用户名: 密码: 验证码:
二极管非均匀泵浦板条激光器研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本论文研究半导体二极管非均匀泵浦的板条激光器。
     论文首先针对固体激光器长期以来遵循的均匀泵浦设计理念存在的复杂度高、成本高、预期目标难以实现等问题,总结出全新的非均匀泵浦的学术思想,即不刻意追求泵浦分布,而是关注激光器的输出功率、工作效率和光束质量。接着,论文从非均匀泵浦的核心物理问题入手,开展了固体增益介质的吸收截面随温度变化的研究并给出了测量结果,揭示了非均匀泵浦板条激光器中温度场、吸收系数分布和吸收泵浦功率分布之间相互耦合的关系,给出了高功率固体激光器的循环迭代分析方法,纠正了传统理论引入的较大误差。在理论工作的基础上,围绕非均匀泵浦设计理念的可行性进行了高平均功率端泵、高平均功率侧泵和高光束质量端泵板条激光器三个专题的研究。
     论文先开展了高平均功率非均匀端泵之字形板条激光器的研究。连续振荡器实验实现了402W的多模输出,光光效率为34.6%;脉冲放大器实验采用新型的双介质MOPA结构,获得了同时具有高脉冲重复频率(500kHz)和高脉冲能量(1mJ)的激光输出,这是已报道的脉冲重复频率高于200kHz的激光器所获得的最高单脉冲能量。研究表明非均匀泵浦板条激光器能够实现高平均功率的激光输出,具备高功率拓展的能力。
     针对端泵板条激光器泵浦密度低、泵浦窗口小的缺陷,论文接着开展了高平均功率非均匀侧泵板条激光器的研究,提出了单侧面泵浦板条放大链和分布式泵浦板条激光器两种新型结构,进行了详细的参数设计并重点研究了激光器的输出性能,预计20级单面泵浦放大链和分布式泵浦五单元振荡器能够分别实现万瓦和千瓦量级输出。研究表明两种新方案均具备可行性和实际应用价值。
     论文最后开展了高光束质量非均匀端泵板条激光器的研究。基于线状端泵准共心腔板条激光器的构型,解决了该类激光器输出光束存在的像散问题,实现了其基模输出在光腰位置、光束质量数值和光腰尺寸三个方面的对称化,并获得了12.2W高对称性的30kHz调Q脉冲基模输出。
This thesis focuses on slab lasers nonuniformly pumped by laser diodes.
     First the thesis presents a new design principle of slab lasers as the designcriteria with nonuniform pumping profile, that is, the laser design focuses on outputpower, efficiency and beam quality, instead of going after good pumping uniformitywithin the gain medium, since the traditional one pursues the uniform pumpingdistribution, which, however, has not been realized in most cases but increases thecomplexity and cost. To begin with the core physical issue of the nonuniformpumping, the thesis investigates the variation of absorption cross section of the gainmedium as temperature changes and reports the experimental measurement results,demonstrating the coupled relationship among the temperature distribution,absorption coefficient distribution and absorbed pump power distribution within thenonuniformly pumped slab lasers. Based on the coupled relationship, the thesisdevelops an iterative cycle method for the analysis on high power solid-state lasersand corrects the errors from the traditional theoretical models. With the revised model,research on nonuniformly pumped slab lasers in terms of high average powerend-pumped slab, high average power side-pumped slab, and high beam qualityend-pumped slab are individually carried out to explore the feasibility of the designprinciple with nonuniform pumping profile.
     High average power end-pumped zigzag slab laser with nonuniform pumpingprofile is firstly studied. Experiment on continous-wave slab oscillator generatesmultimode laser output of402W, with the optical-optical efficiency of34.6%, whilethe amplifier experiment, by employing a novel MOPA configuration with thecombination of two different gain mediums, realizes pulsed output with both highpulse repetition rate (500kHz) and high pulse enegy (1mJ). It should be noted thatthe pulse energy of1mJ is the highest value ever reported, obtained in lasers withpulse repetition rate higher than200kHz. The research indicates that the slab laserwith nonuniform pumping profile is capable of power scaling and obtaining the output with high average power.
     High average power side-pumped slab laser with nonuniform pumping profile isthen studied, since the end-pumped slab laser has the weak point of low pumpintensity per unit volume and small area of pump window. Two novel configurationsas the single-side-pumped slab laser amplifier chain and the distributed-side-pumpedslab laser are presented, while the parameter design as well as the feasibility of powerscaling is discussed in detail, predicting a10kW of output power from asingle-side-pumped chain that contains20slabs, and a1kW of output power from adistributed-side-pumped slab laser with5slab units. The research shows that bothnovel designs indeed have the practicability and application value.
     In the end the fundamental-mode nonuniformly pumped slab laser isinvestigated. With theroretical optimization and experiment, the TEM00laser outputfrom the quasi-concentric laser resonator with line-shaped end-pumping profile, iscorrected for astigmatism, and symmetrized in horizontal and vertical directions interms of beam quality, waist radius and waist position. In addition, a12.2W pulsedTEM00output is obtained at the repetition rate of30kHz.
引文
[1]周炳琨,高以智,陈倜嵘,等.激光原理.北京:国防工业出版社,2004.
    [2] T. H. Maiman. Stimulated Optical Radiation in Ruby. Nature,1960,187:493-494.
    [3]曹三松.高功率半导体激光器评述.激光技术.2000,24(4):203-207.
    [4] O. Svelto. Principles of lasers.4th ed, New York: Plenum Press,1998.
    [5] Y. M. Noor, S. C. Tam, L. E. N. Lim, et al. A review of the Nd:YAG laser marking ofplastic and cermic IC packages. Journal of Materials Processing Technology1994,42(1):95-133.
    [6] G. Hennig, K.-H. Selbmann, A. Brockelt. Laser Engraving in Gravure Industry. inWorkshop on Laser Applications in Europe(SPIE, Dresden, Germany,2006),61570.
    [7] A. S. Holmes, J. E. A. Pedder, K. L. Boehlen. Advanced laser micromachining processesfor MEMS and optical applications. in Conference on High-Power Laser Ablation VI, C.R. Phipps, ed.(SPIE, Taos, NM,2006), E2611-E2611.
    [8]袁启明.激光技术在医学领域的应用与发展.现代医学仪器与应用2007,19(5):26-32.
    [9]王若新.激光技术在医学域领中的最新应用.上海生物医学工程2005,26(2):114-115.
    [10]童忠诚.激光角度欺骗干扰效能分析.航天电子对抗2003,19(5):43-45.
    [11]魏光辉,杨培根.激光技术在兵器工业中的应用.北京:兵器工业出版社,1995.
    [12] Keming Du, Nianle Wu, Jiandong Xu, et al. Partially end-pumped Nd:YAG slab laserwith a hybrid resonator. Opt Lett,1998,23(5):370-372.
    [13] Peng Shi, Daijun Li, Hengli Zhang, et al. An110W Nd:YVO4slab laser with high beamquality output. Opt Commun,2004,229:349-354.
    [14] Peng Zhu, Daijun Li, Peixin Hu, et al. High efficiency165W near-diffraction-limitedNd:YVO4slab oscillator pumped at880nm. Opt Lett,2008,33(17):1930-1932.
    [15] Keming Du, Daijun Li, Hengli Zhang, et al. Electro-optically Q-switched Nd:YVO4slablaser with a high repetition rate and a short pulse width. Opt Lett,2003,28(2):87-89.
    [16] Daijun Li, Zhe Ma, R. Haas, et al. Diode-end-pumped double Nd:YLF slab laser withhigh energy, short pulse width, and diffraction-limited quality. Opt Lett,2008,33(15):1708-1710.
    [17] Hengli Zhang, Daijun Li, Peng Shi, et al. Efficient, high power, Q-switched Nd:YLF slablaser end-pumped by diode stack. Opt Commun,2005,250:157-162.
    [18] G. D. Goodno, S. Palese, J. Harkenrider, et al. Yb:YAG power oscillator with highbrightness and linear polarization. Opt Lett,2001,26(21):1672-1674.
    [19] G. D. Goodno, C. P. Asman, J. Anderegg, et al. Brightness-scaling potential of activelyphase-locked solid-state laser arrays. IEEE J Quantum Electron,2007,13(3):460-472.
    [20] S. J. McNaught, H. Komine, B. Weiss, et al.100kW coherently combined slab MOPAs.CLEO,2009.
    [21] G. D. Goodno, H. Komine, S. J. McNaught, et al. Coherent combination of high-power,zigzag slab lasers. Opt Lett,2006,31(9):1247-1249.
    [22] S. McNaught, C. Asman, A. J ankevics, et al.100-kW coherently combined Nd:YAGMOPA laser array, OSA Technical Digest (CD),2009, paper FThD2.
    [23] J. I. Mackenzie, W. A. Clarkson. Circular output from a high power Nd:YLF slab laser.Proc. of SPIE.2008, Vol.6871,68710P.
    [24] Y. Kato, M. Terada, H. Kiriyama, et al. Laser-diode pumped eight-pass100-W classNd:YAG zig-zag slab laser amplifier. in Conference on Advanced High-Power Lasers, M.Osinski, H. T. Powell, and K. Toyoda, eds.(SPIE, Osaka, Japan,2000), pp.405-413.
    [25] J. P. Machan, W. H. Long, Jr., J. Zamel, et al.5.4kW diode-pumped,2.4xdiffraction-limited Nd:YAG laser for material processing. in Advanced Solid-State Lasers,M. Fermann and L. Marshall, eds., Vol.68of Trends in Optics and Photonics Series(Optical Society of America,2002), paper PD1.
    [26] A. Minassian, B. Thompson, M. J. Damzen et al. Ultrahigh-efficiency TEM00diode-side-pumped Nd:YVO4laser. Appl Phys B,2003,76:341-343.
    [27] Xingpeng Yan, Lei Huang, Qiang Liu et al.2MHz AO Q-switched TEM00grazingincidence laser with3at.%neodymium doped Nd:YVO4. IEEE J Quantum Electron,2008,44(12):1164-1170.
    [28] D. Saunder, A. Minassian, M. J. Damzen. High efficiency laser operation of2a.t.%doped crystalline Nd:YAG in a bounce geometry. Opt Express,2006,14(3):1079-1085.
    [29] T. Omatsu, T. Isogami, A. Minassian et al.>100kHz Q-switched operation in transverslydiode-pumped ceramic Nd3+:YAG laser in bounce geometry. Opt Commun,2005,249:531-537.
    [30] T. S. Rutherford, W. M. Tulloch, E. K. Gustafson, et al. Edge-pumped quasi-three-levelslab lasers: Design and power scaling. IEEE J Quantum Electron,2000,36(2):205-219.
    [31] T. S. Rutherford, W. M. Tulloch, S. Sinha, et al. Yb:YAG and Nd:YAG edge-pumpedslab lasers. Opt Lett,2001,26(13):986-988.
    [32] Xiaojin Cheng, Zhimin Wang, Fan Chen, et al. Edge-pumped passively Q-switched thinNd:YAG slab lasers. Chin Opt Lett,2008,6(5):364-365.
    [33]巩马理,李晨,柳强,等.一种用于板条的角抽运方法及其固体激光增益模块:中国,02129485.2[P].2002-08-23.
    [34]李晨.准三能级固体激光器的角泵浦方法及热特性研究[博士学位论文].北京:清华大学精仪系,2004.
    [35] Qiang Liu, Mali Gong, Fuyuan Lu, et al.520-W continuous-wave diode corner-pumpedcomposite Yb:YAG slab laser. Opt Lett,2005,30(7):726-728.
    [36] Song Gao, Huan Liu, Dongsheng Wang, et al. LD bar corner-pumped TEM00CWcomposite Nd:YAG laser. Opt. Express,2009,17(24):21837-21842.
    [37] H. Liu, M. Gong, X. Wushouer et al. Compact corner-pumped Nd:YAG/YAG compositeslab1319nm/1338nm laser. Laser Phys Lett,2010,7(2)124-129.
    [38] H. Liu, M. Gong. Compact corner-pumped Nd:YAG/YAG composite slab laser. OptCommun,2010,283:1062-1066.
    [39] A. E. Siegman. Lasers. New York: McGraw-Hill,1964.
    [40] T. Y. Fan. Heat generation in Nd:YAG and Yb:YAG. IEEE J Quantum Electron,1993,29(6):1457-1459.
    [41] J. L. Blows, T. Omatsu, J. Dawes, et al. Heat generation in Nd:YVO4with and withoutlaser action. IEEE Photon Tech Lett,1998,10(12):1727-1729.
    [42] H. G. Danielmeyer, M. Blatte, P. Balmer. Fluorescence quenching in Nd:YAG. ApplPhys,1973,1(5):269-274.
    [43] I. O. Musgrave, W. A. Clarkson, D. C. Hanna, et al. Detailed study of thermal lensing inNd:YVO4under intense diode end-pumping. in Conference on Lasers and Electro-OpticsEurope-Technical Digest, pp.171-172(Baltimore, MD,2001).
    [44] W. Koechner. Thermal lensing in a Nd:YAG laser rod. Appl Opt,1970,9(11):2548-2553.
    [45] M. P. Macdonald, T. Graf, J. E. Balmer, et al. Reducing thermal lensing in diode-pumpedlaser rods. Opt Commun,2000,178(4-6):383-393.
    [46] Y. Chen, B. Chen, M. K. Patel, et al. Calculation of thermal-graident-induced stressbirefringence in slab lasers—I. IEEE J Quantum Electron,2004,40(7):909-916.
    [47] Y. Chen, B. Chen, M. Bass. Calculation of three-dimensional thermal-gradient-inducedstress birefringence in slab lasers. Appl Phys B,2005,81:75-82.
    [48] J. Alda, J. Alonso, E. Bernabeu, et al. Characterization of aberrated laser beams. J OptSoc Am A,1997,14(10):2737-2747.
    [49] W. M. Tulloch, T. S. Rutherford, E. K. Gustafson, et al. A cw high-power,conduction-cooled, edge-pumped slab laser. Proc. of SPIE,1999,3613.
    [50] C. Stewen, K. Contag, M. Larionov, et al. A1-kW CW thin disc laser. IEEE J Sel TopicsQuantum Electron,2000,6(4):650-657.
    [51] J. Vetrovec, A. Koumvakalis, R. Shah, et al. Development of solid-state disk laser forhigh-average power. Proc. of SPIE,2003,4968:54-64.
    [52] A. Giesen, Jochen Speiser. Fifteen years of work on thin-disk lasers: results and scalinglaws. IEEE J Sel Topics Quantum Electron,2007,13(3):598-609.
    [53] M. Sato, S. Naito, N. Iehisa, et al. Development of high-power slab-type laser.Proceedings of the4th symposium on Advanced Photon Processing and MeasurementTechnologies,2000:42-43.
    [54] A. Faulstich, H. J. Baker, D. R. Hall. Face pumping of thin, solid-state slab lasers withlaser diodes. Opt Lett,1996,21(8):594-596.
    [55] J. R. Lee, H. J. Baker. G. J. Friel, et al. High-average-power Nd:YAG planar waveguidelaser that is face pumped by10laser diode bars. Opt Lett,2002,27(7):524-526.
    [56] T. Dascalu, N. Pavel, T. Taira.90W continuous-wave diode edge-pumped microchipcomposite Yb:Y3Al5O2laser. App Phys Lett,2003,83(20):4086-4088.
    [57] T. Dascalu, N. Pavel, T. Taira. Diode radial pumped composite microchip Yb:YAG laser:output performances and thermal effects. Proc. of SPIE,2004,5581:128-134.
    [58] C. Orth, R. Beach, C. Bibeau, et al. Design modeling of the100-J diode-pumpedsolid-state laser for Project Mercury. Proc. of SPIE,1998,3265:114-129.
    [59] D. Kracht, R. Wilhelm, M. Frede.407W end-pumped multi-segmented Nd:YAG laser.Opt Express,2005,13(25):10140-10144.
    [60] R. Wilhelm, D. Freiburg, M. Frede, et al. End-pumped Nd:YAG laser with a longitudinalhyperbolic dopant concentration profile. Opt Express,2008,16(24):20106-20116.
    [61] B. Chen, Y. Chen, M. Bass. Edge-and end-pumped slab lasers with both efficient anduniform pumping. IEEE J Quantum Electron,2006,42(5):483-489.
    [62] J. M. Eggleston, T. J. Kane, K. Kuhn, et al. The slab geometry laser—part I: theory. IEEEJ Quantum Electron.1984, QE-20(3):289-301.
    [63] T. J. Kane, J. M. Eggleston, R. L. Byer, et al. The slab geometry laser—part II: thermaleffects in a finite slab. IEEE J Quantum Electron.1985, QE-21(8):1195-1210.
    [64] R. Lausten, P. Balling. Thermal lensing in pulsed laser amplifiers: an analytical model. JOpt Soc Am B,2003,20(7):1479-1485.
    [65] D. C. Brown. Ultrahigh-average-power diode-pumped Nd:YAG and Yb:YAG lasers.IEEE J Quantum Electron,1997,33(5):861-873.
    [66] Y. F. Chen, Y. P. Lan, H. L. Chang. Analytical model for design criteria of passivelyQ-switched lasers. IEEE J Quantum Electron,2001,37(3):462-468.
    [67] J. A. Aust, K. J. Malone, D. L. Veasey, et al. Passively Q-switched Nd-doped waveguidelaser. Opt Lett,1994,19(22):1849-1851.
    [68] Z. Ma, J. Gao, D. Li, et al. Thermal stress effects of the diode-end-pumped Nd:YLF slab.Opt Commun,2008,281:3522-3526.
    [69] Y. F. Chen, T. M. Huang, C. F. Kao, et al. Optimization in scaling fiber-coupledlaser-diode end-pumped lasers to higher power: influence of thermal effect. IEEE JQuantum Electron,1997,33(8):1424-1429.
    [70] S. Bjurshagen, R. Koch. Modeling of energy-transfer upconversion and thermal effects inend-pumped quasi-three-level lasers. Appl Opt,2004,43(24):4753-4767.
    [71] B. Chen, J. Dong, M. Patel, et al. Modeling of high power solid-state slab lasers. Proc. ofSPIE,2003,4968:1–10.
    [72]孔祥谦.有限单元在传热学中的应用.第2版,北京:科学出版社,1986.
    [73] G. E. Forsythe, W. R.Wasow.偏微分方程的有限差分方法.胡祖炽译,上海:科学技术出版社,1964.
    [74] D. R. Croft.传热的有限差分方程计算.张风禄译,北京:冶金工业出版社,1982.
    [75]赵镇南.传热学.北京:高等教育出版社,2002.
    [76] S. V. Patankar.传热和流体流动的数值方法.合肥:安徽科学技术出版社,1984.
    [77] R. J. Beach. CW theory of quasi-three level end-pumped laser oscillators. Opt Commun,1996,123:385–393.
    [78] L. M. Frantz, J. S. Nodvik. Theory of pulse propagation in a laser amplifier. J Appl Phys,1963,34:2346-2349.
    [79] J. Eggleston, L. M. Frantz, and H. Injeyan. Derivation of the Frantz-Nodvik equation forzig-zag optical path, slab geometry laser amplifier. IEEE J Quantum Electron,1989,25:1855-1862.
    [80] A. K. Sridharan, S. Saraf, and S. Sinha, et al. Zigzag slabs for solid-state laser amplifiers:batch fabrication and parasitic oscillation suppression. Appl Opt,2006,45:3340-3351.
    [81] W. Koechner. Solid-state laser engineering.5th rev. and updated ed, New York: Springer,1999.
    [82] R. Tommasini, J. E. Balmer. Amplified spontaneous emission and maximum gain-lengthproduct revised for general line shapes. J Opt Soc Am B,1999,16(4):538-545.
    [83] D. C. Brown. Nonlinear thermal and stress effects and scaling behavior of YAG slabamplifiers. IEEE J Quantum Electron,1998,34:2393-2402.
    [84] T. Sato, Y. Fujimoto, H. Okada, et al.40J class laser oscillation of Nd-doped silica glasswith high thermal shock parameter. App Phy Lett,2007,90:221108.
    [85] L. Yu, J. Liu, L. Ma, et al.10J energy-level optically pumped XeF (C-A) laser withrepetition mode, Opt Lett,2007,32:1087-1089.
    [86] R. Yasuhara, T. Kawashima, T. Sekine, et al.213W average power of2.4GW pulsedthermally controlled Nd:glass zigzag slab laser with a stimulated Brillouin scatteringmirror. Opt Lett,2008,33:1711-1713.
    [87] A. Steinmetz, D. Nodop, J. Limpert, et al.2MHz repetition rate,200ps pulse durationfrom a monolithic passively Q-switched microchip laser. Appl Phys B,2009,97:317-320.
    [88] D. Nickel, C. Stolzenburg, A. Beyertt, et al.200kHz electro-optic switch for ultrafastlaser systems. Rev Sci Instrum,2005,76:033111.
    [89] R. Horiuchi, K. Adachi, G. Watanabe, et al.1.4MHz repetition rate electro-opticQ-switched Nd:YVO4laser. Opt Express,2008,16:16729-16734.
    [90] Q. Liu, X. Yan, X. Fu, et al.183W TEM00mode acoustic-optic Q-switched MOPA laserat850kHz. Opt Express,2009,17:5636-5644.
    [91] B. Chen, Y. Chen, J. Simmons, et al. Thermal lensing of edge-pumped slab lasers-I. ApplPhys B,2006,82:413–418.
    [92] A. R. Al-Rashed, B.E.A. Saleh. Decentered Gaussian beams. Appl Opt,1995,34(30):6819-6825.
    [93] B. E. A. Saleh, M. Teich, Fundamentals of Photonics (Wiley, New York,1991), Chap.3.
    [94]吕百达.激光光学:光束描述、传输变换与光腔技术物理.第3版,北京:高等教育出版社,2003.
    [95] G. Haag, M. Munz, G. Marowsky. Amplified spontaenous emission (ASE) in laseroscillators and amplifiers. IEEE J Quantum Electron,1983, QE-19(6):1149-1160.
    [96] M. Munz, G. Haag. Saturation of the gain laser amplifiers by feedback of amplifiedspontaneous emission (ASE). Z Phys,1983,50:79-86.
    [97] A.M. Hunter, II, R.O. Hunter. Jr. Bidirectional amplification with nonsaturable absorptionand amplified spontaneous emission. IEEE J Quantum Electron,1981, QE-17(9):1879-1887.
    [98] D. C. Brown. Heat, fluorescence, and stimulated-emission power densities and fractionsin Nd:YAG. IEEE J Quantum Electron,1998,34(3):560–572.
    [99] C. Goren, Y. Tzuk, G. Marcus, et al. Amplified spontaneous emission in slab amplifiers.IEEE J Quantum Electron,2006,42(12):1239–1247.
    [100] J. Speiser, A. Giesen, et al. Scaling of thin disk pulse amplifiers. Proc. of SPIE,2008,6871:68710J.
    [101] M. Gong, Q. Wang, L. Huang, et al. Compact TEM00Nd:YVO4slab laser end pumped byan LD bar. Laser Physics,2008,18(7):827-830.
    [102] J. L. Blows, J. M. Dawes, J. A. Piper. A simple, thermally-stabilised, diode end-pumped,planar Nd:YAG laser. Opt Commun,1999,162:247-250.
    [103]王琦.线阵二极管端面泵浦的Nd:YVO4板条激光器研究[博士学位论文].北京:清华大学精仪系,2008.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700