bilham, R.1991. On the mechanics of earthquake afterslip. Journal ofGeophysical Research96,8441–8452
    McCarthy D, Petit G. IERS Conventions.2004. IERS Technical Note32. Frankfurt, Germany
    McNamara, D.E., Owens, T.J., Walter, W.R.1995. Observations of regional phase propagationacross the Tibetan Plateau. Journal of Geophysical Research100,22215–22229
    Nur, A., Mavko, G.1974. Postseismic viscoelastic rebound. Science183,204–206
    Okada Y.1985. Surface deformation due to shear and tensile faults in a half space. Bulletin of theSeismological Society of America,75(4):1135-1154
    Okada, Y.1992. Internal deformation due to shear and tensile faults in a half–space. Bulletin of theSeismological Society of America82,1018–1040
    Person, W.J.1991. Seismological notes—March–April1990. Bulletin of the SeismologicalSociety of America81,297–302
    Pollitz, F.F.1997. Gravitational viscoelastic postseismic relaxation on a layered spherical earth.Journal of Geophysical Research102,17921–17941
    Reilinger, R.1986. Evidence for postseismic viscoelastic relaxation following the1959M=7.5Hebgen Lake Montana Earthquake. Journal of Geophysical Research91,5649488–9494
    Royden L.H., Burchfiel B.C., King R.W., et al.1997. Surface deformation and lower crustal flowin eastern Tibet. Science,276:788–790
    Shen F, Royden L.H, Burchfiel B.C.2001. Large–scale crustal deformation of the TibetenPlateau. Journal of Geophysics Research,106:6793–6816
    Shen Z.–K., J. Lü, M. Wang, et al.2005. Contemporary crustal deformation around the southeastborderland of the Tibetan Plateau, Journal of Geophysical Research,110, B11409
    Shen Z.K., Jackson D.D., Feng Y.J., et al.1994. Postseismic deformation following the Landersearthquake California,28June1992. Bulletin of the Seismological Society of America,84(3):780-791
    Shen Z.-K., Jackson D.D., Ge B.X.1996. Crustal deformation across and beyond the Los Angelesbasin from geodetic measurements. J Geophys Res.,101:27957-27980
    Shen Z.K., Sun J.B., Zhang P.Z., et al.2009. Slip maxima at fault junctions and rupturing ofbarriers during the2008Wenchuan earthquake. Nature Geoscience,2:718-724
    Shen Z-K, Jackson D.1993. GPS reoccupation of early triangulation sites: tectonic deformation ofthe Southern Coast Ranges. J. Geophys. Res.,98:9931-9946
    Shen, Z.K., B.X. Ge, D.D. Jackson, et al.1996. Northridge earthquake rupture models based onthe Global Positioning System measurements. Bull. Seism. Soc. Am.,86(1B),37-48
    Shen, Z.-K., Jackson, D. D.2000. Optimal estimation of geodetic strain rates from GPS data. EOSTransactions AGU,81(19), p. S406
    Shen, Z.K., Jackson, D., Feng, Y., et al.1994. Postseismic deformation following the Landersearthquake, California,28June,1992. Bulletin of the Seismological Society of America84,780–791
    Shi, X.J., Wen, D., Bao, X.Y., et al.2006. Application of rock creep experiment in calculating theviscoelastic parameters of earth medium. Science in China, Series D: Earth Sciences49,492–498
    Stein, R.1981. Discrimination of tectonic displacement from slope dependent errors in geodeticlevelling from Southern California,1953–1979. In: Simpson, David W., Richards, P.G.(Eds.), Maurice Ewing series4, Earthquake prediction, An International Review. AmericanGeophysical Union, pp.441–456
    Tapponnier P., G. Peltzer, A. Y. Le Dain, et al.1982. Propagating extrusion tectonics in Asia: Newinsights from simple experiments with plasticine. Geology,10(12):611-616
    Tapponnier, P., Xu, Z., Roger, F., et al.2001. Oblique stepwise rise and growth of the Tibet Plateau.Science294,1671–1677
    Teza G., Pesci A., Galgaro A.2008. Grid_strain and grid_strain3: software packages for strainfield computation in2D and3D environment. Computers&Geosciences,34(9):1142-1153
    Ueda H., Ohtake M., Sato H.,2003. Postseismic crustal deformation following the1993HokkaidoNanseioki earthquake, northern Japan: Evidence for a low-viscosity zone in the uppermost mantle.J. Geophys. Res.,108, B3,2151
    Ueda, H., Ohtake, M., Sato, H.2001. Afterslip on the plate interface following the1978Miyagi–Oki, Japan, earthquake, as revealed from geodetic measurement data. Tectonophysics338,45–57
    Wang Q., Qiao X.., Lan Q., et al.2011. Ruputre of deep faults in the2008Wenchuan earthquakeand uplift of the Longmen Shan. Nature Geoscience,4:634-640
    Wang Q.L., Cui D.X., Zhang X., et al.2009. Coseismic vertical deformation of the Ms8.0
    Wenchuan earthquake from repeated levelings and its constraint on listric fault geometry. EarthqSci.,22:595602
    Wang, R., Lorenzo–Martin, F., Roth, F.2006. PSGRN/PSCMP—a new code for calculating co–and post–seismic deformation, geoid and gravity changes based on the viscoelastic–gravitationaldislocation theory. Computers&Geosciences32,527–541
    Wei, W., Unsworth, M., Jones, A., et al.2001. Detection of widespread fl uids in the Tibetan crustby magnetotelluric studies. Science292,716–718
    Weldon, R., K. Sieh, O. Zhu, et al.1994. Slip rate and recurrence interval of earthquakes on theHong He (Red River) fault, Yunnan, PRC. Paper presented at International Workshop
    Seismotectonics and Seismic Hazard in South East Asia, UNESCO, Hanoi
    Zhang P.Z., Z.K. Shen, M. Wang et al.2004. Continuous deformation of the Tibetan Plateau fromGlobal Positioning System data. Geology,32(9):809–812
    Zhiqin Xu, Shaocheng Ji, Haibing Li, et al.2008. Uplift of the Longmen Shan range and theWenchuan earthquake. Episodes, Vol.31, No.3,291-301
    安艳芬,韩竹军,万景林.2008.川南马边地区新生代抬升过程的裂变径迹年代学研究.中国科学(D辑),38(5):555–563
    蔡学林,曹家敏,朱介寿,等.2008.龙门山岩石圈地壳三维结构及汶川大地震成因浅析.成都理工大学学报:自然科学版,35(4):357-365
    柴炽章,孟广魁,马贵仁等.2011.银川市活动断层探测与地震危险性评价.科学出版社
    陈文,张彦,张岳桥,等.2006.青藏高原东南缘晚新生代幕式抬升作用的Ar–Ar热年代学证据.岩石学报,22(4):867–872
    陈运泰,许力生,张勇,等.2008.2008年5月12日汶川特大地震震源特性分析报告.http://www.csi.ac.cn/sichuan/chenyuntai.pdf
    陈智梁,刘宇平,唐文清,等.2006.青藏高原东北缘大陆岩石圈现今变形和位移.地质通报,25(1–2):20–28
    崔笃信,王庆良,胡亚轩,等.2009.青藏高原东北缘岩石圈变形及其机理.地球物理学报,52(6):1490–1499
    邓宾,刘树根,李智武,等.2008.青藏高原东缘及四川盆地晚中生代以来隆升作用对比研究.成都理工大学学报(自然科学版),35(4):477–486
    丁平,于建民,江在森.1990.宁北地区近期垂直形变场演化特征.地壳形变与地震,10(2):99-106
    董鸿闻,顾旦生,李国智,等.2002.中国大陆现今地壳垂直运动研究.测绘学报,31(2):100–103
    方小敏,宋春晖,戴霜,等.2007.青藏高原东北部阶段性变形隆精度磁性地层和盆地演化记录.地学前缘,14(1):230-242
    甘卫军,沈正康,张培震,等.2004.青藏高原地壳水平差异运动的GPS观测研究.大地测量与地球动力学,24(1):29–35
    攻守文.1995.陕甘宁青地区块体交接带上大地垂直形变演化特征与块体运动.地球物理学报,38(3):329–338
    顾国华.2005. GPS观测得到的中国大陆地壳垂直运动.地震,25(3):1–8
    国家重大科学工程“中国地壳运动观测网络项目组”.2008. GPS测定的2008年汶川Ms8.0级地震的同震位移场.中国科学(D辑),38(10):1195-1206
    虢顺民,计凤桔,向宏发,等.2001.红河活动断裂带.北京:海洋出版社,86-108
    虢顺民,向宏发,徐锡伟,等.1999.滇西南龙陵-澜沧断裂带:大陆地壳上一条新生的破裂带.科学通报,44(19):2118-2121.
    虢顺民,徐锡伟,向宏发,等.2002.龙陵-澜沧新生断裂带地震破裂分段与地震预测研究.地震地质,24(2):133-144
    郝明,沈正康,王庆良.2010.1990年青海共和7.0级地震震后垂直形变研究.地震学报,32(5):557-569
    何宏林,池田安隆,宋方敏,等.2002.小江断裂带第四纪晚期左旋走滑速率及其构造意义.地震地质,24(1):14-25
    黄立人,陶本藻,赵承坤.1993.多面函数拟合在地壳垂直运动研究中的应用.测绘学报,22(1):25-32
    黄立人,杨国华,刘天奎.1989.用速率面拟合法研究华北部分地区的现今地壳垂直运动.地壳形变与地震,9(3):26-35
    黄立人.1995.中国大陆地壳垂直运动梯度图的编绘.地壳形变与地震,15(2):30-34
    黄媛,吴建平,张天中,等.2008.汶川8.0级大地震及其余震序列重定位研究.中国科学(D辑),38(10):1242~1249
    江在森,凌晔,唐传芬.1993.西海固地区近期垂直形变场分析.高原地震,5(1):1-8
    江在森,刘经南.2010.应用最小二乘配置建立地壳运动速度场与应变场的方法.地球物理学报,53(5):1109-1117
    江在森,王双绪,赵振才.1997.南北地震带和青藏块体东部近期大地形变与地震特征.中国地震,13(2):139–150
    江在森,张希,崔笃信,等.2001.青藏块体东北缘近期水平运动与变形.地球物理学报,41(5):636–644
    姜葵.1993.1988年云南澜沧-耿马地震.昆明:云南大学出版社
    江在森,攻守文.1994.水准监测网的分段速率整体平差.武汉大学学报(信息科学版),19(2):157-162
    蒋复初,吴锡浩,肖华国,等.1999.四川泸定昔格达组时代及其新构造意义.地质学报,73(1):1–6
    蒋复初,吴锡浩.1998.青藏高原东南部地貌边界带晚新生代构造运动.成都理工学院学报,25(2):162–168
    来庆洲,丁林,王宏伟,等.2006.青藏高原东部边界扩展过程的磷灰石裂变径迹热历史制约.中国科学D辑(地球科学),36(9):785-796
    赖锡安,黄立人,徐菊生.2004.中国大陆现今地壳运动.北京:地震出版社
    李建彪,甘卫军,冉勇康,等.2006.青藏高原东部构造块体的运动学及形变特征分析.西北地震学报,28(2):97–103
    李涛,王宗秀.2008.青海巴颜喀拉山隆升的热年代学研究.地质通报,27(4):469-476
    李祥根.2003.中国新构造运动概论.北京:地震出版社
    李旭,陈运泰.1996.用长周期地震体波波形资料反演1990年青海共和地震的震源过程[J].地震学报,18(3),279–286
    李勇,曹叔尤,周荣军, Densmore A.L., Ellis M.A.2005.晚新生代岷江下蚀速率及其对青藏高原东缘山脉隆升机制和形成时限的定量约束.地质学报,79(1):28–37
    李勇,周荣军, Densmore A.L., Ellis M.A.2006.青藏高原东缘龙门山晚新生代走滑–逆冲作用的地貌标志.第四纪研究,26(1):40–51
    刘百篪,刘小凤,袁道阳,等.2003.黄河中上游阶地对青藏高原东北部第四纪构造活动的反映.地震地质,25(1):133-145
    刘护军.2004.渭河盆地的形成演化与东秦岭的隆升.西北大学博士学位论文
    刘经南,姚宜斌,施闯,等.2002.中国大陆现今垂直形变特征的初步探讨.大地测量与地球动力学,22(3):1–5
    刘树根,罗志立,戴苏兰,等.1995.龙门山冲断带的隆升和川西前陆盆地的沉降.地质学报,69(3):205-214
    吕江宁,沈正康,王敏.2003.川滇地区现代地壳运动速度场和活动块体模型研究.地震地质,25(4):543–554
    马青,黄立人,马宗晋,等.2003.中国大陆中轴构造带及其两侧的现今地壳垂直运动.地质学报,77(1):35–43
    马涛,李斐,岳建利.2003.小波分析在地球物理及大地测量中的应用.地球物理学进展,18(1):49-52
    牛之俊,马宗晋,陈鑫连,等.2002.中国地壳运动观测网络.大地测量与地球动力学,22(3):1–7
    潘保田,高红山,李炳元,等.2004.青藏高原层状地貌与高原隆升.第四纪研究,24(1):50–57
    乔学军,王琪,杜瑞林.2004.川滇地区活动地块现今地壳形变特征.地球物理学报,47(5):805–811.
    秦姗兰.2010.西秦岭构造带现今地壳运动与变形.长安大学硕士论文
    邵延秀,袁道阳,王爱国,等.2011.西秦岭北缘断裂破裂分段与地震危险性评估地震地质,33(1):79-90
    沈正康,王敏,甘卫军,等.2003.中国大陆现今构造应变率场及其动力学成因研究.地学前缘,10(特刊):93–100
    石耀霖,朱守彪.2006.用GPS位移资料计算应变方法的讨论.大地测量与地球动力学,26(1):1-8
    宋治平,武安绪,王梅,等.2004.小波变换在前兆观测资料分析中的应用.中国地震,20(1):31-38
    谭锡斌,徐锡伟,李元希,等.2010.贡嘎山快速隆升的磷灰石裂变径迹证据及其隆升机制讨论.地球物理学报,53(8):1859-1867
    陶本藻,王新洲,于正林,杜方.1992.用于垂直形变模蒯的名面泌教洲合法的试验研究#地壳形变与地震,12(1):1-13
    陶玮,沈正康,万永革,等.2007.根据2001年Mw7.8可可西里强震InSAR同震测量结果反演东昆仑断裂两侧地壳弹性介质差异.地球物理学报,50(3),744–751
    滕吉文,强中杰,杨顶辉,等.1996.青藏高原地体划分的地球物理标志研究.地球物理学报,39(5):629–641
    滕志宏,王晓红.1996.秦岭造山带新生代构造隆升与区域环境效应研究.陕西地震,14(2):33-42
    涂德龙.1990.1990年4月26日共和6.9级地震地质构造背景.高原地震,2(3),15–20
    万永革,沈正康,王敏,等.2008.根据GPS和INSAR数据反演2001年昆仑山口西地震同震破裂分布.地球物理学报,51(4):1074-1084
    汪一鹏,沈军,王琪,等.2003.川滇块体的侧向挤出问题.地学前缘,10(特刊):188-192
    王敏,沈正康,牛之俊,等.2003.现今中国大陆地壳运动与活动块体模型.中国科学(D辑),33(增刊):21–32
    王椿镛,常利军,吕智勇,等.2007.青藏高原东部上地幔各向异性及相关的壳幔耦合型式.中国科学D辑,37(4):495-503
    王椿镛,王溪莉,苏伟,等.2006.青藏高原东缘下地壳流动的地震学证据.四川地震,4
    王二七,张旗.2000.青海拉鸡山:一个多阶段抬升的构造窗.地质科学,35(4):493-500
    王凡,陈为涛,王敏,等.2011.利用GPS观测资料分析2008年于田Ms7.3地震的同震位移及震后形变.地球物理学报,54(9):2250-2255
    王敏.2009. GPS观测结果的精化分析与中国大陆现今地壳形变场研究.中国地震局地质研究所博士论文
    王敏.2009.基于GPS同震位移场约束反演2008年5.12汶川大地震破裂空间分布.地球物理学报,52(10):2519-2526
    王庆良,崔笃信,王文萍,等.2008.川西地区现今垂直地壳运动研究.中国科学(D辑),38(5):598–610
    王庆良,巩守文,张希,等.1996.由1990年共和7.0级地震震后垂直形变求得的地球介质有效弛豫时间和粘滞系数.地震学报,19(5),480-486
    王庆良,王文萍,崔笃信,等.2002.青藏块体东北缘现今地壳运动.大地测量与地球动力学,22(4):12–16
    王双绪.1992.川西地区近期大地垂直形变场演化与地壳运动特征.地壳形变与地震,12(2):17–22
    王卫民,赵连锋,李娟,等.2008.四川汶川8.0级地震震源过程.地球物理学报,51(5):1403~1410
    王文萍,王庆良.1999.利用遗传算法和最小二乘联合反演共和地震位错参数.地震学报,21(3):285–290
    王阎昭,王恩宁,沈正康,等.2008.基于GPS资料约束反演川滇地区主要断裂现今活动速率.中国科学D辑:地球科学,38(5):582-597
    王阎昭.2009.大陆构造形变场模型研究及其在青藏高原东缘的应用.中国地震局地质研究所博士论文
    向宏发,虢顺民,徐锡伟,等.2000.川滇南部地区活动地块划分与现今运动特征初析.地震地质,22(3):253-264
    向宏发,徐锡伟,虢顺民,等.1999.滇西地区两组交叉型活动断裂及其地震地质意义.活动断裂研究,北京:地震出版社,81-87
    熊熊,滕吉文.2002.青藏高原东缘地壳运动与深部过程的研究.地球物理学报,45(4):507–515
    徐锡伟,闻学则,郑荣章,等.2003.川滇地区活动块体最新构造变动样式及其动力来源.中国科学(D辑):地球科学,33(增):151–162
    徐锡伟,闻学泽,陈桂华.2008.巴颜喀拉地块东部龙日坝断裂带的发现及其大地构造意义.中国科学D辑:地球科学,38(5):529-542
    徐锡伟,闻学泽,叶建青,等.2008.汶川Ms8.0地震地表破裂带及其发震构造.地震地质,30(3):597-629
    徐锡伟,闻学泽,郑荣章,等.2003.川滇地区活动块体最新构造变动样式及其动力来源.中国科学(D辑),33(增刊):151–162
    许才军,刘洋,温扬茂.2009.利用GPS资料反演汶川Mw7.9级地震滑动分布.测绘学报,38(3):195-201
    许力生,陈运泰.1997.用数字化宽频带波形资料反演共和地震的震源参数.地震学报,19(2):113–128
    许志琴,李化启,侯立炜,等.2007.青藏高原东缘龙门-锦屏造山带的崛起—大型拆离断层和挤出机制.地质通报,26(10):1262-1276
    应绍奋,张祖胜,耿士昌,等.1988.中国大陆垂直向现代地壳运动特征.中国地震,4(4):1–8
    于宗俦,陶本藻,陈恒禄,等.1980.全国复测水准网的动态平差.武汉大学学报(信息科学版),第1期
    张培震,邓起东,张国民,等.2003.中国大陆的强震活动与活动地块.中国科学,33(增刊):12–20
    张培震,沈正康,王敏,等.2004.青藏高原及周边现今构造变形的运动学.地震地质,26(3):367-377
    张培震,王敏,甘卫军,等.2003. GPS观测的活动断裂滑动速率及其对现今大陆动力作用的制约地学前缘,10(特刊):81-92
    张培震,王琪,马宗晋.2002.青藏高原现今构造变形特征与GPS速度场.地学前缘,9(2):442–450
    张培震,徐锡伟,闻学则.2008.2008年汶川8.0级地震发震断裂的滑动速率、复发周期和构造成因.地球物理学报,51(4):1066-1073
    张培震,徐锡伟,闻学泽,等.2008.2008年汶川8.0级地震发震断裂的滑动速率、复发周期和构造成因.地球物理学报,51(4):1066–1073
    张培震,郑德文,尹功明,等.2006.有关青藏高原东北缘晚新生代扩展与隆升的讨论.第四纪研究,26(1):5-13
    张培震.2008.青藏高原东缘川西地区的现今构造变形、应变分配与深部动力过程.中国科学(D辑):地球科学,38(9):1041–1056
    张培震,闻学泽,徐锡伟,等.2009.2008年汶川8.0级特大地震孕育和发生的多单元组合模式.科学通报,54(7):944–953
    张四新,刘文义,王双绪.1998.四川西部现今地壳形变与地震.地壳形变与地震,18(4):48–54
    张四新,江在森,王双绪.2003.南北地震带及青藏块体东部垂直形变与地震活动研究.西北地震学报,25(2):143–148
    张希,崔笃信,蒋锋云.2009.基于GPS观测的汶川地震参数反演与库仑应力变化分析.地震研究,32(4):351-356
    张希,江在森.1999.用最小二乘配置获得地形变应变场动态图像的几个问题研究.地壳形变与地震,19(3):32-39
    张燕,吴云,刘永启,等.2004.小波分析在地壳形变资料处理中的应用.地震学报,26(增刊):103-109
    张永志,王双绪.1998.河西地区地壳垂直形变的小波分析结果与中强震关系研究.地震学报,20(2):150-157
    张岳桥,杨农,陈文,等.2003.中国东西部地貌边界带晚新生代构造变形历史与青藏高原隆升过程初步研究.地学前缘,10(4):599–612
    张岳桥,杨农,孟晖,等.2004.四川攀西地区晚新生代构造变形历史与青藏高原隆升过程初步研究.中国地质,31(1):23–33
    章珂,刘贵惠,邹大文,等.1996.二进小波变换方法的地震信号分时分频去噪处理.地球物理学报,39(2):265-272
    赵承坤,黄立人.1991.速率面拟合法中核函数中心点的选择.地壳形变与地震,11(2):48-54
    赵国泽,陈小斌,王立凤,等.2008.青藏高原东边缘地壳“管流”层的电磁探测证据.科学通报,53(1):1–6
    赵明,陈运泰,巩守文,等.1992.用水准测量资料反演1990年青海共和地震的震源机制.地壳形变与地震,12(4):1–11
    周荣军,何玉林,黄祖智,等.2001.鲜水河断裂带乾宁-康定段的滑动速率与强震复发间隔,地震学报,23(3),250-261
    周荣军,蒲晓红,何玉林,等.2000.四川岷江断裂带北段的新活动、岷山断块的隆起及其与地震活动的关系.地震地质,22(3):285-294
    周瑞琦,俞维贤,谷一山,等.1990.云南耿马7.2级地震地表破裂带研究.地震地质,12(4):291-301
    朱艾斓,徐锡伟,刁桂苓,等.2008.汶川Ms8.0地震部分余震重新定位及地震构造初步分析.地震地质,30(3):757-767

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700