用户名: 密码: 验证码:
全固态激光非线性频率变换及热助推泵浦技术研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着激光二极管泵浦的全固态激光技术的成熟,全固态激光器已经成为光学领域的一个重要的研究方向,本文对全固态激光器及非线性频率变换技术做了深入研究,研究内容包括全固态紫外激光器、全固态黄光激光器、全固态参量振荡器以及热助推泵浦技术,文中给出了一些新的结构及概念。主要内容及创新点如下:
     1全固355nm态紫外激光器
     利用激光晶体自身的热透镜效应来对基频光进行聚焦,在未采用额外的聚焦系统情况下,实现了高效紧凑的腔外非线性频率变换紫外355nm激光器,当注入的泵浦功率28W,调制频率10kHz时,获得了1.65W的355nm紫外激光输出,单脉冲能量165μJ,脉宽6ns,峰值功率27.5kW,对应1064nm到355nm的光光转换率20.4%,为了获得更高的光光转换率,我们提出了一种二次和频技术,使一次和频剩余的1064nm和532nm激光再次被聚焦到和频晶体中进行二次和频,从而提高了光光转换效率,当泵浦功率25W时,获得了2.7W的355nm紫外激光输出,1064nm到355nm的光光转换率为43.5%,为了进一步提高1064nm到355nm的光光转换效率,我们利用反射式聚焦技术将1064nm激光和532nm激光聚焦到两块非线性频率变换频晶体中,这种聚焦方式消除了由于透射式聚焦带来的色散效应,将光光转换率进一步提高到了47.4%。
     2全固态266nm紫外激光器
     对腔外非线性频率变换的266nm紫外激光器进行了研究,为了使激光器更加紧凑采用短光纤耦合,短腔结构,在泵浦功率为25W时,获得了0.85W的紫外266nm激光输出,脉冲宽度6ns,1064nm到266nm的光光为13.7%。
     对LD侧泵紫外激光器进行了研究,为了改善光束质量提高光光转换效率,采用了Z型腔结构,当泵浦功率19A,调制频率5kHz时,获得了16W的532nm激光输出,光束质量因子为5,利用BBO晶体进行腔外四倍频,最终获得了2.1W的266nm紫外激光输出,1064nm到266nm的光光转换率为13.13%。
     3全固态黄光激光器
     提出了一种全新的LD泵浦共轴双晶体结构,当泵浦功率为1.5W时,获得了54mW的589nm黄光激光输出,光光转换率3.6%,激光的长期不稳定度约为5%,采用传统方式在相同的条件下只获得了15mW的黄光激光输出,这种LD泵浦的共轴双晶体结构具有结构紧凑、灵活的特点,可以广泛用于许多和频激光器中。
     4全固态连续波可调谐人眼安全波段及中红外激光器
     对温度和周期调谐曲线进行了计算,实验中获得了1401~1513nm的连续波人眼安全波段以及3.66~4.22μm的中红外闲频光输出,与理论曲线吻合的很好,当泵浦功率17.1W,最大获得了2.21W的1500nm激光输出,对应的光光转换率12.9%,在相同条件下可获得960mW的3.66μm的中红外闲频光输出,对应光光转换率5.6%.
     5热助推泵浦技术的研究
     利用914nm热助推泵浦Nd:YVO_4晶体获得了1064nm激光输出,为了克服这种泵浦方式对泵浦光吸收率较低的缺点,采用了增加晶体温度、提高晶体的掺杂浓度以及增加晶体的长度三种方式,并且对以上三种方式进行了实验比较,实验表明利用长晶体和适当的提高晶体的掺杂浓度是能够有效提高转换率的方法,实验中采用1%掺杂10mm长的Nd:YVO_4晶体,当热沉温度为50℃的情况下,吸收了2.87W的914nm泵浦光,获得了2.27W的1064nm激光输出,光光转换率为79.9%,同时,还开展了热助推泵浦的1342nm激光器的研究,利用1%掺杂8mm长的Nd:YVO_4晶体,吸收1.82W的914nm泵浦光获得了0.86W的1342nm激光输出,对应的斜率效率65.4%,在此基础上,进行了880nm热助推泵浦的Nd:YVO_4自受激Raman散射实验,实验表明相比于808nm泵浦的情况,880nm热助推泵浦能够明显的降低晶体的热,从而提高受激Raman散射的光光转换效率。
With the maturity of the diode pumped solid state lasers, it has become one of themost important research point of the optics field. In this paper we research on all solidstate laser and nonlinear frequency conversion techniques, including ultraviolet laser,yellow laser, optical parametric oscillator and a new thermally boosted pumpedmanner, some new architecture and conpect were given here.The main contents and key innovative points are as follows:
     1.All-solid-sate ultraviolet laser
     The266nm and355nm ultraviolet laser were researched, the compact and efficient355nm laser was realized without additional focusing system by using the thermallens of Nd:YAG crystal itself, with an input pump power of28W, modulatedfrequency at10kHz,1.65W ultraviolet355nm laser was obtained with single pulseenergy165μJ,pulse width6ns, corresponding peak power of27.5kW, optical tooptical (1064nm to355nm) efficiency is20.4%. In order to improve the conversionefficiency. We proposed the secondary summing frequency techniques to make therest power of1064nm and532nm of the first summing frequency sum frequencyagain. With an input pump power of25W,2.7W third harmonic radiation at355nmwas obtained. The optical-to-optical (1064nm to355nm) conversion efficiency was43.5%. To further improve the optical to optical efficiency from1064nm to355nmlaser, a concave reflection mirror was used to focus the laser of1064nm and532nminto two third harmonic optical crystals, which avoids the chromatic aberration oftraditional focusing lens effectively. Finally, the optical-to-optical (1064nm to355nm)conversion efficiency was up to47.4%.
     A compact diode end pumped Nd:YAG extracavity frequency conversion266nmultraviolet laser was realized with a short fiber coupling and short optical resonatorsturcture, with the pumped power of25W and modulation frequency10kHz,0.85Wultraviolet266nm laser was obtained, the pulse width was6ns, the optical-to-optical(1064nm to266nm) conversion efficiency was13.7%.
     A laser diode side-pumped Nd:YAG266nm ultraviolet laser was also researchedin this paper. To improved the beam quality and increase the conversion efficiency, azigzag cavity was used in this laser, when the pumped current was19A, modulatefrequency is5kHz,16W532nm green laser was obtained with the beam quality factor of5, with the extra-cavity frequency conversion of BBO crystal,2.1W ultravioletlaser266nm was obtained with a optical to optical (532nm to266nm) conversionefficiency was13.13%.
     2.All-solid-state yellow laser
     A new configuration of589nm yellow laser with a single LD pump source andcoaxial double crystals was proposed in this paper. When the incidence pump poweris1.5W,54mW yellow laser at589nm was obtain, the optical to optical conversionefficiency is3.6%, the laser long term instability was about5%. An orthodox methodfor589nm laser was also employed under the same condition, only15mW yellowlaser was obtain. The configuration of single pump source and coaxial double crystalsis compact and flexible which can be used in many sum frequency laser.
     3.All solid state continuous-wave tunable eye-safe and3-5μm mid-infrared laser
     Temperature and grating period turning curves of PPLN-OPO were calculated.Experimental tuning range were1401~1513nm for near infrared eye-safe signaloutput and3.66~4.22μm for mid-infrared idle output, which matched theoreticalcurves well. When the LD pump power was17.1W, the maximum signal outputpower was2.21W at1500nm, with a conversion efficiency of12.9%. For the idleoutput, it was960mW at3.66μm, the conversion efficiency was5.6%.
     4All solid state thermally boosted pumped lasers
     A high efficiency1064nm Nd:YVO_4laser thermally boosted pumped from highStark sublevel of ground state to upper-laser-level by a914nm Nd:YVO_4laser wasdemonstrated. To overcome the shortcoming of low absorption in this pumpingscheme, three possible means-increasing temperature, doping concentration andlength of the Nd:YVO_4crystal-were adopted and compared in detail in theexperiments. The experiments show that using longer gain medium with properdoping concentration should be the most promising method to ensure the absorptionand high efficiency. The maximum1064nm output power of2.27W was achievedwith a1.0%doped,10mm long Nd:YVO_4crystal at the temperature50°C, leading toa efficiency of79.9%with respect to the2.87W absorbed914nm pump power. Ahigh-efficiency1342nm Nd:YVO_4laser thermally boosted pumped at914nm isdemonstrated. An a-cut8mm length Nd:YVO_4crystals-1.0-at.%doped was choosenin the experiment. Finally,0.86W of1342nm laser output was obtained with1.82Wabsorbed pump power. Corresponding slope efficiency of65.4%. Based on the880nmthermally boosted pumped Nd:YVO_4self-stimulated Raman scattering laser was experimental demonstrated, the experiment shows that compared with808nm pumpedmanner the in-band pumped can reduce the heat deposition in the Nd:YVO_4crystalsand improve the optical conversion efficiency of self-stimulated Raman scattering.
引文
[1] T. Sasaki, Y. Mori, M. Yoshimura et al, Recent development of nonlin ear opticalborate crystals: key materials for generation of visible and UV lightMater.Sci.Eng.Rep,2000,30(1-2):1~54
    [2] C. X. Wang, G.. Y. Wang, A. V. Hicks et al, High power Q switched TEM00modediode pumped solid-state-lasers with>30W output power at355nm. SPIE,2006,6100:610019
    [3] N. Hodgson, M. Li, A. Held et al, Diode pumped TEM00mode solid state laserand their micromachining applications [C].SPIE,2003,4977:281~294
    [4]张菲,段军,曾晓雁等,355nm紫外激光加工柔性线路板盲孔的研究,中国激光,2009,36(12):3143~3148
    [5] P. A. Franken, A. E. Hill, C. W. Peters, Generation of optical harmonics[J]. Phys.Rev. Lett,1961,7(4):118~119
    [6] N. Hodgson, D. Dudley, L. Gruber et al, Diode end pumped TEM00Nd:YVO4laser with output power greater than12W at355nm, Conference on Lasers andElectronic Optics (CLEO), Washington,2001,389-390
    [7]Y. C. Wu, F. Chang, P. Z. Fu et al, High average power third harmonic generationat355nm with CsB3O5crystal, Chinese Phys Lett,2005,22(6):1426~1428
    [8]C. X. Wang, G.. Y. Wang, A. V. Hicks et al, High power Q switched TEM00modediode pumped solid-state-lasers with>30W output power at355nm, SPIE,2006,6100:610019
    [9]D. Rajesh, M. Yoshimura, T. Eiro et al, UV laser induced damage tolerancemeasurements of CsB3O5crystals and its application for UV light generation,Opt.Mater,2008,31(2):461~463
    [10]X. Ya, Q. Liu, M. Gong et al, High repetition rate high beam quality43Wultraviolet laser with extra cavity third harmonic generation, Appl. Phys B2009,95(2):323~328
    [11]D. R. Dudley, O. Mehl,G.. Y. Wang et al, Q-switched diode pumped Nd:YAG rodlaser with output power of420W at532nm and160W at355nm, SPIE,2009,7193:71930Z
    [12]K. Fujimori, High-harmonic generation using YAG laser and its application,12thNational Conference Laser Society Japan,1992,37~40
    [13]M. Oka, L. Y. Liu, W. Wiechmann, S. Kubota, All-solid-state continuous wavefrequency-quadrupled Nd:YAG laser, IEEE J Sel Top Quantum Eletron,1995(1),859~866
    [14]Y. K. Yap, M. Inagaki, S. Nakajima et al, High-power forth-and fifth-harmonicgeneration of a Nd:YAG laser by means of a CsLiB6O10, Opt Lett,1996,21(17):1348~1350.
    [15]T. Kojima,S. Konno,S. Fujikawa et al,20W ultraviolet beam generation byfourth-harmnonic of all-solid-state laser, Opt.Lett,2000,25(1),58~60
    [16]Guling Wang, Aicong Geng, Yong Bo, et al,28.4W266nm ultraviolet beamgeneration by fourth-harmonic generation of an all solid state laser, OptticsCommunications,2006,259:820~822
    [17]Q. Liu, X. P. Yan, X. Fu, et al, High power all solid state fourth harmonicgeneration of266nm at the pulse repetition rate of100kHz, Laser Phys. Lett,2009,6(3):203~206
    [18]Hanno. M. K, Frank.H, Günter. H, et al, All-solid-state continuous wave doublyresonant all-intracavity mixer, Opt Lett,1997,22(19):1461~1463
    [19]K. B. Davis, M. O. Mewes, M. R. Andrews et al, Bose-Einstein condensation in agas of sodium atoms. Phys.Rev.Lett,1995,75(22),3969~3973
    [20]V. E. Nadtocheeev, O. E. Nanil, Two-wave emission from a CW solid stateYAG:Nd3+laser, Sov.J.Quantum.Electron,1998,19(4):444~446
    [21]H. Y. Shen, R. R. Zeng, Y. P. Zhou et al, Comparison of simultaneous multiplewavelength lasing in various neodymium host crystals at transition from4F3/2-4I1/2and4F3/2-4I3/2, Appl.Phys.Lett,1990,56(20):1937~1938
    [22]Y.F.Chen, CW dual-wavelength operation of a diode-end-pumped Nd:YVO4laser,Appl Phys B,2000,70(4):475~478
    [23]Y.S.Hong, Oscillation condition of simultaneous multiple wavelength lasing,Chinese Physics Letter,1900,7(4):174~176.
    [24]G.. A. Henderson, A computational model of dual-wavelength solid-state laser, J.Appl. Phys,1990,68(11):5451~5455
    [25]贾富强,卜轶坤,郑权等, LD泵浦腔内和频连续589nm黄光激光器,激光与红外,2004,34(6):439~441,
    [26]张峻诚,王加贤,苏培林等,激光二极管抽运Nd:YVO4和频黄光激光器的理论及实验研究,光学学报,2008,28(22):2365~2369
    [27]卜轶坤,郑权,薛庆华等,全固态和频593.5nm黄光激光器激光反射镜的研制,光电子.激光,2005,16(5):545~549
    [28]鲁远甫,谢仕永,薄勇等,高功率准连续波腔内和频全固态黄光激光器,物理学报,2009,58(2):970~974
    [29]耿爱丛,薄勇,毕勇等, V型腔腔内和频产生3W连续波589nm黄光激光器,物理学报,2006,55(10):5227~5231
    [30]H. Moosmuller, J. D. Vance, Sum-frequency generation of continuous-wavesodium DZ resonace radiation, Opt.Lett,1997,22(15):1135~1137
    [31]R.W. Farley, P. D. Dao, Development of an intracavity-sumed multiplewavelength Nd:YAG laser for a rugged,solid-state sodium lidar system, Appl.Opt,1995,34(21):4269~4273
    [32]Y. F. Chen, S. W. Tsai, S. C. Wang et al, Efficient generation of continuous-waveyellow light by single-pass sum-frequency mixing of a diode-pumped Nd:YVO4dual-wavelength laser with periodically poled lithium niobate,Opt.Lett,2002,27(20):1809~1811
    [33]Y. F. Chen, Y. S. Chen, S. W. Tsai, Diode-pumped Q-switched laser withintracavity sum frequency mixing in perideically poled KTP, Appl. Phys. B,2004,79(2):207~210
    [34] Jiri Janousek, Sandra Johansson, Peter Tidemand Lichtenberg et al, Efficient allsolid-state continuous wave yellow-orange light source, Optics Express,2005,13(4):1188~1192
    [35] V. Velur, E. J. Kibblewhite, R. G. Dekany et al, Implementation of the Chicagosum frequency laser at Palomar laser guide star testbed, SPIE,2004,5490:1033~1040
    [36] C. A. Denman, P. D. H illman, G. T. Moore et al, Realization of a50wattfacility class sodium guide star pump laser, SPIE,2005,5707:46~49
    [37]I. Lee, M. Jalali, N.Vanasse et al,20W and50W guides tar laser system updatefor the KeckI and Gemini south telescopes, SPIE,2008,7015:1~11
    [38]Bo Yong, Geng Aicong, Lu Yuanfu et al, A4.8W M24.6continuous-waveintracavity sum-frequency diode-pumped solid-state yellow laser, Chin. Phys.Lett,2006,23(6):1494~1497
    [39]梁兴波,苑利钢,姜东升等.10.5W准连续波589nm黄光激光器,激光与红外,2008,38(9):876~878
    [40]Xiuyan Chen, Xiu Li, Haolei Zhang et al,589nm yellow laser generation byintra cavity sum frequency mixing in a T-shaped Nd:YAG laser cavity, Chin.Opt.Lett,2009,7(9):815~818
    [41]鲁燕华,张雷,刘晟西等,15.5W全固态腔外和频589nm黄光激光器,中国激光,2011,37(9):2419~2423
    [42] E. O. Ammann. Simultaneous stimulated Raman scattering and optical frequencymixing in lithiumiodate,Appl.Phys. Lett,1979,34(12):838~840
    [43]H M Pask,J A Piper,Efficient all solid state yellow laser source producing1.2Waverage power,Opt.Lett,1999,24(21):1490~1492
    [44]J Simons, H Pask, P Dekker et al, Small-scale all-solid-state frequency doubleincavity Raman laser producing5mW yellow orange output at589nm, Optcommunications,2001,229:305~310
    [45] T.Olnatsu,Y.Ojima,H.M.Pask, et al, efficient1181nm self-stimulateing Ramanoutput from transversely diode-pumped Nd:KGd(WO4)2laser, optics communications,2004,232:327~331
    [46]R. P. Mildren, H. M. Pask, H. Ogilvy et al, Discretely tunble all-solid-state laserin the green yellow and red,Opt. Lett,2005,30(12):1500~1502
    [47]R P Mildren, M Convery, H M Pask et al, High efficiency Raman convertergenerating1.5W of red-orange output in advance solid-state photonics technicaldigest(optical society of America2006)paper2006,MC3.
    [48]P Dekker, H M Pask, J A Piper, All-solid-state704mW continuous wave yellowsource based on an intracavity frequency-doubled crystalline Raman laser, Opt Lett200732(9):1114~1116
    [49] P Dekker, H M. Pask, D J. Spence et al, Raman laser operation in Nd:GdVO4at586.5nm, Optics Express,200715(11):7038~7046
    [50]A.J.Lee, H.M.Pask, P.Dekker et al, High efficiency, multi-Watt CW yellowemission from an intracavity-doubled self-Raman laser using Nd:GdVO4,OpticsExpress,2008,16(26):21958~21963
    [51]Haiyong Zhui, Yanmin Duan,Ge Zhang et al, Yellow-light generation of5.7Wby intracavity doubling self-Raman laser of YVO4/Nd:YVO4composite, Opt Lett,2009,34(18):2763~2765
    [52]Haiyong Zhui, Yanmin Duan,Ge Zhang et al, Efficient second harmonicgeneration of doubleend diffusion-bonded Nd:YVO4self-Raman laser producing7.9W yellow light, Optics Express,200917(24):21544~21550
    [53]Xiaoli Li, Andrew J.Lee, Helen M.Pask, et al. Efficient,miniature,cw yellowsource based on an intracavity frequency-doubled Nd:YVO4self-Raman laser, OptLett,2011,36(8):1428~1430
    [54] A. Harkonen, J. Rautiainen, M. Guina et al, High power frequency doubledGaInNAs semiconductor disk laser emitting at615nm, Optics Express,2007,15(6):3224~3229
    [55] J. Rautiainen, A. Harkonen, VM. Korpijarvi et al,2.7W tunable orange-redGaInNAs semiconductor disk laser Optics Express,2007,15(26):18345~18350
    [56]L. R. Taylor, Yan Feng, D. B. Calia,50W CW visible laser source at589nmobtained via frequency doubling of three coherently combined narrow-band Ramanfibre amplifiers, Opt Express,2010,18(8):8540~8555
    [57] L.B.Sharma,1.52W Frequency doubled fibre-based continuous wave orangelaser radiation at590nm, Rev.Laser Eng,2005,33(2):130~131
    [58]D. Georgiev, V. P. Gapontsev, A. G. Dronov et al, Watts-level frequency doublingof a narrow line linearly polarized Raman fiber laser to589nm, Optics Express,2005,13(18):6772~6776
    [59]王与烨,全固态内腔光学参量振荡及内腔倍频技术的研究:[博士学位论文],天津;天津大学,2008
    [60]A. J. McGrath, Jesper Munch, Gerald Smith et al, Injection-seeded,single-frequency, Q-Switched erbium: glass laser for remote sensing, Applied Optics,1998,37(24):5706~5709
    [61]J. J. Zayhowski, A. L. Wilson, Miniature eye-safe laser system for high-resolutionthree-dimensional lidar, Applied Optics,2007,46(23):5951~5956
    [62]S. Bank, W. Ha, V. Gambin et al,1.5μm GaInNAs(Sb) lasers grown on GaAs byMBE, Journal of Crystal Growth,2003,251(4):367~371
    [63]L. L. Goddard, S. R. Bank, M. A. Wistey et al, Recombination, gain, bandstructure, efficiency, and reliability of1.5-μm GaInNAsSb/GaAs lasers, J. Appl. Phys.,2005,97(8):0831011~08310114
    [64]Jung Ho Song, Kisoo Kim, Young Ahn Leem et al,100mW High-PowerBroadband Superluminescent Diode Using Selective Area Growth at1.5μmWavelength, National Fiber Optic Engineers Conference (NFOEC): San Diego,California,2008, Page JWA44
    [65]J. K. Sahu, Y. Jeong, D.J. Richardson et al, A103W erbium–ytterbium co-dopedlarge-core fiber laser, Optics Communications,2003,227(9):159~163
    [66]D. Y. Shen, J. K. Sahu, W. A. Clarkson, Highly efficient Er, Yb-doped fiber laserwith188W free-running and>100W tunable output power, Optics Express,2005,13(13):4916~4921
    [67]Y F Chen, S W Chen, S W Tsai et al, High-repetition-rate eye-safe opticalparametric oscillator intracavity pumped by a diode-pumped Q-switch Nd:YVO4laser,Appl.Phys.B200376,263-266
    [68]Y F Chen, Efficient1521nm Nd:GdVO4Raman laser, Optics Letter,2004,29(22):2632~2634
    [69]Y F Chen, Compact efficient all solid state eye safe laser with self-frequencyconversion in a Nd:YVO4crystal, Optics Letter,2004,29(21):2172~2174.
    [70]Y.T.Chang, K.W.Su, H.L.Chang et al, Compact efficient Q-switched eye-safelaser at1525nm with a double-end diffusion-bonded Nd:YVO4crystal as aself-Raman medium, Optics Express,2009,17(6):4330~4335
    [71]Scott M. Spuler, Shane D. Mayor, Raman shifter optimized for lidar at a1.5μmwavelength, Applied Optics,2007,46(15):2990~2995
    [72]R. F. Wu, K. S. Lai, H. F. Wong et al, Multiwatt mid-IR output from a Nd:YALO3laser pumped intracavity KTA OPO, Optics Express,2001,8(13):694~698
    [73]W. Zendzian, J. K. Jabczynski, P. Wachulak et al, High-repetition-rate,intracavity-pumped KTP OPO at1572nm, Appl. Phys. B,2005,80(3):329~332
    [74]Walter R. Bosenberg, Alexander Drobshoff, Jason I. Alexander et al,Continuous-wave singly resonant optical parametric oscillator based on periodicallypoled LiNbO3, Optics Letters,1996,21(10):713~715
    [75]F. Ji, B. G. Zhang, E. B. Li et al, A Low-pump-thresold high-repetition-rateintracavity optical parametric generator based on periodically poled lithium niobate,Chin. Phys. Lett.,2006,23(8):2113~2116
    [76]B. Lin, H. S. Lee, C. R. Prasad, Temporal behavior of the laser pulse forintracavity optical parametric oscillator, Opt. Express,2007,15(8):4902~4908
    [77]Markku Vainio, Jari Peltola, Stefan Persijn et al, Singly resonant cw OPO withsimple wavelength tuning, Opt. Express,2008,16(15):11141~11146
    [78] Yuefeng Peng, Weimin Wang, Xingbin Wei et al, High-efficiency mid-infraredoptical parametric oscillator based on PPMgO:CLN, Optics Letters,2009,34(19):2897~2899
    [79]L. D. Lindsay, D. J. M. Stothard, C. F. Rae et al, Continuous-wave,pump-enhanced optical parametric oscillator based on periodically-poled RbTiOAsO4,Optics Express,2003,11(2):134~140
    [80]Y. F. Chen, S. W. Chen, S. W. Tsai et al, Output optimization of ahigh-repetition-rate diode-pumped Q-switched intracavity optical parametricoscillator at1.57μm, Appl. Phys. B,2003,77(5):505~508
    [81]彭跃峰王卫民刘东等,62W高效率PPMgLN光参量振荡红外激光器,中国激光,2010,37(3):613~616
    [82]姚宝权,王月珠,王骐,中红外光参量振荡器发展状况分析,激光技术,2002,16(3):217~220
    [83]陈永甫,红外辐射红外器件与典型应用,北京:电子工业出版社,2004,117~144
    [84]Walter R. Bosenberg, Alexander Drobshoff, Jason I. Alexander et al,Continuous-wave singly resonant optical parametric oscillator based on periodicallypoled LiNbO3, Optics Letters,1996,21(10):713~715
    [85] Walter R. Bosenberg, Alexander Drobshoff, Jason I. Alexander et al,93%pumpdepletion,3.5-W continuous-wave, singly resonant optical parametric oscillator,Optics Letters,1996,21(17):1336~1338
    [86] D. Chen, D. Hinkley, J. Pyo, J. Swenson et al, Single-frequency low-thresholdcontinuous-wave3-mm periodically poled lithium niobate optical parametricoscillator, J. Opt. Soc. Am. B,1998,15(6):1693~1693
    [87] D. J. M. Stothard, M. Ebrahimzadeh, M. H. Dunn, Low-pump-thresholdcontinuous-wave singly resonant optical parametric oscillator, Optics Letters,1998,23(24):1895~1897
    [88]M.M.J.W. van Herpen, S. Li, S.E. Bisson, F.J.M. Harren, Photoacoustic trace gasdetection of ethane using a continuously tunable, continuous-wave optical parametricoscillator based on periodically poled lithium niobate, Appl. Phys. Lett.,2002,81(7):1157~1159
    [89]M.M.J.W. van Herpen, S.E. Bisson, F.J.M. Harren, Continuous-wave operation ofa single-frequency optical parametric oscillator at4–5μm based on periodically poledLiNbO3, Optics Letter.,2003,28(24):2497~2499
    [90]M.M.J.W. van Herpen, S. Li, S.E. Bisson et al, Tuning and stability of acontinuous-wave mid-infrared high-power single resonant optical parametricoscillator, Appl. Phys. B,2002,75(2-3):329~333
    [91]David F W.A brief history of high-power semiconductor lasers. IEEEJ.Sel.Top.Quant.,2000,6(6):1470-1477
    [92]Bibeau C,Bayramian A,Beach R J et al. Mercury and beyond:diode-pumpedsolid-state lasers for inertial fusion energy, C.R.Acad.Sci.Paris,t.1,SérieIV,p.,2000,1(6):745~749
    [93]Hügel H, New solid-state lasers and their application potentials. Opt. Lasers Eng,34(2000)213~229
    [94]Payne S A,Bibeau C,Beach R J,et al, Diode-pumped solid-state lasers for inertialfusion energy, Journal of Fusion Energy,1998,17(3):213~217
    [95]Kawashima T,Kanabe T,Matsui H, et al, Design and performance of adiode-pumped Nd:silica-phosphate glass zig-zag slab laser amplifier for inertial fusionenergy, Japan.J.Appl.Phys.,2001,40(11):6415~6425
    [96]Payne S A,Beach R J,Bibeau C, et al, Diode arrays,crystals,and thermalmanagement for solid-state lasers, IEEE J.Sel.Top.Quant.,1997,3(1):71~81
    [97]周军,楼棋洪,朱健强,采用国产大模场面积双包层光纤的714W连续光纤激光器,光学学报,2006,26(7):1119~1120.
    [98]赵鸿,周寿恒,朱辰,大功率光纤激光器输出功率超过1.2kW,中国激光,2006,33(10):1359.
    [99]Basu S,Kane T J,Byer R L, A proposed1kW average power moving slab Nd:glasslaser, IEEE J.Quantum Elect.,1986,QE-22(10):2052~2057
    [100]Brauch U,Schubert M, Comparison of lamp and diode pumped CW Nd:YAGslab lasers.Optics Communications,1995,117(1-2):116~122
    [101] A A Marwan, V Andreas, M M. Vogel, et al, Multilayer polarizing gratingmirror used for the generation of radial polarization in Yb:YAG thin-disk lasers,Optics Letter,2007,32(22):3272~3274
    [102]屈军,张为俊,高晓明等, YAG复合型相位共轭腔对改善光束模式的研究,光学学报,2004,24(12):1663~1666
    [103]刘朗,秘国江,黄茂全等.高重复频率大能量单纵模激光器,中国激光,2003,30(10):885~889
    [104]W.C.Scott, M.de.Wit, Birefringence compensation and TEM00modeenhancement in a Nd:YAG laser, Appl.Phys.Lett,1971,18(3):3~4
    [105]Q.Liu, N.Kugler, H.Weber et al, A novel approach for compensation ofbirefringence in cylindrical laser rods, Opt Quantum Electron,1996(28):57~69
    [106]M.Ostermeyer,G.Klemz,P.Kubina,et al, Quasi continuous wave birefringencecompensated single and double rod Nd:YAG laser, Appl.Opt,2002(41):7573~7582
    [107]Y.Hirano, Y.Koyata, S.Yamamoto et al,208W TEM00operation of a diodepumped Nd:YAG rod laser, Optics Letter,1999,24(10):679~681
    [108]A. Montmerle, Bonnefois, M. Gilbert, et al, Thermal lensing and sphericalaberration in high power transversally pumped laser rods, Optics Communications,2006(259):223~235
    [109]Monte Ross, YAG laser operation by semiconductor laser pumping, Proceedingsof the IEEE,1968,56(2):196~197
    [110] L.J. Rosenkrantz, GaAs diode-pumped Nd:YAG laser, J. Appl. Phys.,1972,43(11),4603~4605
    [111] Raphael Lavi, Steven Jackel, Yitshak Tzuk et al, Efficient pumping scheme forneodymium-doped materials by direct excitation of the upper lasing level, Appl. Opt.,1999,38(36):7382~7385
    [112]Raphael Lavi, and Steven Jackel, Thermally boosted pumping of neodymiumlasers, Appl. Opt.,2000,39(18):3093~3098
    [113] R. Lavi, S. Jackel, A. Tal, E. Lebiush et al,885nm high-power diodesend-pumped Nd:YAG laser, Opt. Commun.,2001,195:427~430
    [114]V. Lupei, G.. Aka, D. Vivien, Quasi-three-level946nm CW laser emission ofNd:YAG under direct pumping at885nm into the emitting level, OpticsCommunications,2002,204:399~405
    [115]V. Lupei, N. Pavel, T. Taira, Highly efficient continuous-wave946-nm Nd:YAGlaser emission under direct885-nm pumping, Appl. Phys. Lett.,2002,81(15):2677~2680
    [116]V. Lupei, N. Pavel, T. Taira, Basic enhancement of the overall opticalefficiency of intracavity frequency-doubling devices for the1μm continuous-waveNd:Y3Al5O12laser emission, Appl. Phys. Lett.,2003,83(18):3653~3655
    [117] S. Golding, R. Lavi, A. Tal, et al, Characterization of radiative and nonradiativeprocesses in Nd:YAG lasers by comparing direct and band pumping, IEEE J.Quantum Electron.,2004,40(4):384~389
    [118] N. Pavel, V. Lupei, and T. Taira,1.34-μm efficient laser emission inhighly-doped Nd:YAG under885-nm diode pumping, Opt. Express,2005,13(20):7948~7953
    [119] N. Pavel, V. Lupei, J. Saikawa et al, Neodymium concentration dependence of0.94-,1.06-and1.34-μm laser emission and of heating effects under809-and885-nmdiode laser pumping of Nd:YAG, Appl. Phys. B,2006,82(4):599~605
    [120] Y. Sato, T. Taira, N. Pavel et al, Laser operation with near quantum-defect slopeefficiency in Nd:YVO4under direct pumping into the emitting level, Appl. Phys. Lett.,2003,82(6):844~846
    [121] J. Saikawa, Y. Sato, T. Taira et al,879-nm direct-pumped Nd:GdVO4lasers:1.3-μm laser emission and heat generation characteristics, OSA Trends in Optics andPhotonics,2005,98:183~187
    [122] Louis McDonagh, Richard Wallenstein, High-efficiency60W TEM00Nd:YVO4oscillator pumped at888nm, Opt. Lett.,2006,31(22):3297~3299
    [123]Louis McDonagh, Richard Wallenstein, Low-noise62W CWintracavity-doubled TEM00Nd:YVO4green laser pumped at888nm, Opt. Lett.,2007,32(7):802~804
    [124] X. Ding, H. Zhang, R. Wang et al, High-efficiency direct-pumped Nd:YVO4laser operating at1.34μm, Optics Express,2008,16(15):11247~11252
    [125]Xin Ding, Rui Wang, Heng Zhang, Xuan-Yi Yu, Wu-Qi Wen, Peng Wang,Jian-Quan Yao, High-efficiency Nd:YVO4laser emission under direct pumping at880nm, Optics Communications,2009,282:981~984
    [126]D. Sangla, M. Castaing, F. Balembois, et al, Highly efficient Nd:YVO4laser bydirect in-band diode pumping at914nm, Optics Letter,2009,34(14):2159~2161
    [127]X Ding,C P Shi, S J Yin et al, Effects of crystal parameters on power andefficiency of Nd:YVO4laser in-band pumped by914nm laser, Journal of Physics D2011,44:1~5
    [128]Xin Ding, SuJia Yin, Chun Peng Shi et al, High efficiency1342nm Nd:YVO4laser in-band pumped at914nm., Optics Express,2011,19(15):14315~14320
    [1] W.克希耐尔著,孙文,江泽文,程国祥译,固体激光工程(第一版),科学出版社,356,2002
    [2] M. E. Innoeenzi,H.T. Yura,C. L. Fincher et al, Thermal modeling of continuouswave end-pumped solid-state lasers, Appl. phys. Lett,1990,56(19):1831-1833
    [3] Z. Ma, D.J.Li, J.C.Gao,et al, Thermal effeets of the diode end pumped Nd:YVO4slab,Opties Communications,2007,275(1):179~185
    [4] W.A.Clarkso, Thermal effeets and their mitigation in end pumped solid state lasers,J. phys D:Appl.phys,2001,34(16):2381-2395
    [5]Z.Zhou,T Li,X.M.Li,H.Z.Yang, Investigation of Nd:YVO4/YVO4composite crystaland its laser performance pumped by a fiber coupled diode laser. OpticsCommunications,2007,274(1):176-181
    [6]P.Shi,W.Chen,L,Li et al, Semianalytical thermal analysis on a Nd:YVO4crystal,Applied Optics,2007,46(19)4046~4051
    [7]P. A. Belanger, Beam propagation and the ABCD ray matrices, Opt.Lett,1991,16(4)196~198
    [8]吕百达,激光光学:光束描述、传输与光腔技术物理,北京:高等教育出版社,2003
    [9]张光寅,郭曙光,光学谐振腔的图解分析与设计方法,北京:国防工业出版社,2003
    [10]张光寅,光学谐振腔的图解设计方法(三),激光,1977,4(5):41~46
    [11]张光寅,基模热稳腔的简单设计计算方法,激光,1981,8(8):5~11
    [12]Feng Song, Xin Zhang, Yanxiong Wu et al, Simplified transformation circletheory in analyzing a laser resonator, Appl. Opt.,2007,46(13):2492~2497
    [13]张光寅,热不敏感腔的解与特征,物理学报,1991,40(3):266~270
    [14]G. Y. Zhang, A solution of the optimum dynamic themo-stable resonator, J.Modern Optics,1990,37(12):1903~1906
    [15]Song Feng, Zhang Guang-Yin, Xu Jing-Jun et al, Analysis of laser diode pumpedsolid-state laser resonator by the transform circle approach, Chin. Phys. Lett.,2000,17(3):203~205
    [16]周炳琨,高以智,激光原理,北京:国防工业出版社
    [17]沈柯,激光原理教程,北京:北京理工大学出版社
    [18]V.Magni, Resonators for solid-state lasers with large volume fundamental modesand high alignment stability, Applied Optics,1986,25(1):107~117
    [19]J.R.Park, J.Y.Lee, H.S.Kim et al, Characteristics of a birefringence compensationscheme in Nd:YAG rods using a polarization rotator and an imaging optics, Opt.Rev,1997,4(1B):170~175
    [20] Sungman Lee, Mijeong Yun, Byung Heon Cha et al, Stability analysis of adiode-pumped,thermal birefringence-compensated two-rod Nd:YAG laser with770Woutput power, Appl.Opt,2002,41(27):5625~5631
    [21]Xinglong Wang,Guojiang Hu,Yu Li,et al, Numerical analysis of beam parametersand stability regions in a folded or ring cavity, J.Opt.Soc.Am1994,11(8)2265~2270
    [22]H.W.Kongelnik,E.P.Ippen,A.Dienes, et al Astigmatically compensated cavities forCW dye laser, IEEE J.Quantum Electronics,1972,8(3):373~379
    [23]T. Y. Fan, R. L, Byer, Model and CW operation of a quasi-three-level946nmNd:YAG laser, IEEE Journal of Quantum Electronics,1987,23(5):605~612
    [24]W. P. Risk, Modeling of longitudinally pumped solid-state lasers exhibitingreabsorption losses. J. Opt. soc. Am. B,1988,5(7):1412~1423
    [25]刘颂豪,赫光生,强光光学及其应用,广州:广东科技出版社,1995
    [26]姚建铨,徐德刚,全固态激光及非线性光学频率变换技术,北京:科学出版社
    [27]W.克希耐尔,固体激光工程,北京:科学出版社
    [28] R. A. Fields, M. Birnbaum, C. L. Fincher et al, Highly efficient Nd:YVO4diode-laser end-pumped laser, Appl. Phys. Lett,1987,51(23),1885~1886
    [29]A. Brignon, G. Feugnet, JP Huignard et al, Compact Nd:YAG and Nd:YVO4amplifiers end-pumped by a high-brightness stacked array, IEEE J QE,1998,34(3):577~585
    [30] Chen C T,Xu Z,Deng D et al,The vacuum Ultraviolet phase-matchingcharacteristics of nolinear optical K2Be2BO3F2crystal, Appl.Phys.Lett.,1996,68(21):2930~2932
    [31] Shujie Lin, Zhaoyang Sun, Bochang Wu, et al, The nonlinear opticalcharacteristics of a LiB3O5crystal, J.Appl.Phys,1990,67(2),634~639
    [32]姚建铨,非线性光学频率变换及激光调谐技术,北京:科学出版社,1995,1~108
    [33] I.Shoji, T. Kondo, A.Kitamoto, Absolute scale of second-order nonlinear-opticalcoefficients, Journal of Optics Society of America B,1997,14(9):2268~2294
    [34] L. E. Myers, R. C. Eckardt, M. M. Fejer, Multigrating quasi-phase-matchedoptical parametric oscillator in periodically poled LiNbO3, Optics Letters,1996,23(8):591~593
    [35] P. Loza-Alvarez, C. T. A. Brown, D. T. Reid, High-repetition-rate ultrashort-pulseoptical parametric oscillator continuously tunable from2.8to6.8μm,Optics Letters,1999,24(21):1523~1525
    [36] L. Lefort, K. Puech, G. W. Ross, Optical parametric oscillation out to6.3μm inperiodically poled lithium niobate under strong idler absorption, Applied PhysicsLetters,1998,73(12):1610~1612
    [37]L.Lefort,K.Puech,S.D.Butterworth,Efficient, low-threshold synchronously pump-ed parametric oscillation in periodically-poled lithium niobate over the1.3μm to5.3μm range,Optics Communications,1998,152:55~58
    [38]G. Hansson, D.D. Smith, Optical parametric generation in2μm wavelengthpumped periodically poled LiNbO3, Optics Letters,2000,25(24):1783~1785
    [39]M. A. Watson, M. V. O’Connor, P. S. Lloyd, Extended operation of synchronouslypumped optical parametric oscillators to longer idler wavelengths,2002,27(23):2106~2108
    [40] Y. Hirano, S. Yamamoto, T. Tajime, LiNbO3OPO reaches60.2W of output, inPostdeadline papers on Conference on Laser and Electro-Optics(CLEO),2000,CPD-7
    [41]Y. Hirano, S. Yamamoto, H. Taniguchi, High efficient and high power2μmgeneration with PPMgLN OPO, Conference on Laser and Electro-Optics(CLEO),2001, CFH2:579~580
    [42]H.Ishizukui,T.Taira, High-energy quasi-phase-matched optical parametricoscillation in a periodically poled MgO:LiNbO3device with a5mm×5mm aperture,Optics Letters,2005,30(21):2918~2920
    [43] L.L. Pendergrass, Ferroelectric microdomain reversal at room temperature inlithium niobate, Journal of Applied Physics,1987,62(1):231~236
    [44] K. Nassau, H. J. Levinstein, Ferroelectric behavior of lithium niobate, AppliedPhysics Letters,1965,7(3):69~70
    [45]梁国忠,梁作亮.激光电源电路[M].北京:兵器工业出版社,1995
    [1] Alce V H, Charles X W, Gary Y W. Advances in high power diode-pumpedultraviolet lasers [C]//Proc of SPIE.2004,5332:120~133
    [2] Kitano H, Matsui T, Sato K et al. Efficient355nm generation in CsB3O5crystal,Optics Letter,2003,28(4):263~265
    [3]Wu Yicheng, Chang Feng, Fu Peizhen, et al. High-average-power third harmonicgeneration at355nm with CsB3O5crystal,Chin.Phys. Lett,2005,22(6):1426~1428
    [4]Kojima T, Konno S, Fujikawa S,et al,20W ultraviolet beam generation by fourthharmonic generation of an all-solid-state laser, Optics Letter,2000,25(1):58~60
    [5]Nishioka M, Fukumoto S, Kawamura F et al,Improvement of laser induceddamage tolerance in CsLiB6O10for high-power UV laser source,Proceedings of theConference on Lasers and Electro-optics,2003,2211~2214.
    [6]何京良,卢兴强,贾玉磊,等. BBO四倍频全固态Nd:YVO4紫外激光器,物理学报,2000,49(10):2106~2108
    [7]Lu Junhun,Wang Guiling,Xu Zuyan, et al,Efficient266nm ultraviolet beamgeneration in K2Al2B2O7crystal,Chin Phys Lett,2002,19(5):680~681.
    [8] Wang Guiling,Geng Aicong,Bo Yong et al,28.4W266nm ultraviolet beamgeneration by fourth-harmonic generation of an all-solid-state laser, OpticsCommunication,2006,25(9):820~822.
    [9] Innocenzi M E, Yura H T, Fincher C L et al, Thermal modeling ofcontinous-wave end-pumped solid-state lasers. Appl Phys Lett,1990,56(19):1831~1933
    [10] Chen Y F, Huang T M, Kao C F et al,Influence of thermal effect on outputpower optimization in fiber-coupled laser-diode end-pumped lasers. IEEE J. QuantumElectron,1997,3(1):29~34.
    [11]Dafydd T,Mark K, Norman H et al,12W of UV at355nm,Pro of SPIE.2002(4426):493~494
    [12]Ya X, Liu Q, Gong M et al, High-repetition-rate high-beam-quality43Wultraviolet laser with extra-cavity third harmonic generation,Applied Physics B,2009,95(2):323~328
    [13]Thomas F. Johnston, Beam propagation M2measurementmade as easy as it gets:the four-cuts method, Applied Optics,1998,37(21):4840~4850
    [14]T.A.Driseoll,H.J.Hoffman,R.E.Stone et al, Efficient second harmonic generationin KTP crystals, Journal of Optics Society of America B,1986,3(5):683~886
    [15]G M Loiacon, Laser damage formation in KTiOPO and KTiOPO crystals greytracks, J Appl.Phys.1991,72(7):2705~2712
    [16]B.Boulange, Optical studies of laser induced gray tracking in KTP, IEEE JQuantum Electon,1999,35(3):281~286
    [17] M.N.Satiyanarayan, Evidence for the Presence of remnant strain in grey trackedKTiOPO4, App1.Phys.Lett.,1995,67(19):2810~2812
    [18] Zondy J J, Abed M, Khodja S. Twin-crystal walk-off compensated typeⅡsecond harmonic generation: single-pass and cavity enhanced experiment in KTP,Journal of Optics Society of America B,1994,11(12):2368~2370.
    [19]李斌,姚建铨,丁欣等,LD侧面泵浦高功率266nm紫外激光器,强激光与粒子束,2011,23(8):2065~2068第四章
    [1]贾富强,卜轶坤,郑权等,LD泵浦腔内和频连续589nm黄光激光器,激光与红外,2004,34(6):439-441
    [2]卜轶坤,郑权,薛庆华等,LD泵浦Nd:YVO4/LBO腔内和频连续黄光激光器,光子学报,2005,34(6):801~804
    [3]付喜宏,檀慧明,李义民等,全固态593nm复合腔连续波和频激光器,中国激光,2007,34(8):1043~1047.
    [4]吕彦飞,檀慧明,缪同群,等,全固态593nm复合腔连续波和频激光器,中国激光,2005,32(6):729~733
    [1] D. H. Jundt, Temperature-dependent Sellmeier equation for the index of refraction,ne,in congruent lithium niobate, Optics Letters,1997,22(20):1553~1555
    [2] M. V. Hobden, J. Warner, The temperature dependence of the refractive index ofpure lithium niobate, Journal of Physics Letters,1966,22(3):243~244
    [1]D. Sangla, M. Castaing, F. Balembois et al, Highly efficient Nd:YVO4laser bydirect in-band diode pumping at914nm, Optics. Letter.2009,34(14):2159~2161
    [2]R. Fluck, B. Braun, E. Gini, H. Melchior et al, Passively Q-switched1.34-μmNd:YVO4microchip laser with semiconductor saturable-absorber mirrors, Optics.Letter.1997,22(13),991~993
    [3] X. Délen, F. Balembois, P. Georges, Temperature dependence of the emissioncross section of Nd:YVO4around1064nm and consequences on laser operation,Journal of Optics Society of America B,2011,28(5),972~976
    [4]G. Turri, H. P. Jenssen, F. Cornacchia et al, Temperature-dependent stimulatedemission cross section in Nd3+:YVO4crystals, Journal of Optics Society of America B,2009,26(11),2084~2088
    [5] Y. F. Chen, C. C. Liao, Y. P. Lan et al, Determination of the Auger upconversionrate in fiber-coupled diode end-pumped Nd:YAG and Nd:YVO4crystals, Appl. Phys.B,2000,70(4):487~490
    [6]X. Délen, F. Balembois, O. Musset et al, Characteristics of laser operation at1064nm in Nd:YVO4under diode pumping at808and914nm Journal of Optics Societyof America B,2011,28(1),52~57
    [7]S. Guy, C. L. Bonner, D. P. Shepherd et al, High-inversion densities in Nd:YAGupconversion and bleaching, IEEE J. Quantum Electron,1998,34(5),900~909
    [8] X. Ding, H. Zhang, R. Wang et al, High efficiency direct-pumped Nd:YVO4laser operating at1.34μm, Optics Express,2008,16(15),11247~11252
    [9]赫光生,刘颂豪,强光光学,北京,科学出版社
    [10]Y. F. Chen, High-power diode-pumped actively Q-switched Nd:YVO4self-Ramanlaser: influence of dopant concentration, Optics Letter,2004,29(16):1915~1917

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700