用户名: 密码: 验证码:
铁磁介质结构若干磁弹性问题的理论与实验研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
铁磁材料广泛应用于国民经济的各个部门,其力学响应行为涉及变形场和磁场的相互耦合问题,直接关系到各类现代高新装置设备的性能指标和可靠运行。本论文针对铁磁介质结构的磁弹性行为进行了理论和实验研究。
     基于连续介质理论针对一个在电磁场中运动的可变形连续固体进行了描述,将铁磁颗粒增强聚合物整体看作为一个可磁化的高弹性体,研究了材料的磁弹性行为,并给出材料应力与外磁场的依赖关系。同时根据材料细观组分的单独力学行为以及它们的相互作用对该磁弹性特征予以验证。在此基础上加入了聚合物粘弹性行为的影响建立了一个铁磁颗粒增强聚合物的磁弹性本构模型。模型在静态、动态加载下的预测结果与实验测量数据均十分吻合。相对于已有模型,本文模型可以在同一组参数下描述不同磁场下的力-位移以及应力-应变回线,并可较为准确地刻画聚合物的力-磁耦合行为。定量分析了在不同磁场区域内材料本构关系的非线性程度以及剪切模量的磁场敏感性;讨论了动态加载下应力-应变回线的洄滞特性;揭示了应力-应变回线及剪切模量随外磁场与加载频率的变化规律。
     在上文连续介质力学、电磁学方程的基础上展开了对于变形场和磁场耦合问题处理方法的讨论,分析了不同解耦方法对于铁磁介质结构内部及附近磁场分布的影响,针对铁磁板在横向磁场下的磁弹性变形问题讨论了有限元数值迭代以及摄动技术在描述磁场分布方面的区别,以及这些差异对铁磁结构受力分析的影响。研究表明摄动方法只能分析铁磁弹性介质由于变形而引起的磁场分布变化,不能考虑介质磁化对附近磁场的改变;即使采用相同的磁力模型,有限元方法和摄动方法计算出的磁场分布不同也会进一步导致磁力分布不一样。揭示了两种方法在预测铁磁悬臂板磁弹性屈曲这一经典磁弹性耦合问题上存在差异的原因。给出的有限元模型可以退化到铁磁刚性结构情况,并选取磁屏蔽这一实际问题验证了模型的有效性,为屏蔽装置的设计提供了选型依据。
     在经典磁弹性振动问题研究的基础上,分析讨论了铁磁悬臂板正负磁刚度现象的临界角度范围,采用上文连续介质理论建立了与磁场相关的铁磁板共振频率的解析模型,并通过与实验结果的对比验证了模型的有效性,证明铁磁介质的非线性磁化行为是使铁磁板共振频率随着磁场的增大呈现饱和趋势的原因。模型可以很好的刻画出不同角度磁场下共振频率的变化规律,预测的临界角度与实验测量的角度范围吻合,揭示了临界角度与铁磁板长厚比之间的关系。
     针对铁磁圆柱壳的磁弹性变形行为展开了实验研究,测量了圆柱壳在横向磁场下的环向应变,发现随着外磁场增大,环向应变与外磁场的“B2关系”失效,表明薄壳的磁弹性变形行为在高场与低场下具有不同的变化规律。对软铁磁圆柱薄壳进行了较为全面的磁弹性变形实验研究,揭示了不同大小、方向的磁场,试件的厚径比以及不同的约束条件对铁磁薄壳磁弹性变形规律的影响。研究表明,外磁场的大小仅改变壳体的环向应变大小,而对应变的分布状态并没有明显影响;而磁场的倾斜角度以及试件的厚径比对圆柱薄壳环向应变的大小以及分布均有影响;端部的约束条件对整个壳体的环向变形有显著的影响,完全固定的边界条件不仅会使环向应变减小,而且会抑制应变随磁场增大的饱和趋势。
     综上,通过本文的研究工作,加深了对于铁磁介质结构中的磁场分布、铁磁薄壳的磁弹性变形规律以及铁磁薄板磁弹性共振现象的认识,完善了铁磁结构磁弹性力学行为的理论和实验的研究,分析了新型铁磁材料——铁磁颗粒增强聚合物的力-磁耦合行为,对已有实验结果做出了较为合理的解释。研究结果为铁磁材料及结构在实际工程中的应用提供了必要的理论依据。
Ferromagnetic materials and structures are widely used in national economic construction. The mechanical behavior of ferromagnetic materials is usually influenced by the coupling effect between mechanical field and magnetic field. It is directly related to the performance of high-tech devices and the reliability of operation. In this dissertation, we investigated the magnetoelastic interactions by theoretical and experimental methods.
     Firstly, a deformable continuous solid moving in the electromagnetic field has been described based on the continuum theory, the ferromagnetic particles reinforced composite has been seen as a magnetizable elastomer, then the dependency of the stress and the magnetic field is discussed. The magnetoelastic characteristics of such ferromagnetic composites obtained from continuum theory are similar to the ones based on the mesoscopic model. Furthermore, a constitutive model which can describe the viscoelastic and the magnetoelastic behaviors of ferromagnetic composites is proposed, the predictions show good correlation with experimental data. Comparing this model with other existing models, the quantitative results can reflect the mechanics-magneto interaction without changing parameters in the model. The nonlinear characteristics of the constitutive relations in different regions of magnetic field and the magnetic field sensitivity of the shear modulus for such ferromagnetic composites are also discussed. It is also shown that the shear modulus change with the external magnetic field and loading frequency under dynamic loading.
     Based on the equations from the continuum mechanics and electromagnetism discussed above, we further analyze the decoupled approaches for the problems of magneto-mechanical coupling. The differences of magnetic field distributions inner and near the ferromagnetic structures are due to the differences of the decoupled approaches, so we discuss the differences between the numerical iterative of finite element method and the perturbation technique in the descriptions of the magnetic field distributions, furthermore, the changes of distributions of the magnetic force in the ferromagnetic media. The predictions show that the perturbation method can only deal with the changes of magnetic field distributions since the deformation of the ferromagnetic elastic media, it can't consider the effect that the changes of the magnetic field nearby the structures due to the magnetization of the ferromagnetic media. The differences of magnetic field distributions simulated by these two methods will led to the differences of the distributions of the magnetic force even though adopting the same magnetic force model. The finite element model presented above can degraded to the situation of the ferromagnetic rigid media, then it is applied to the problem of magnetic shielding to verify the validity of the model.
     The theoretical as well as experimental investigations on the natural frequency of a ferromagnetic plate in an inclined magnetic field are presented. A novel analytical model with the nonlinear law of magnetization is proposed for the field-dependent natural frequency of a ferromagnetic plate. Model predictions show good correlation with the experimental data at different inclined angles. Both the theoretical and experimental investigations show that there exists a critical angle of the inclined field, below which the natural frequency of the ferromagnetic plate will increase with the magnetic field, and above which the frequency will decrease with increasing the field. The predictions show that the critical angle is sensitive to the length-to-thick ratio of the plate.
     Experimental studies on the magnetoelastic deformation of ferromagnetic cylindrical shell are carried on. The circumferential strains of the shell in the transverse magnetic field are measured. It is noted that the circumferential strain do not show a B2dependence at high field, which means the magnetoelastic behavior of shell at low field is different from the one at high field. Moreover, it is shown that the intensity of the magnetic field only affects the values of the circumferential strain, not the strain distribution, while the directions of the applied magnetic field and the ratio of thickness-to-radius of shell show a dramatical influence on both the values and the distributions of strain. The supported conditions at shell ends also have effects on the magnetoelastic deformation.
     In summary, these essential and important investigations will be of significant benefit to both the theoretical researches and applications of the ferromagnetic materials in intelligent structures and systems.
引文
[1]钟文定,铁磁学(中册),科学出版社,2000.
    [2]奥汉德利,R.C.,现代磁性材料原理和应用,化学工业出版社,2002.
    [3]郭贻诚,铁磁学,人民教育出版社,1965.
    [4]Jiles, D.C. Introduction to Magnetism and Magnetic Materials. New York:Chapman and Hall,1991.
    [5]Wohlfarth, E.P. Ferromagnetic materials:A handbook on the properties of magnetically ordered substances, North-Holland publishing company,1980.
    [6]Hasselgren, L., Moller, E., Hamnerius, Y. Calculation of Magnetic Shielding of a Substation at Power Frequency Using FEM, IEEE Transaction on Power Delivery,1994,9(3), 1398-1405.
    [7]Hartal, O., Metzer, M., Metzer, M. Shielding from ELF Magnetic Fields Emanating from Power Plants in Large Facilities, The Environmentalist,2005,25(2-4),209-214.
    [8]Wulf, De, Wouters, M., Sergeant, P., Dupre, P., Hoferlin, L. Jacobs, E., Harlet, P. Electro-magnetic shielding of high-voltage cables, Journal of Magnetism and Magnetic Materials, 2007,316(2),908-911.
    [9]World Health Organization, Environmental Health Criteria,2007,238.
    [10]Sandstrom, M., Mild, K.H, Sandstrom, M., Berglund, A. External power frequency magnetic field-induced jitter on computer monitors, Behaviour and Information Technology,1993, 12(6),359-363.
    [11]Banfai, B., Karady, G.G., Kim, C.J., Maracas, K.B. Magnetic field effects on CRT computer monitors, IEEE Transactions on Power Delivery,2000,15(1),307-312.
    [12]赵博,张洪亮等,Ansoft 12在工程电磁场中的应用,中国水利水电出版社,2009。
    [13]朱应顺,龚兴龙,张培强,磁流变弹性体若干物理量的数值分析,计算力学学报,2007,24卷第5期。
    [14]Miedzinska, D., Boczkowska, A., Zubko, K. Numerical verification of three point bending experiment of magnetorheological elastomer (MRE) in magnetic field, Journal of Physics: Conference Series,2010,240,012158.
    [15]Galipeau, E., Castaneda, P.P. The effect of particle shape and distribution on the macroscopic behavior of magnetoelastic composites. Internation Journal of Solids and Structures,2012, 49,1-17.
    [16]司鹄,磁流变体的力学机理研究[博士论文].重庆:重庆大学.2003.
    [17]Carlson, J.D., Jolly, M.R. MR fluid, foam and elastomer devices, Mechatronics,2000,10, 555-569.
    [18]詹茂盛,丁乃秀,鲁云华,聚合物及其复合材料磁致伸缩性能的研究进展,材料工程,2005,7,59-63.
    [19]Lerner, A.A., Cunefare, K.A. Peformance of MRE-based vibration absorbers. Journal of Intelligent Material Systems and Structures,2008,19(5),551-563
    [20]Deng, H.X., Gong, X.L., Wang, L.H. Development of an adaptive tuned vibration absorber with magnetorheological elastomer, Smart Materials and Structures,2006,15(5), N111-N116.
    [21]于立忠,李云瑞,王峰,磁流变体研究状况及进展,航空工程与维修,1997,7,9-11.
    [22]董旭峰,树脂基磁致伸缩复合材料及其智能阻尼器[博十论文].哈尔滨:哈尔滨工业大学.2008.
    [23]周又和,郑晓静,磁弹性薄板屈曲的研究进展和存在的若干问题,力学进展,1995,25,525-536.
    [24]Moon, F.C. Problems in magneto-solid mechanics. Mechanics Today, Vol.4, Ed. Nemat-Nasser, Pergamon Press Inc. New York.1978,306.
    [25]Pao, Y.H. Electromagnetic forces in deformable continua. In:Nemat-Nasser, S. (Ed.), Mechanics Today, Pergamon Press, New York,1978, Vol.4.209-306.
    [26]Ambartsumian, S.A. Magneto-Elasticity of Thin Plates and Shells, Applied Mechanics Reviews,1982,35,1.
    [27]Jolly, M.R., Carlson, J.D., Munoz, B.C. A model of the behavior of magnetorheological materials. Smart Materials and Structures,1996,5,607-614.
    [28]Bednarek, S. The giant magnetostriction in ferromagnetic composites within an elastomer matrix. Applied Physics A:Materals Science & Processing,1999,68,63-67.
    [29]Ginder, J., Clark, S., Schlotter, W., Nichols, M. Magnetostrictive phenomena in magnetorheological elastomers. International Journal of Modern Physics B,2002,16, 2412-2418.
    [30]Guan, X., Dong, X., Ou, J. Magnetostrictive effect of magnetorheological elastomer, Journal of Magnetism and Magnetic Materials,2008,32,158-163.
    [31]Danas, K., Kankanala, S.V., Triantafyllidis, N. Experiments and modeling of iron-particle-filled magnetorheological elastomers, Journal of Mechanics and Physics of Solids,2012,60, 120-138.
    [32]Maxwell, J.C. A treatise on electricity and magnetism, Oxford University Press,1873.
    [33]Podilchuk, Yu.N., Podilchuk, I.Yu. Stress intensity coefficients in the transversally-isotropic ferromagnetic with the elliptical crack under the uniform magnetic field, European Journal of Mechanics A/Solids,2005,24,207-216.
    [34]Scott, W.T. The Physics of Electricity and Magnetism, John Wiley & Sons, Inc,1959.
    [35]Steigmann, D. J. Equilibrium theory for magnetic elastomers and magnetoelastic membranes, International Journal of Non-Linear Mechanics,2004,39,1193-1216.
    [36]Hasanyan, D., Librescu, L., Qin, Z., Ambur, D.R. Magneto-thermo-elastokinetics of geometrically nonlinear laminated composite plates. Part 1:foundation of the theory, Journal of Sound and Vibration,2005,287,153-175.
    [37]Purcell, E. M. Electricity and magnetism. Educational Services Incorporated,1963.
    [38]Fano, R.M., Chu, L.J., Adler. R.B. Electromagnetic fields, energy, and forces. John Wiley & Sons, Inc,1960.
    [39]Jeans. The Mathematical Theory of Electricity and Magnetism. Cambridge University Press, 1925.
    [40]Brown, W.F. Magnetoelastic Interactions. Springer,1966, New York.
    [41]Maugin, G.A., Eringen, A.C. Deformable magnetically saturated media I. Field equations. J. Math.Phys.13,1972,143-155.
    [42]Zheng, X., Jin, K. Magnetic force models for Magnetizable elastic bodies in the magnetic field, in From Waves in Complex Systems to Dynamics of Generalized Continua, by editors Kolumban Hutter, Tsung-Tsong Wu, Yi-Chung Shu,353-383,2011, World Scientific, Singapore.
    [43]Zhou, Y.H., Zheng, X.J. A generalized variational principle and theoretical model for magnetoelastic interaction of ferromagnetic bodies. Science in China Series A-Mathematics Physics Astronomy,1999,42(6),618-26.
    [44]Kankanala, S., Triantafyllidis, N. On finitely strained magnetorheological elastomers. Journal of Mechanics and Physics of Solids,2004,52,2869-2908.
    [45]Truesdell, C., Toupin, R. The classical &eld theories. In:FIVugge, S. (Ed.), Handbuch der Physik,Vol. Ⅲ/Ⅰ., Springer, Berlin,1960.
    [46]Tiersten, H.F. Coupled magnetomechanical equations for magnetically saturated insulators. Journal of Mathematical Physics,1964,5,1298-1318.
    [47]Eringen, A.C., Maugin, G. Electrodynamics of Continua, Springer, New York,1989.
    [48]Pao, Y.H., Yeh, C.S. A linear theory for soft ferromagnetic elastic solids, Internal Journal of Engineering Science,1973,11,415.
    [49]Tiersten, H. F. Variational principle for saturated magnetoelastic insulators. Journal of Mathematical Physics,1965,6,779-787.
    [50]Jordan, N.F., Eringen, A.C. On the static nonlinear theory of electomagnetic thermoelastic solids-I.,1964, Internal Journal of Engineering Science,2,59-95.
    [51]Wang, X., Lee, J.S., Zheng, X. Magneto-thermo-elastic instability of ferromagnetic plates in thermal and magnetic fields, International Journal of Solids and Structures,2003,40, 6125-6142
    [52]Strauss, W. Phsical Accoustics,1968,4, part B, Academic Press
    [53]Tiersten, H.F. Surface Mechanics, Proceedings of a Symposium of the A.S.M.E., New York, 1969.
    [54]Bagdasarian, G.Y., Hasanian. D.J. Magnetoelastic interaction between a soft ferromagnetic elastic half-plane with a crack and a constant magnetic field. International Journal of Solids and Structures,2000,37,5371.
    [55]Gao, C.F., Mai, Y.W., Wang, B.L. Effects of magnetic fields on cracks in a soft ferromagnetic material, Eng. Fract. Mech.75,4863,2008.
    [56]Hasanyan, D.J., Piliposian, G.T. Stress-strain state of a piecewise homogeneous ferromagnetic body with an interfacial penny-shaped crack, Int. J. Fract.,2005,133,183.
    [57]Liang, W., Fang, D.N., Shen, Y.P., Soh, A.K. Nonlinear magnetoelastic coupling effects in a soft ferromagnetic material with a crack, International Journal of Solids and Structures,2002, 39,3997.
    [58]Podilchuk, Yu.N., Dashko, O.G. Stress-strain state of a ferromagnetic with a paraboloidal inclusion in a homogeneous magnetic field, Int. Appl. Mech.,2004,40,517.
    [59]Shindo, Y. The linear magnetoelastic problem for a soft ferromagnetic elastic solid with a finite crack. ASME Journal of Applied Mechanics,1977,44,47,
    [60]Yeh, C.S. Magnetic fields generated by a mechanical singularity in a magnetized elastic half plane. ASME Journal of Applied Mechanics,1989,56,89.
    [61]Zhao, S.X., Lee, K.Y. Interfacial crack problem in layered soft ferromagnetic materials in uniform magnetic field, Mech. Res, Commun.,2007,34,19.
    [62]Earnshaw, S. On the nature of the molecular forces which regulate the constitution of the luminiferous ether. Trans. Cambridge Philos. Soc.,1842, V.7,97-114
    [63]Moon, F.C. Earnshaw's theorem and magnetoelastic buckling of super-conducting structures. Proceedings of the IUTAM-IUPAP Symposium on the Mechanical Behaviour of Electromagnetic Solid Continua,Paris,1983,369-378
    [64]Mozniker, R.A. Effect of a constant magnetic field on the free oscillations of mechanical systems. Izv. Acad. Nauk Ukr. SSSR,1959,847-852
    [65]Panovko, Y.C., Gubanova, I.I. Stablity and oscillations of elastic system. (English Translation Consultants Bureau, New York.) 1965.
    [66]Moon, F.C., Pao, Y.H. Magnetoelastic buckling of a thin plate. ASME Journal of Applied Mechanics,1968,35,53-58.
    [67]Eringen, A.C. Theory of electromagnetic elastic plates, Internal Journal of Engineering Science,1989,27,363
    [68]Lee, J.S., Zheng, X.J., Zhou, Y.H. Proceedings of the Twelfth US National Congress of Applied Mechanics, Seattle, Washington,1994,562.
    [69]Miya, K., Takagi, T., Ando, Y. Finite element analysis of magnetoelastic buckling of a ferromagnetic beam-plate. ASME Journal of Applied Mechanics,1980,47,377.
    [70]Moon, F.C. The mechanics of ferroelastic plates in a uniform magnetic field. ASME Journal of Applied Mechanics,1970,37,153.
    [71]Popelar, C.H. Postbuckling analysis of a magnetoelastic beam. ASME Journal of Applied Mechanics,1972,39,207-211.
    [72]Wu, G.Y. The analysis of dynamic instability on the large amplitude vibrations of a beam with transverse magnetic fields and thermal loads, Journal of Sound and Vibration,2007,302, 167.
    [73]Wu, G.Y. The analysis of dynamic instability of a bimaterial beam with alternating magnetic fields and thermal loads, Journal of Sound and Vibration,2009,327,197.
    [74]Zhou, Y.H., Zheng, X.J. A variational principle on magnetoelastic interaction of ferromagnetic thin plates. Acta Mech. Solida Sin.1997,10,1.
    [75]Zhou, Y.H., Zheng, X.J. A general expression of magnetic force for soft ferromagnetic plates in complex magnetic fields. Internal Journal of Engineering Science,35,1405 (1997)
    [76]Zhou, Y.H., Zheng, X.J. A theoretical model of magnetoelastic buckling for soft ferromagnetic thin plate. Acta Mech. Sin.1996,12,213.
    [77]Zheng, X.J., Wang, X.Z. Analysis of magnetoelastic interaction of rectangular ferromagnetic plates with nonlinear magnetization, International Journal of Solids and Structures,2001,38, 8641-8652.
    [78]王省哲.软铁磁薄板与薄壳结构的力-磁-热耦合问题研究[博士论文].兰州:兰州大大学.2000.
    [79]Zhou, Y.H., Gao, Y.W., Zheng, X.J., Jiang, Q. Buckling and post-buckling of a ferromagnetic beam-plate induced by magnetoelastic interactions. International Journal of Non-Linear Mechanics,2000,35,1059-1065.
    [80]高原文,强磁场作用下铁磁梁板结构的磁弹塑性力学行为分析[博士论文].兰州:兰州大学.2002.
    [81]Moon, F.C. Magneto-solid mechanics. New York:John Willey & Sons.1984.
    [82]Miyata, K., Miya, K. Magnetic field and stress analysis of saturated steel. IEEE Transactions on Magnetics,1988,24(1),230-233.
    [83]Zheng, X., Wang, X. A magnetoelastic theoretical model for soft ferromagnetic shell in magnetic field, International Journal of Solids and Structures,2003,40,6897-6912.
    [84]Todhunter, I., Pearson, K. History of Elasticity and the Strength of Materials,1960,698, Vol.11, Part Ⅰ, Dover, N.Y.
    [85]Kaliski, S. Magnetoelastic Vibration of Perfectly Conducting Plates and Bars, Proceedings, Vibration Problems,1962,4(3).225-234
    [86]Dunkin, J.W., Eringen. A.C. Propagation of Waves in an Electromagnetic Elastic Solid. International Journal of Engineering Science,1963,1,461-495.
    [87]Shindo, Y. Magnetoelastic interaction of a soft ferromagnetic elastic solid with a penny-shaped crack in a constant axial magnetic field, ASME Journal of Applied Mechanics, 45,291,1978.
    [88]Shindo, Y. Singular Stresses in a Soft Ferromagnetic Elastic Solid with Two Coplanar Griffith Crack, International Journal of Solids and Structures,16,537,1980.
    [89]Moon, F.C., Pao, Yih.Hsing. Vibration and dynamic instability of a beam-plate in a transverse magnetic field. ASME Journal of Applied Mechanics,1969,36,92-100.
    [90]Tagaki, T., Tani, J., Matsubara, Y., Mogi, I. Dynamic behavior of fusion structural components under strong magnetic fields. Fusion Engineering and Design.1995,27, 481-489.
    [91]Zhou, Y.H., Miya, K. A theoretical prediction of natural frequency of a ferromagnetic beam-plate with low susceptibility in in-plane magnetic field. ASME Journal of Applied Mechanics,1998,65,121.
    [92]Liang, W., Soh, A.K., Hu, R. Vibration analysis of a ferromagnetic plate subjected to an inclined magnetic field. International Journal of Mechanical Sciences,2007,49,440-446.
    [93]Lee, J.L., Lin, C.B. The magnetic viscous damping effect on the natural frequency of a beam plate subject to an in-plane magnetic field. ASME Journal of Applied Mechanics.2010,77, 011014.
    [94]Bednarek, S. The giant magnetostriction in ferromagnetic composites within an elastomer matrix. Appl. Phys. A. Mater. Sci. Process.,1999,68,63-67.
    [95]Ginder, J., Clark, S., Schlotter, W., Nichols, M. Magnetostrictive phenomena in magnetorheological elastomers. Int. J. Mod. Phys. B,2002.16,2412-2418.
    [96]Guan, X., Dong, X., Ou, J. Magnetostrictive effect of magnetorheological elastomer. Journal of Magnetism and Magnetic Materials,2008,320,158-163.
    [97]Duenas, T., Carman, G. Large magnetostrictive response of Terfenol-D resin composites (invited). Journal of Applied Physics,2000.87,4696-4701.
    [98]Guan, X. C., Dong, X. F., Ou, J.P. Predicting performance of polymer-bonded Terfenol-D composites under different magnetic fields. Journal of Magnetism and Magnetic Materials, 2009,321,2742-2748.
    [99]龚兴龙,李剑锋,张先舟.磁流变弹性体力学性能测量系统的建立.功能材料,2006,37(5):733
    [100]Brigadnov, I.A. Dorfmann,A., Mathematical modeling of magneto-sensitive elastomers. International Journal of Solids and Structures,2003.40,4659-4674.
    [101]Dorfmann, A., Brigadnov,I. A. Constitutive modeling of magneto-sensitive Cauchy-elastic solids. Computational Materials Science,2004,29,270-282.
    [102]Dorfmann, A., Ogden, R. W. Magnetoelastic modelling of elastomers. European Journal of Mechanics A/Solids,2003,22,497-507.
    [103]Dorfmann, A., Ogden, R. W., Saccomandi, G. Universal relations for non-linear magnetoelastic solids, International Journal of Non-Linear Mechanics,2004,39,1699-1708
    [104]Davis, L.C. Model of magnetorheological elastomers. Journal of Applied Physics,1999. 85,3348.
    [105]Shen, Y., Golnaraghi, M.F, Heppler, G.R. Experimental research and modelling of magnetorheological elastomers. Journal of Intelligent Material Systems and Structures, 2004,15:27-35
    [106]Chen,L., Gong,X.L., Li,W.H. Microstructures and viscoelastic properties of anisotropic magnetorheological elastomers. Smart Materials and Structures,2007,16,2645-2650.
    [107]Yin, H.M., Sun, L.Z., Chen, J.S., Magneto-elastic modeling of composites containing chain-structured magnetostrictive particles. Journal of the Mechanics and Physics of Solids. 54,2006,975-1003.
    [108]Miya, K., Hara, K., Someya, K., Experimental and theoretical study on magnetoelastic buckling of ferromagnetic cantilevered beam-plate, ASME Journal of Applied Mechanics, 1978,45,355-360.
    [109]Borcea, L., Bruno, O. On the magneto-elastic properties of elastomer-ferromagnet composites. Journal of the Mechanics and Physics of Solids.2001,49,2877-2919.
    [110]Castaneda, P. P., Galipeau, E., Homogenization-based constitutive models for magnetorheological elastomers at finite strain. Journal of the Mechanics and Physics of Solids.2011,59,194-215.
    [111]Bustamante, R., Dorfmann, A., Ogden, R.W. On variational formulations in nonlinear magnetoelastostatics. Mathematics and Mechanics of Solids,2008,13,725-745.
    [112]Chen L. and Jerrams, S., A rheological model of the dynamic behavior of magnetorheological elastomers, Journal of Applied Physics,2011,110,013513.
    [113]Huber, N., Tsakmkis, Ch. Finite deformation. Mechanics of Materials,2000,32,1-18.
    [114]Li, W.H., Zhou, Y., Tian, T. F. Viscoelastic properties of MR elastomers underharmonic loading, Rheologica Acta,2010,49,733-740.
    [115]Zhu. J., Xu. Z., Guo, Y. Magnetoviscoelasticity parametric model of an MR elastomer vibration mitigation Device, Smart Material and Structures,2012,21,075034.
    [116]Harik, I. E., Zheng, X. J. FE-FD model for magneto-elastic buckling of ferromagnetic plates, Computer & Structures,1996,61(6) 1115-1123.
    [117]Rucker A. W. On the magnetic shielding of concentric spherical shells, Phil. Mag.,1894, 37,95-130.
    [118]赵凯华,陈熙谋,电磁学,高等教育出版社,2003.
    [119]Sumner T. J., Pendlebury J. M., Smith K. F. Conventional magnetic shielding, Journal of Physics D:Applied physics,1987,20,1095-1101.
    [120]Wadey, W, G. Magnetic shielding with multiple cylindrical shells, Review of Scientific Instruments.1956,27,910.
    [121]Cravath, A, M. Magnetic shielding with multiple cylindrical shells, Review of Scientific Instruments.1957,28,659.
    [122]Schweizer, F. Magnetic shielding factors of a system of concentric spherical shells, Journal of Applied Physics.1962,33,1001.
    [123]Dubbers, D. Nucl. Instrum. Methods A.1986,243,511-7.
    [124]Hoburg, J, F. A computaitional methodology and results for quasistatic multilayered magnetic shielding, IEEE Transactions on Electromagnetic Compatibility.1996,38(1), 92-103.
    [125]Koroglu, Selim., Sergeant, Peter., Umurkan, N. Comparison of analytical, finite element and neural network methods to study magnetic shielding. Simulation modeling practice and theory,2010,18,206-216.
    [126]Du, Y,& Burnett, J. In IEEE 1996 international symposium on electromagnetic compatibility, (pp.488-493).
    [127]Reta-Hernandez, M., Karady, George, G. Attenuation of low frequency magnetic fields using active shielding. Electric Power Systems Research,1998,45,57-63.
    [128]Omura A., Kotani K., Yasu K. Itoh M. Analysis of the magnetic distribution within a high-temperature superconductor magnetic shielding cylinder by use of the finite element method, Journal of Physics and Chemistry of Solids,2006,67,43-46.
    [129]Umurkan N., Koroglu S., Kilic O. A neural network based estimation method for magnetic shielding at extremely low frequencies, Expert Systems with Applications, 2010,37(4),3195-3201.
    [130]Koroglu S., Sergeant P., Umurkan N. Comparison of analytical, finite element and neural network methods to study magnetic shielding, Simulation Modelling Practice and Theory,2010,18,206-216.
    [131]Koroglu S., Umurkan N., Kilic O., Attar F. An approach to the calculation of multilayer magnetic shielding using artificial neural network, Simulation Modelling Practice and Theory, 2009,17,1267-1275.
    [132]Feng C. and Shen Z. A hybrid FD-MoM technique for predicting shielding effectiveness of metallic enclosures with apertures, IEEE Transactions on Electromagnetic Compatibility, 2005,47(3),456-462.
    [133]Shen Z. Shielding Effectiveness of Cylindrical Enclosures with Annular Ring Apertures, 17th International Zurich Symposium on Electromagnetic Compatibility,2006,38-41.
    [134]Shen Z. and Zheng B. Shielding effectiveness of cylindrical enclosures with rectangular apertures, Asia-Pacific Sympsoium on Electromagnetic Compatibility & 19th International Zurich Symposium on Electromagnetic Compatibility,2008,710-713.
    [135]Yenikaya S. and Akman A. Hybrid MoM/FEM modeling of loaded enclosure with aperture in EMC problems, International Journal of RF and Microwave Computer-Aided Engineering,2009,19(2),204-210.
    [136]Kumar, T., Venkatesh, C. Shielding Effectiveness Comparison of Rectangular and Cylindrical Enclosures with Rectangular and Circular Apertures using TLM Modeling, Applied Electromagnetics Conference (AEMC),2009,1-4.
    [137]周又和,郑晓静,电磁固体力学,科学出版社,1999.
    [138]Scott,W. T. The physics of electricity and magnetism, John Wiley & Sons, Inc,1959.
    [139]Brown, W. F. Magnetic energy formulas and their relation to magnetization theory. Rev. Mod. Phys.,1953,25,131.
    [140]Hasanyan, D.J., Harutyunyan, S. Magnetoelastic interactions in a soft ferromagnetic body with a nonlinear law of magnetization:Some applications, International Journal of Solids and Structures,2009,46,2172-2185.
    [141]Lin, C.B., Yeh, C.S. The magnetoelastic problem of a crack in a soft ferromagnetic solid. International Journal of Solids and Structures,2002,39,1-17.
    [142]Lin, C.B. On a bounded elliptic elastic inclusion in plane magnetoelasticity. International Journal of Solids and Structures,2003,40,1547-1565.
    [143]Denisov, S., Dickey, D., Dzierba, A., Gohn, W., Heinz, R., Howell, D., Mikels, M., Neill, D., Samoylenko, V., Scott, E., Smith, P., Teige, S. Studied of magnetic shielding for phototubes. Nuclear Instruments and Methods in Physics Research A,2004,533,467-474.
    [144]Kamiya, K., Warner, B.A., DiPirro, M.J. Magnetic shielding for sensitive detectors. Cryoganics,2001,41,401-405.
    [145]Horie, T., Niho, T., Tanaka, Y. Evaluation method of magnetic damping effect for fusion reactor first wall. Fusion Engineering and Design,1998,42,401-407.
    [146]Xiong,E.G.,Wang,S.L.,Zhang,J.F., Zhang,Q. Experimental study on magnetomechanical coupling effect of Q235 steel tubular member specimens. Trans.Nonferrous Met. Soc. China, 2009,19,616-621.
    [147]Singer, J. On the importance of shell buckling experiments. Appl Mech Rev,1999,52, 17-25.
    [148]Tsakmakis, Ch. Formulation of viscoplasticity laws using overstresses, Acta Mechanica, 1996,115,179-202.
    [149]周光泉,刘孝敏,粘弹性理论,中国科技大学出版社,1996.
    [150]Coleman, B.D., Gurtin, M.E. Thermodynamics with internal state variables. J. Chemical Phys,1967,47,597-613.
    [151]Truesdell, C. First course in rational continuum mechanics,1991, Vol.Ⅰ. Academic Press, New York.
    [152]Holzapfel, G.A. Nonlinear solid mechanics:a continuum approach for engineering,2001, Wiley, Chichester.
    [153]Ogden, R. W. Non-Linear elastic deformation,1997, Dover, New York.
    [154]Rosensweig, R. E. Ferrohydrodynamics, Cambridge University Press,1985.
    [155]Chen, L., Gong, X. L., Li, W.H. Effect of carbon black on the mechanical performances of magnetorheological elastomers. Polym. Test,2008,27(3),340-345.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700