用户名: 密码: 验证码:
1.55μm单频窄线宽光纤激光器理论与实验研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
单频(单纵模)窄线宽光纤激光器在光纤通信系统、光纤传感器、微波光子以及太赫兹源等领域有广泛应用。本文针对光纤激光器如何获得稳定的单频窄线宽激光输出问题,对谐振腔结构设计、纵模选择以及模跳抑制方法等展开详细的理论分析与实验研究。提出以窄带选模元件降低谐振腔内纵模密度,结合非线性二波混频效应消除多纵模振荡与抑制模跳,获得单频窄线宽输出的光纤激光器结构,分别对可饱和吸收体与自反馈注入单频窄线宽光纤激光器进行研究,研制出了多种高性能单频窄线宽光纤激光器。主要内容为:
     1.推导出有源光纤线形F-P谐振腔和光纤环形谐振腔的光谱特性函数,详细研究腔内增益与损耗、谐振腔长、腔镜反射率或光耦合分束比等腔形结构参数对谐振腔输出光谱线宽特性的影响;进而考虑自发辐射,推导了激光器单模线宽极限公式,讨论谐振腔结构参数对单模线宽极限的影响。最终获得单频窄线宽光纤激光器谐振腔设计的理论依据。
     2.提出用窄带模式选择元件降低腔内纵模密度,结合可饱和吸收体或自反馈注入非线性二波混频消除多模振荡和抑制跳模,获得稳定单频运转的光纤激光器结构;并依据速率方程和功率传输方程,建立光纤激光器功率输出特性分析模型,研究影响激光器功率输出特性的相关因素。
     3.开展光纤可饱和吸收体单频窄线宽光纤激光器研究,详细研究影响其输出功率和转换效率的相关因素。实验装置采用行波环形腔,用光纤环滤波器降低腔内纵模密度,结合10米光纤可饱和吸收体,消除多纵模振荡与抑制模跳,获得稳定的单频窄线宽输出。激光器工作波长1549.98nm,输出功率26.5mW,光-光转换效率20.9%,斜率效率23.6%,光谱线宽2.2kHz。
     4.提出用FBG F-P标准具作模式选择元件,结合短保偏光纤可饱和吸收体的光纤激光器新结构,改善可饱和吸收体单频窄线光纤激光器的转换效率和线宽特性。实验装置以保偏FBG F-P标准具降低腔内纵模密度,用2米保偏光纤作可饱和吸收体消除多纵模振荡与抑制模跳,获得稳定的单频窄线宽激光输出。用单包层掺Er~(3+)光纤作为增益介质,实验装置工作波长1550.65nm,输出光功率43.7mW,光谱线宽1.2kHz,光-光转换效率29.5%,斜率效率33.4%。用Er~(3+)/Yb~(3+)双包层光纤作为增益介质,实验装置工作波长1549.83nm,输出功率923.6mW,光-光转换效率为27.2%,光谱线宽为2.5kHz。实验装置输出功率为目前所报道的单频窄线宽光纤激光器最高输出功率。
     5.提出一种新颖的自反馈注入式单频窄线宽光纤激光器。实验装置采用长线形腔结构,利用输出信号激光分束反馈与腔内振荡激光干涉,形成动态增益光栅和折射率光栅共同作用选择纵模和抑制跳模,获得单频窄线宽激光输出。用单包层掺Er~(3+)光纤作为增益介质,实验装置工作波长1549.79nm,输出功率30.6mW,光-光转换效率27.3%,光谱线宽为2.2kHz。以Er~(3+)/Yb~(3+)双包层光纤作为增益介质,实验装置工作波长1550.63nm,输出功率653.7mW,光-光转换效率21.1%,斜率效率24.6%,光谱线宽为5.0kHz。实验装置输出功率为线形腔单频窄线宽光纤激光器的最高输出功率。
Single-frequency (Single-longitudinal-mode) narrow linewidth fiber lasers havegreat potential applications in optical fiber communication system, fiber optical sensors,microwave photonics system and THz generation. In order to obtain the stablesingle-frequency fiber laser operation, some theoretical analyses and experiment studiesare performed on the design of fiber laser resonator, longitudinal-mode selection andmode-hopping restraining. The resonator structure of single-frequency narrow linewidthfiber lasers, which use narrow band mode selecting devices to reduce thelongitudinal-mode density greatly and use nonlinear two-wave mixing effect to suppressmode hopping and ensure the stable single-frequency operation, is presented. Then twodifferent single-frequency narrow linewidth fiber lasers, based on fiber saturableabsorber and self-feedback injection, respectively, have been theoretically andexperimentally investigated in detail. Finally, high-performance single-frequencynarrow linewidth fiber lasers are achieved.
     The main results are as follows:
     1. The spectrum characteristic functions of active fiber linear F-P resonantor andactive fiber ring resonantor are derived respectively. Based on these functions, theinfluence of the resonantor’s structural parameters including gain and loss intra-cavity,cavity length and cavity mirror reflectivity or coupling output ratio on the characteristicsof spectral linewidth is investigated in detail. Moreover, the linewidth limit formula ofsingle-mode laser is derived by taking the spontaneous emission into account, and thenthe influences of the resonantor’s structural parameters on the linewidth limit is furtherstudied. Finally, the theoretical basis to design the resonantor of single-frequency narrowlinewidth fiber laser is achieved.
     2. The fiber laser structure of single-frequency narrow linewidth fiber laser, whichuse narrow band mode selecting devices to reduce the longitudinal-mode density greatlyand utilize nonlinear two-wave mixing effect to suppress mode-hopping and ensure thestable single-frequency operation, is proposed. Furthermore based on rate equations andpower transmission equations, the model to analyze and design Er~(3+)-doped fiber laser has been established. The factors affecting the power output characteristics of fiber laserhave been illustrated by means of numerical calculation.
     3. The single-frequency narrow linewidth fiber laser based on fiber saturableabsorber has been investigated. The influence of the fiber saturable absorber on outputpower and conversion efficiency is studied also. In this experimental device, a fiber ringfilter uses to reduce longitudinal-mode density and a segment Er~(3+)-doped fiber withlength of10m serves as saturable absorber to constrain mode-hopping and ensuresingle-frequency. Satble single-frequency laser output at1549.98nm with linewidth of2.2kHz is observed. The fiber laser exhibits that output power is26.5mW, optical-opticalefficiency is20.9%, corresponding slop efficiency is23.6%.
     4. In order to improve conversion efficiency and compress linewidth for fiberlaser based on fiber saturable absorber, a new fiber laser structure combining FBG F-Petalon with polarization-maintaining (PM) fiber saturable absorber is presented. In thisfiber laser, a FBG F-P etalon is used as reflector and mode-selecting component toreduce the longitudinal-mode density greatly. Meanwhile, a segment un-pumped PMEr~(3+)-doped fiber (EDF) with length of2m serves as saturable absorber to suppressmode-hopping and ensure the stable single-frequency operation. Using single-claddingEr~(3+)-doped fiber as gain medium, the fiber laser output at1550.65nm exhibits that outputpower is43.7mW, optical-optical efficiency is29.5%, corresponding slop efficiency is33.4%and linewidth is about1.2kHz. Then using Er~(3+)/Yb~(3+)co-doped fiber as gainmedium, the fiber laser output at1549.83nm exhibits that output power is923.6mW,optical-optical efficiency is27.2%and spectral linewidth is about2.5kHz. To ourknowledge, it is the maximum power directly extracting from single-frequency narrowlinewidth fiber laser.
     5. A novel self-feedback injection single-frequency narrow linewidth fiber laserwith linear cavity is firstly proposed and demonstrated experimentally. The dynamicgain grating and refractive index grating, which induced by interfering between thefeedback light from the part of output light and the lasing light in intra-cavity,discriminates and selects laser longitudinal modes efficiently. With single-claddingEr~(3+)-doped fiber as gain medium, satble single-frequency laser output at1549.79nm withlinewidth of2.2kHz is observed. The fiber laser exhibits that output power is30.6mW,optical-optical efficiency is27.3%. Then using Er~(3+)/Yb~(3+)co-doped fiber as gain medium, the fiber laser output at1550.65nm exhibits that output power is653.7mW,optical-optical efficiency is21.1%, corresponding slope efficiency is24.6%and spectrallinewidth is about5.0kHz. To our knowledge, it is the maximum power extracting fromsingle-frequency narrow linewidth fiber laser with linear cavity.
引文
[1] J. Limper, F. Roser, S. Klingebiel, et al. The rising power of fiber lasers and amplifers. IEEE J.Sel. Top. Quantum electron.,2007,13(3):537-545
    [2] V. Dominic, S. Maccormack, R. Waarts, et al.110W fiber laser. Electron. Lett.,1999,35:1158-1160
    [3] C. H. Liu, B. Ehlers, F. Doerfel, et al.810W continuous-wave and single transverse-mode fibrelaser using20μm core Yb-doped double-clad fibre. Electron. Lett.,2004,40:1471-1472
    [4] Y. Jeong, J. K. Sahu, D. N. Payne, et al. Ytterbium-doped large-core fiber laser with1.36kWcontinuous-wve output power. Opt. Express,2004,12:6088-6092
    [5] V. Gapontsev, D. Gaponstev, N. Platonov, et al.2kW CW ytterbium fiber laser with recorddiffraction-limited brightness. Conference on Lasers and Electro-Optics Europe (CLEO),2005,508
    [6] V. Formin, A. Mashkin, M. Abramov, et al.3kW Yb fibre laser with a single-mode output.Symp. High-Power Fiber Lasers Appl., St Petersburg, Russia,2006,26-30
    [7] M. Y. Cheng, Y. C. Chung, A. Galvanauskas, et al. High-energy and high-peak-powernanosecond pulse generation with beam quality control in200-um core highy multimodeYb-doped fiber amplifiers. Opt. Lett.,2005,30(4):358-360
    [8]申人升,张玉书,杜国同,等.光纤激光器研究进展.半导体光电,2009,30(1):1-4
    [9] T. Haber, K. Hsu, C. Miller, et al. Tunable erbium-doped fiber ring laser precisely locked to the50-GHz ITU frequency grid. IEEE Photon. Technol. Lett.,2000,12(11):1456-1458
    [10] H. Y. Ryu, W. K. Lee, H. S. Moon, et al. Stable single-frequency fiber ring laser for25-GHzITU-T grids utilizing saturable absorber filter. IEEE Photon. Technol. Lett.,2005,17(9):1824-1826
    [11] P. Oberson, B. Huttner, O. Guinnard, et al. Optical frequency domain reflectometry with anarrow linewidth fiber laser. IEEE Photon. Technol. Lett.,2000,12(7):867-869
    [12] J. Geng, C. Spiegelberg, S. Jiang. Narrow linewidth fiber laser for100-km optical frequencydomain reflectometry. IEEE Photon. Technol. Lett.,2005,17(9):1827-1829
    [13] J. C. Juarez, E. W. Maier, K. N. Choi, et al. Distributed fiber-optic intrusion sensor system.IEEE J. Lightwave Technol.,2005,23(6):2081-2086
    [14] Y. Shen, X. Zhang, K. Chen, et al. All-optical generation of microwave and millimeter waveusing a two-frequency bragg grating-based Brillouin fiber laser. IEEE J. Lightwave Technol.,2005,23(5):1860-1864
    [15] Y. Yao, X. Chen, Y. Dai, et al. Dual-wavelength Erbium-doped fiber laser with a simple linearcavity and its application in microwave generation. IEEE Photon. Technol. Lett.,2006,18(1):187-189
    [16] W. Shi, A. Leigh, J. Zong, et al. High-power all-fiber-based narrow-linewidth single-modefiber laser pulses in the C-band and frequency conversion to THz generation. IEEE J. Sel. Top.Quantum electron.,2009,15(2):377-384
    [17] B. Wu, Y. Liu, Z. Dai. Narrow linewidth fiber grating F-P cavity laser and application. IEEEConference on Communications, Circuits and Systems Proceedings,2006:1971-1974
    [18]孙倩,宁提纲,胡旭东.单频光纤激光器的研究进展.光纤与电缆及其应用技术,2010,4:1-3
    [19]张萍萍,杨远红,陈淑英.布里渊光纤环形激光器技术发展.红外与激光工程,2008,37:58-63
    [20]詹黎,顾照昶,邢亮,等.光纤布里渊激光器和放大器的研究进展及其应用.中国激光,2010,37(4):901-908
    [21]詹黎,宋跃江,夏宇兴.128波长输出的自注入布里渊光纤激光器.激光与光电子学进展,2005,42(12):21-22
    [22] E. Snitzer. Proposed fiber cavities for optical laser. J. Appl. Phys.,1961,32:36-39
    [23] P. R. Morkel, G. J. Cowle, D. N. Payne. Travelling-wave erbium fiber ring laser with60kHzlinewidth. Electron. Lett.,1990,26(10):632-634
    [24] G. J. Cowle, D. N. Payne, D. Reid. Single-frequency travelling-wave erbium-doped fiber looplaser. Electron. Lett.,1991,27(3):229-230
    [25] G. A. Ball, W. W. Morey, W. H. Glenn. Standing-wave monomode erbium fiber laser. IEEEPhoton. Technol. Lett.,1991,3(7):613-615
    [26] J. L. Zyskind, J. W. Sulhoff, Y. Sun, et al. Singlemode diode-pumped tunable erbium-dopedfiber laser with linewidth less than5.5kHz. Electron. Lett.,1991,27(23):2148-2149
    [27] J. L. Zyskind, V. Mizrahi, D. J. DiGiovanni, et al. Short single frequency Erbium-doped fibrelaser. Electron. Lett.,1992,28(15):1385-1387
    [28] H. Sabert, R. Ulrich. Gain stabilization in a narrow-band optical filter. Opt. Lett.,1992,17:1161-1163.
    [29] J. T. Kringlebotn, P. R. Morkel, L. Reekie, et al. Efficient diode-pumped single-frequencyErbium:Ytterblum fiber laser. IEEE Photon. Technol. Lett.,1993,5(10):1162-1164
    [30] M. Horowitz, R. Daisy, B. Fischer, et al. Narrow-linewidth, singlemode erbium-doped fibrelaser with intracavity wave mixing in saturable absorber. Electron. Lett.,1994,30(8):648-649
    [31] Y. Cheng, J. T. Kringlebotn, W. H. Loh. Stable single-frequency traveling-wave fiber looplaser with integral saturable-absorber-based tracking narrow-band filter, Opt. Lett.,1995,20(8):875-877
    [32] W. H. Loh, R. I. Laming.1.55um phase-shift distributed feedback fibre laser. Electron. Lett.,1995,31(17):1440-1442
    [33] D. I. Chang, M. J. Guy, S. V. Chernikov, J. R, et al. Single-frequency erbium fiber laser usingthe twisted-mode technique. Electron. Lett.,1996,32(19):1786-1787
    [34] J. Zhang, C. Yue, G. W. Schinn, et al. Stable single-mode compound-ring erbium-doped fiberlaser. IEEE J. Lightwave Technol.,1996,14(1):104-109
    [35] Y. Takushima, S. Yamashita, K. Kikuchi, et al. Single-frequency and polarization-stableoscillation of Fabry-Perot laser using a nonpolarization-maintaining fiber and an intracavityetalon. IEEE J. Lightwave Technol.,1996,8(11):1468-1470
    [36] A. S. Kurkov, P. Bernage, P. Niay, et al.1.55μm single-frequency long cavity fiber laser withπ/2phase shifted DFB mode selection. IEE Colloguium on Optical Fiber Gratings,1997,12/1-12/4
    [37] D. Y. Stepanov, G. J. Cowle. Properties of Brillouin/Erbium fiber laser. IEEE J. Sel. Top.Quantum electron.,1997,3(4):1049-1057
    [38] W. H. Loh, B. N. Samson, L. Dong, et al. High performance single frequency fiberGrating-based Erbium:Ytterbium-codoped fiber lasers. IEEE J. Lightwave Technol.,1998,16(1):114-118
    [39] N. Kishi, T. Yazaki. Frequency control of a single-frequency fiber laser by cooperativelyinduced spatial-hole burning. IEEE Photon. Technol. Lett.,1999,11(2):182-184.
    [40] C. Lee, S. Chi. Single-longitudinal-mode operation of grating-based fiber-ring laser usingself-injection feedback. Opt. Lett.,2000,25(24):1774-1776
    [41]俞本立,钱景仁,罗家童,等.线宽小于0.5kHz稳态的单频光纤环形腔激光器.量子电子学报,2001,18(4):345-347
    [42] J. C. Yong, L. Thevenaz, B. Y. Kim. Brillouin fiber laser pumped by a DFB laser diode. IEEEJ. Lightwave Technol.,2003,21(2):546-553
    [43] Ch. Spiegelberg, J. Geng, Y. Hu, et al. Compact100mW fiber laser with2kHz linewidth.OFC2003,3, PD45:1-3
    [44] Y. Kaneda, Ch. Spiegelberg, J. Geng, et al.200-mW, narrow line-width1064.2-nm Yb-dopedfiber laser. Conference on Lasers and Electro-Optics Europe (CLEO),2004,2, Cth03:1-2
    [45] C. Alegria, Y. Jeong, C. Codemard, et al.83-W single-frequency narrow-linewidth MOPAusing large-core erbium-ytterbium co-doped fiber. IEEE Photon. Technol. Lett.,2004,16(8):1825-1827
    [46] S. Huang, G. Qin, Y. Feng, et al. Single-frequency fiber laser from linear cavity with loopmirror filter and dual-cascaded FBGs. IEEE Photon. Technol. Lett.,2005,17(6):1169-1171
    [47] Z. Meng, G. Stewart, G. Whitenett. Stable single-mode operation of a narrow-linewidth,linearly Polarized, erbium-fiber ring laser using a saturable absorber. IEEE J. LightwaveTechnol.,2006,24(5):2179-2183
    [48] Y. Yao, X. Chen, Y. Dai, et al. Dual-wavelength eribun-doped fiber laser with a simple linearcavity and its application in microwave generation. IEEE Photon. Technol. Lett.,2006,18(1):187-189
    [49] A. Suzuki, Y. Takahashi, M. Yoshida, et al. An ultralow noise and narrow linewidth/4-shifted DFB Er-doped fiber laser with a ring cavity configuration. IEEE J. LightwaveTechnol.,2007,19(19):1463-1465
    [50] X. Zhang, Ning H. Zhu, L. Xie, et al. A stabilized and tunable single-frequency eribum-dopedfiber ring laser employing external injection locking. IEEE J. Lightwave Technol.,2007,25(4):1027-1033
    [51] S. Y. Li, N. Q. Ngo, Z. R. Zhang. Tunable fiber laser with ultra-narrow linewidth using atunable phase-shifted chirped fiber grating. IEEE Photon. Technol. Lett.,2008,20(17):1482-1484
    [52] S. W. Harun, S. Shahi, H. Ahmad. Compact Brillouin-erbium fiber laser. Opt. Lett.,2009,34(1):46-48
    [53] X. Chen, Y. Painchaud, K. Ogusu, et al. Phase shifts induced by the piezoelectric transducersattached to a linearly chirped fiber Bragg grating. IEEE J. Lightwave Technol.,2010,28(14):2017-2021
    [54] M. A. Quintela, R. A. Perez-herrera, I. Canales, et al. Stabilization of dual-wavelengtherbium-doped fiber ring lasers single-mode operation. IEEE Photon. Technol. Lett.,2010,22(6):368-370
    [55]郭玉彬,霍佳雨.光纤激光器及其应用.北京:科学出版社,2008,85-99
    [56] S. H. Xu, Z. M. Yang, T. Liu, et al. An efficient compact300mW narrow-linewidth singlefrequency fiber laser at1.5μm. Opt. Express,2010,18(2):1249-1254
    [57]孟莉,潘政清,耿建新,等.短腔磷酸盐玻璃光纤激光器及其输出特性.中国激光,2010,37(2):362-365
    [58]伍波,刘永智,张谦述,等.基于光纤光栅法布里-珀罗的高效窄线宽光纤激光器.中国激光,2007,34(3):350-353
    [59] H. Sabert, R. Ulrich. Gain stabilization in a narrow-band optical filter. Opt. Lett.,1992,17:1161-1163
    [60] M. Chi, J. Huignard, P. M. Petersen. A general theory of two-wave mixing in nonlinear Media.J. Opt. Soc. Am. B,2009,26(8):1578~1584
    [61]陈柏,陈兰荣,李学春等.未抽运掺杂光纤在掺Yb~(3+)窄线宽光纤激光器中的作用.中国激光,2001,A28(5):399-401
    [62] M. Matsuura, N. Kishi. Frequency control characteristics of a single-frequency fiber laser withan external light injection. IEEE J. Sel. Top. Quantum electron.,2001,7(1):55-58
    [63] K. Hsu, S. Yamashita. Single-polarization generation in fiber Fabry-Perot laser byself-injection locking in short feedback cavity. IEEE J. Lightwave Technol.,2001,19(4):520-526
    [64] G. P. Agrawal.非线性光纤光学原理及应用.北京:电子工业出版社,2002,223-240
    [65]岳慧敏,代志勇,刘永智,等. BOTDR分布式光纤传感器研究进展.激光杂志,2007,28(4):4-5
    [66] F. Li geois, C. Vercambre, Y. Hernandez, et al. Pulsed high-power and single-frequency fibrelaser design for LIDAR aircraft safety application. Proc. Of SPIE,2006,6367:63670H-1-10
    [67]文江洪,江阳,罗旋.微波光子信号的产生.贵州大学学报(自然科学版),2009,26(5):62-64
    [68]江阳,于晋龙,胡林.受激布里渊散射在微波光子信号中的应用.激光与光电子学进展,2008,45(3):44-49
    [69]卜凡亮,行鸿彦.太赫兹光谱技术的应用进展.电子测量与仪器学报,2009,23(4):1-6
    [70]周平,范滇元.基于光纤的太赫兹产生技术.中国激光,2010,37(3):708-712
    [71] A. Yariv.现代通信光电子学(第五版).北京:电子工业出版社,2002,125-131
    [72] G. Philippe B, D. Guy. Quantum phase noise and field correlation in single frequencysemiconductor laser system. IEEE J. Quantum Electron.,1984, QE-20(4):343-349
    [73]肖华菊,王降,马云,等.基于DSHI的窄线宽光纤激光器线宽测量.光电工程,2010,37(8):57-61
    [74]周炳琨,高以智,陈倜嵘,等.激光原理.北京:国防工业出版社,2000年,180-182
    [75]李玉全,崔敏.光波导理论与技术.北京:人民邮电出版社,2002,140-146
    [76]杨亚培,刘永智.光纤环光谱传递函数.光学学报,1999,19(12):1639-1643
    [77]叶玉堂,饶建珍,肖峻,等.光学教程.北京:清华大学出版社,2005年,143-149
    [78] Poole, Payne, Ferman, et al. Fabrication of low-loss optical fibers containing rare-earth ions.Electron. Lett.,1985,21:737-738
    [79]杨祥林.光放大器及其应用.北京:电子工业出版社,2000,14-19
    [80] G. C. Valley, Modeling cladding-pumped Er/Yb fiber amplifiers. Optical fiber technology,2001,7:21-44
    [81] M. J. F Digonnet, C. J Gaeta. Theoretical analysis of optical fiber laser amplifiers andoscillators. Appl. Opt.,1985,24(3):333-342
    [82] M. J. F Digonnet. Theory of superfluorescent fiber lasers. IEEE. J. Lightwave Technol.,1986,4(11):1631-1639
    [83] I. Kelson, A. A. Hardy. Strongly pumped fiber lasers. IEEE J. Sel. Top. Quantum electron.,1998,34(9):1570-1577
    [84]黄志坚,孙军强,黄德修.线形腔掺铒光纤激光器输出特性的理论研究.光学学报,1996,16(12):1671-1675
    [85]徐华斌,陈林.掺铒光纤激光器输出特性的研究.光子学报,2004,33(7):778-781
    [86]夏江珍,蔡海文,任虹,等.掺铒光纤环形激光器输出特性的研究.光学学报,2003,23(7):823-827
    [87] M. Peroni, M. Tamburrini. Gain in erbium-doped fiber amplifiers: a single analytical solutionfor the rate equations. Opt. Lett.,1990,15(15):842-844
    [88] X. Dong, P. Shum, N. Q. Ngo, et al. Output power characteristics of tunable Eribum-dopedfiber ring lasers. IEEE. J. Lightwave Technol.,2005,23(3):1334-1341
    [89]夏江珍,蔡海文,任虹,等.掺铒光纤环形激光器输出特性的研究.光学学报,2003,23(7):823-827
    [90]伍波,刘永智,刘爽,等.光纤光栅法布里-珀罗标准具选模单频环形腔光纤激光器.强激光与粒子束,2006,18(12):1987-1990
    [91]伍波,刘永智,张谦述,等.基于光纤光栅法布里-珀罗腔的高效窄线宽光纤激光器,中国激光,2007,34(3):350-353
    [92]伍波.1.5um掺铒窄线宽光纤激光器研究:[博士学位论文].成都:电子科技大学,2007,55-63
    [93]关柏鸥,余有龙,葛春风,等.光纤光栅法布里-珀罗腔透射特性的理论研究.光学学报,2000,20(1):33-38
    [94]吕昌贵,崔一平,王著元,等.光纤布拉格光栅法布里-珀罗腔纵模特性研究.物理学报,2004,53(1):145-150
    [95] X. P. Cheng, P. Shum, C. H. Tse, et al. Single-longitudinal-mode erbium-doped fiber ringlaser based on high finesse fiber Bragg grating Fabry-P rot etalon. IEEE Photon. Technol.Lett.,2008,20(12):976-978
    [96] L. H. Richter, H. I. Mandelberg, M. S. Kruger, et al. Linewidth determination fromself-heterodyne measurements with subcoherence delay times. IEEE J. Quantum Electron.,1986,22(11):2070-2074
    [97] X. Chen, M. Han, Y. Zhu, et al. Implementation of a loss-compensated recirculating delayedself-heterodyne interferometer for ultranarrow laser linewidth measurement. Appl. Opt.,2006,45(29):7712-7717
    [98]贾豫东,欧攀,杨洪远,等.短光纤延时自外差法测量窄线宽激光器线宽.北京航空航天大学学报,2008,34(5):568-571
    [99]伍波,刘永智,刘爽,等.光纤饱和吸收体稳频窄线宽光纤激光器.光电工程,2007,34(10):30-33
    [100] X. X Yang, L. Zhan, Q. S. High-power single-longitudinal-mode fiber laser with a ringFabry-P rot Resonator and a saturable absorber. IEEE Photon. Technol. Lett.,2008,20(11):879-881
    [101] Z. Dai, J. Li, X. Zhang, et al. Stable Single-Longitudinal-Mode Fiber Laser Using PM FBGF-P Etalon and PM Fiber Saturable Absorber. Optical and Quantum Electronics,2010,41(14-15):1033-1040
    [102]代志勇,张晓霞,彭增寿,等.一种新颖的自反馈光注入单频窄线宽光纤激光器.光电子·激光,2010,17(11):1311-1314
    [103] Z. Dai, X. Zhang, Z. Peng, et al. Stable Single Frequency Narrow Linewdith Fiber LaserBased on Feedback Light Injection Locked. Internaltional conference on Advanced InfocommTechnology (ICAIT2010),2010,59-60
    [104] M. Karasek. Optimum design of Er3+-Yb3+codoped fibers for large-signal high-pump-powerapplications. IEEE J. Quantum Electron.,1997,33(10):1769-1705
    [105] C. E. Chryssou, F. D. Pasquale, C. W. Pitt. Improved gain performance in Yb3+sensitized Er3+doped alumina(Al2O3) channel optical waveguide amplifiers. IEEE J. Lightwave Tech.19(3).2001:343-349
    [106] C. Barnard, P. Myslinski, J. Chrostowski, et al. Analytical model for rare-earth-doped fiberamplifiers and lasers. IEEE J. Quantum Electron.,1994,30(8):1817-1830
    [107] Q. Wang, N. K. Dutta. Er-Yb doped double clad fiber amplifier. Proc. SPIE,2003,5246:208-215
    [108] A. Shooshtari, T. Touam, S. I. Najafi. Yb3+Sensitized Er3+-Doped Waveguide Amplifiers: ATheoretical Approach. Proc. SPIE,2000,3278:149~165
    [109]陈海燕,官周国,刘永智.高浓度Er3+/Yb3+掺杂硅酸盐玻璃波导放大器的增益特性研究.量子电子学报,2001,18(5):391-394
    [110]代志勇,张晓霞,彭增寿,等.二波混频高功率单频窄线宽光纤激光器.发光学报,2011,32(2):159-163
    [111] Z. Dai, X. Zhang. Stable High Power Narrow Linewidth Single Frequency Fiber Laser Using aFBG F-P Etalon and a Fiber Saturable Absorber. IEEE Photonics and Optoelectronic(SOPO),2010,1-4

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700