用户名: 密码: 验证码:
铬渣堆场渗滤液对土壤—地下水系统污染规律研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
铬渣是铬盐及铁合金等行业在生产过程中排放的有毒废渣,其有害成分主要是可溶性铬酸钠、酸溶性铬酸钙等六价铬离子。长期堆放的铬渣淋滤液中含有Cr(VI),它是一种具有高迁移能力的重要污染物。铬渣如果不加处理而长期堆放,会致使铬渣中水溶性六价铬被雨、雪水浸后,随着雨、雪水和地表水渗入地下,对周边地表水、地下水以及土壤造成严重污染。
     论文针对目前铬渣堆场及其渗滤液生态环境污染严重这一热点问题,以辽宁省沈阳和锦州两处典型铬渣堆场为研究对象,采用室内实验、理论分析、数值模拟和现场应用相结合的研究方法,从深层次、多学科、多角度展开研究。主要研究成果如下:
     (1)通过沈阳、锦州铬渣静态浸溶实验和动态淋溶实验,测定不同固液比、浸取剂pH、浸出时间、搅拌强度、铬渣粒度大小、温度等因素对铬渣中污染物溶解释放影响,揭示不同地区铬渣中污染物析出、释放规律。研究结果表明,锦州铬渣在淋滤初期,Cr(VI)浓度含量非常高,下降速度快,随时间推进,下降速度趋于缓慢,体现淋滤过程中Cr(VI)容易淋出,铬渣堆放将会对土壤-地下水造成严重污染;和锦州同质量的沈阳铬渣,在淋滤过程中,Cr(VI)浓度下降较锦州铬渣缓慢,浓度也较锦州铬渣低,变化幅度较小,下降速度缓慢,主要原因是沈阳铬渣为长期堆存的风化铬渣,而锦州铬渣为新铬渣,可溶性Cr(VI)含量较高的缘故。
     (2)通过不同土壤(粉质砂土、粉质粘土)对铬渣渗滤液静态吸附实验,测定振荡时间、污染物浓度、pH值、温度等条件改变对粉质粘土和粉质砂土吸附Cr(VI)的影响,获得粉质粘土和粉质砂土吸附Cr(VI)非线性等温吸附模型,建立了吸附动力学方程。研究发现,粉质粘土和粉质砂土对Cr(VI)吸附可用Langmuir方程、Freundlich方程和Temkin方程描述,以Langmuir方程为最佳;从吸附动力学看,粉质粘土和粉质砂土的三种动力学方程拟合程度顺序均为:Elovich型公式>双常数速率公式>抛物线扩散公式;粉质粘土相较粉质砂土动力学拟合程度更高且吸附性更好。
     (3)通过室内土柱一维动态模拟实验,研究揭示铬渣淋溶液Cr(Ⅵ)在不同土壤(粉质砂土和粉质粘土)—地下水系统中,在污染淋滤和清水淋滤过程中运移规律。实验结果显示,无论粉质砂土还是粉质粘土,淋滤渗出液中Cr(Ⅵ)浓度都是一定时间后才被检出,最初浓度较低,随后浓度值逐渐升高,出现最大值后趋于稳定,对流、弥散和吸附作用是Cr(Ⅵ)运移主要原因;随着清水淋溶进行,渗出液中Cr(Ⅵ)浓度都呈逐渐下降趋势,清水淋滤过程中主要发生溶解、解吸作用,不同土壤,Cr(Ⅵ)浓度趋零时间不同,粘土由于粘粒多、直径小、接触面积大,体现较为严重的拖尾现象。
     (4)模拟锦州真实土层,通过自制二维非均质含水层砂箱模型,揭示铬渣淋溶液Cr(Ⅵ)在土壤-地下水系统中的时空动态运移规律。结果表明,Cr(Ⅵ)浓度水平方向上,距离污染源较近砂箱上游,Cr(Ⅵ)浓度峰值出现时间较早,离污染源越远,Cr(Ⅵ)浓度峰值出现时间越晚;在垂直方向上随着时间推移,Cr(Ⅵ)浓度变化曲线也逐渐向前推移,污染范围不断扩大。上层粉质粘土,晶格结构结合紧密,吸附性强,渗透性小,同时作用水头也较小,因而对流作用缓慢,体现水平运移较慢,垂直方向上的势能克服土壤阻力,对流作用较快,迁移作用比较明显,中层为渗透性较好的粉质砂土,污染物横向迁移速度加快,地下水的对流起主要运移作用,下层为砾石层,污染物运移主要表现为对流作用,污染物迅速沿水流方向运移。Cr(Ⅵ)整体迁移性较好,这也造成了污染容易在短时间内扩散。
     (5)基于渗流场和浓度场理论,建立综合考虑对流弥散、吸附解吸及存在源汇项的土壤-地下水系统中铬渣渗滤液污染物运移的三维耦合动力学数学模型,并通过数值模拟对锦州、沈阳铬渣堆存场污染物运移和分布进行预测。模拟结果表明,锦州铬渣堆存场Cr(Ⅵ)运移较快,20年即造成附近数公里地下水污染,采取防渗措施(防渗挡墙)后,地下水污染得到一定控制,监测井污染物浓度开始下降;沈阳铬渣堆存场地层为粘土层,Cr(Ⅵ)运移缓慢,20年仅在厂区内部土壤和地下水受到污染,未造成附近区域地下水污染。
Chromium slag is the solid wastes generated in the process of producing chromium salt andferroalloy, of which the main harmful component is the hexavalent chromium[C(rVI)]in solublesodium chromate and acid soluble calcium chromate. The leachate stacked for a long timecontains Cr(VI), which is an important pollutant with high mobility. If chromium slag is stacked,not treated, it will infiltrate into underground with rain, snow and surface water, polluting thesurrounding surface water, groundwater and soil seriously.
     Based on the focus of severe environmental pollution caused by chromium slag mucks andleachate, taking two chromium slag mucks respectively from Shenyang and Jinzhou as treatmentobjects, through indoor experiments, theory analysis, numerical simulation and application,studying with deep level, multidisciplinary, multi-angle, draw the following conclusions:
     (1)The static soaking-leaching and dynamic leaching experiment on Shenyang andJinzhou chromium slag, measuring the impact of solid-liquid ratio, pH of leaching agent,leaching time, stirring intensity, particle size, temperature on pollutant releasing in chromiumslag, which indicate the mechanism of pollutant precipitation and releasing in different regions.The result shows that chromium slag from Jinzhou has a very high concentration, descendingspeed initially. As time goes on, the velocity becomes lower with Cr(VI) leaking, leadingpollution to soil and groundwater; while chromium slag from Shenyang, the same quality withthe former, has a lower concentration, slower concentration decreasing and descending speed.This all indicates chromium slag from Shenyang has a lighter pollute level, but lasts a longertime.
     (2)By experiment of static adsorption to leachate using different soils(silty sand, siltyclay), measuring the impact of shaking time, pollutant concentration, pH value, temperature onadsorption to Cr(VI) by silty sand and silty clay, obtaining nonlinear isotherm model; buildingadsorption kinetic equation. The conclusion obtained is that: the law of adsorption can beexpressed as Langmuir, Freundlich and Temkin equations, among which Langmuir is the best; interms of adsorption kinetics, the order of fitting degree is: Elovich equation is the best followedby two-constant rate equation and parabola diffusion worst. Silty clay is better than silty sand infitting degree, reflecting silty clay has a better adsorption property.
     (3)The laboratory column one dimensional dynamic simulating experiment reveals themigration law of leachate through pollution and pure leaching in soils-groundwater systems. The research shows that: Cr(VI) can be detected after a certain time; the concentration experiences agradually increasing until the peak comes, reaching stable. As the pure leaching goes on, theCr(VI) concentration in the leachate has a tendency of decreasing. Convection, dispersion andadsorption are the main causes for Cr(VI) migration while dissolution plays the most importantrole in pure leaching. The Cr(VI) takes different time to reach zero value. In the research, siltyclay needs a longer time.
     (4)Chromium slag seeps through the self-made flask model of two-dimensionalheterogeneous aquifer that stores simulation soil of Jinzhou, which reveals the law of leachatemigration in the soil-groundwater system dynamically. The results indicate that: in the horizontaldirection, the concentration peak comes early near the flask upstream and the time is related tothe distance of the pollution sources, the further away from pollution sources, the time longer; inthe vertical direction, the pollution area enlarges continuously with the passage of time. The firstfloor made of silty clay has worse permeability, slower horizontal migration, obvious verticalmigration; the second floor made of sand has better permeability. In this layer, pollutant migratesfaster, in which the convection of underground water plays an important role; the third floor isgravel, in which pollutant migration manifested as convection. The Cr(VI) has good migratoryaptitude as a whole, so pollution can diffuse easily in a short time.
     (5)Based on the theory of seepage field and concentration field, build three-dimensionaldynamic coupled numerical model under the consideration of advection-dispersion,adsorption-desorption and source and sink and predict pollutant migration and distribution bysimulating chromium slag mucks respectively from Jinzhou and Shenyang. The results indicatethat: the muck from Jinzhou migrates faster, in another word, it can lead to groundwaterpollution several kilometers around in twenty years. If seepage measures have been taken,groundwater pollution can be controlled to some extent, resulting in pollution concentrationdecreasing in monitoring wells; the formation of chromium slag muck from Shenyang is clay, sothe migration rate is slow. It only pollutes the groundwater in the factory in twenty years.
引文
[1]北京师范大学,华中师范大学,南京师范大学著.无机化学(第四版)[M].北京:高等教育出版社,2003.
    [2]李兆业.我国铬盐现状与展望[J].铬盐工业,2004,2:40~50.
    [3] Khan Faisal I,Husain Tahir,Hejazil Ramzi.An overview and analysis of siteremediation technologies[J].J Environ Manage,2004,71:95~122.
    [4]匡少平.铬渣的无害化处理与资源化利用[M].北京:化学工业出版社,2007.
    [5]王懿萍.G地区铬渣污染状况分析及治理对策探讨[D].成都:西南交通大学,2004.
    [6]石磊,赵由才,牛冬杰.铬渣的无害化处理和综合利用[J].中国资源综合利用,2004,10:5-8.
    [7]刘雪.铬渣污染土壤特性与异位修复技术研究[D].西安:西北农林科技大学,2010.
    [8]国家发展和改革委员会,国家环境保护总局编.铬渣污染综合整治方案,2005.
    [9]谭建红.铬渣治理及综合利用途径探讨[D].重庆:重庆大学,2005.
    [10]胡勇,全学军,王万能.铬渣污染治理及其利用现状[J].重庆工学院学报,2004,(05):42-44.
    [11]李冬,司继涛,王洪涛.铬渣处理处置方法的生命周期评价[J].现代化工,2006,(S1):298-301.
    [12] Urum K, Pekdemir T. Evaluation of biosurfactants for crude oil contaminated soilwashing[J]. Chemosphere,2004,57(9):1139-1150.
    [13]宋旭东.铬浸出渣治理历程及发展方向[J].辽宁城乡环境科技,2007,27(l):58-60.
    [14]杨卫国,陈家军,陈大扬,等.铬渣的危害与解毒技术[J].中国环保产业,2008,l:48-50.
    [15]胡望均.常见有毒化学品环境事故应急处理技术与监测方法[M].北京:中国环境科学出版社,1993.
    [l6]顾学箕.中国医学百科全书.毒理学[M].上海:科学技术出版社,1992.
    [l7]朱建华,王莉莉.不同价态铬的毒性及其对人体影响[J].环境与开发,1997,12(3):46-48.
    [18] Petrilli FL, Flora SD. Toxicity and mutagen city of hexavalent chromium onSalmonella typhimurium[J]. Applied and Environmental Microbiology,1977,33(4):805-809..
    [19] Gibb HJ, Lees PSJ, Pinsky PF. Lung cancer among workers in chromium chemicalproduction[J].American Journal of Industrial Medicine,2000,38:115-126..
    [20]董春莲,吕林萍.太原电镀厂铬鼻病10年动态观察[J].卫生与职业病,1994,4:49.
    [21]纪柱.铬渣的危害及无害化处理综述[J].铬盐工业,2003,35(3):1-4..
    [22]韩英魁.环保治理刻不容缓[J].铬盐工业,2002,2:22-30〕.
    [23]史黎蔽.铬化合物的健康效应[J].中国环境卫生,2003,6(l3):125-129.
    [24]李爱琴,唐宏建,王阳峰.环境中铬污染的生态效应及其防治[J].中国环境管理干部学院学报,2006,126(1):75-78.
    [25]徐衍忠,秦绪娜,刘祥红,等.铬污染及其生态效应.环境科学与技术[J].2002,25(S1):8-10.
    [26] Masscheleyn P H, Delaune R D and Patrick J. Eh and pH effects on Arsenicproperties in soil[J].J Environ.Qual.,1991,20(3):522-527.
    [27]中华人民共和国国民经济和社会发展第十一个五年规划纲要.
    [28] HJ/T301-2007.铬渣污染治理环境保护技术规范(暂行)[S].
    [29]蔡宏道.环境污染与卫生检测[M].北京:人民卫生出版社,1981,61-72.
    [30] World Health Organization. Guidelines for Drinking-water Quality, third edition.Vol.1,2004, Geneva
    [31] EU’s Drinking Water Standards. Council Directive98/83/EC on the quality of waterintended for human consumption. Adopted by the Council, on3November1998.
    [32] US EPA. Drinking Water Standards and Health Advisories, Winter2004
    [33]景学森,蔡木林,杨亚提.铬渣处理处置技术研究进展[J].环境技术,2006,(3):33-35.
    [34] J.S.Geelhoed, J.C.L.Meeussen, D.G.Lunsdon, et al. Modeling of chromium behavior andtransport at sites contaminated with chromite ore processing residue: Implications for remediationmethods [J]. Environmental Geochemistry and Health,2001,23(3):261-265.
    [35] D.Deakin, L.J.West, D.I.Stewart and B.W.D.Yardley.The leaching characteristics of chromiteore processing residue[J].Environmental Geochemistry and Health,2001,23(3):201-206.
    [36] Sezgin Yal in and Kahraman ünlü. Modeling Chromium Dissolution and Leaching fromChromite Ore-Processing Residue[J].Environmental Engineering Science,2006,23,(1):187-201.
    [37]江澜,王小兰,单振秀.化工铬渣六价铬浸出试验方法研究[J].重庆工商大学学报(自然科学版),2005,22(2):139-142
    [38]景学森.铬渣中铬浸出特性及酸溶湿法解毒工艺研究[D].杨凌:西北农林科技大学,2007.
    [39] Sreeram K J.Some studies on recovery of chromium from chromite ore processingresidue [J].Indian Journal of Chemistry,2003,42A:2447-2454.
    [40] Geelhoed J S. Identification and geochemical modeling of processes controllingleaching of Cr6+and other major elements from chromite ore processing residue[J].Geochemical et Cosmo chin ica Acta,2002,66(22):3927-3942.
    [41]纪柱.铬渣长期堆存后的组成变化及对治理的影响[J]无机盐工业,2006,38(9):8-12.
    [42]龙腾发,柴立元,傅海洋,等.铬渣浸出毒性试验研究[J].环境工程,2004,(6):71-73.
    [43]刘大银,蔡鹤生,孙小静等.风化铬渣与新鲜铬渣中六价铬溶出特性的研究[J].安全与环境工程,2002,(4):1-5.
    [44] Hillier.S., M.J.Roe., J.S.Geelboed.,et al. Role of quantitative mineralogical analysis in theinvestigation of sites contaminated by chromite ore process residue[J].The Science of the TotalEnvironment,2003,308(1-3):195-201.
    [45]林晓,曹宏斌,李玉平等.铬渣中Cr(VI)的浸出及强化研究[J].环境化学,2007,26(6):805-809
    [46]位菁.淋滤作用下铬渣中Cr_在地下水中迁移的反应_输运模拟研究[D].武汉:中国地质大学,2008.
    [47]柴立元,赵堃,舒余德,等.铬渣NaCl浸出动力学[J].中南大学学报(自然科学版),2007,38(3):445-449.
    [48]盛灿文,柴立元,王云燕等.铬渣中六价铬水浸动力学研究[J].安全与环境工程,2006,13(3):40-44.
    [49]马泽民.A.hromobacte:Sp.CH-1菌解毒铬渣的研究[D].长沙:中南大学,2009.
    [50]蔡木林景学森杨亚提.铬渣酸溶性六价铬浸出动力学研究[J].环境工程学报,2007,1(10):90-93.
    [51] Barna R, Moszkowicz P, Gervais C. Leaching assessment of road materialscontaining primary lead and zinc slags. Waste Manage,2004,24:945-950.
    [52] Cote P,Bridle TR,Benedek A. Hazardous and industrial solid waste testing anddisposal[M]. PhiladelPhia: American Society for Testing and Materials,1986.
    [53]阳光.铬渣中六价铬的提取与铬黄颜料的资源化技术研究[D].长沙:华中师范大学,2002.
    [54]张晟,彭莉,王定勇,等.酸雨淋溶对铬渣中Cr6+释放的影响[J].环境化学,2007,26(4):512-515.
    [55] C.H.Weng, C.P.Huang, Herbert E.Allen, A.H-D.Cheng and Paul F. Sanders.Chromium leaching behavior in soil derived from chromite ore proeessing waste[J]. TheScience of the Total Environment.1994,154(l):71-86.
    [56]廖国礼,吴超.资源开发环境重金属污染与控制[M].长沙:中南大学出版社,2005.
    [57]王电站,周立祥.去除污泥中重金属铬的生物淋滤反应器设计与应用[J].环境污染治理技术与设备,2005,(11):1-5.
    [58]胡亨魁,罗启武,刘大银.解毒铬渣浸特性的研究[J].重庆环境科学,1989,(06):23-26.
    [59]王振兴.重金属Cr(VI)迁移模型及健康风险动态评价预警研究[D].长沙:中南大学,2011.
    [60] Sarangi A, Krishnan C. Comparison of in vitro Cr(VI) reduction by CFEs ofchromate resistant bacteria isolated from chromate contaminated soil[J].BioresearchTechnology,2008,99:4130-4137.
    [61] Mohan.D, Singh K P, Singh V K. Trivalent chromium removal from wastewaterusing low cost activated carbon derived from agricultural waste material and activatedcarbon fabric cloth [J]. Journal of Hazardous Materials,2006, B135:280-295.
    [62]王凤花,罗小三,林爱军,等.土壤铬(VI)污染及微生物修复研究进展[J].生态毒理学报,2010,5(2):153-161.
    [63] Mohanty K, Jha M, Biswas M N, et al. Removal of chromium(VI)from diluteaqueous solutions by activated carbon developed from Terminalia arjuna nuts activatedwith zinc chloride[J]. Chemical Engineering Science,2005,60:3049-3059.
    [64]刘光生,李太山.硫酸亚铁还原法除地下水中六价铬[J].重庆环境科学,1995,17(4):21-23.
    [65]惠秀娟,马汐平,徐成斌,等.沈阳市新城子铬渣堆存区土壤铬污染分布及形态分析[J].黑龙江环境通报,2009,33(3):50-53.
    [66]古昌红,单振秀,王瑞琪.铬渣对土壤污染的研究[J].矿业安全与环保,2005,(6):18-20.
    [67]肖小云,郭学谋.铬渣堆场周围环境污染现状研究[J].湖南农业科学,2008,(3):102-103.
    [68]刘玉强,李丽,王琪,等.典型铬渣污染场地的污染状况与综合整治对策[J].环境科学研究.2009,22(2):249-254.
    [69]裴廷权,王里奥,钟山,等.典型铬渣简易掩埋场铬渣及土壤铬污染特征和处置分析[J].环境工程学报,2005,2(7):994-999.
    [70]曹泉,王兴润.铬渣污染场地污染状况研究与修复技术分析[J].环境工程学报,2009,3(8):1493-1497.
    [71]黄顺红,杨志辉,柴立元,等.铬渣堆放场中金属铬对周边土壤微生物毒性效应[J].中南大学学报(自然科学版),2009,40(1):25-30.
    [72]蔡少华,和文祥,梁艳茹,等.六价铬污染土壤后形态变化及其对土壤脲酶活性的影响[J].农业环境科学学报,2009,25(2):251-255.
    [73]罗建峰,曲东.青海海北化工厂铬渣堆积场土壤铬污染状况研究[J].西北农业学报2006,15(6):244-247.
    [74] Mohan, D, Singh K P, Singh V K. Trivalent chromium removal from wastewaterusing low cost activated carbon derived from agricultural waste material and activatedcarbon fabric cloth [J]. Journal of Hazardous Materials.2006, B135:280-295.
    [75]白利平,王业耀.铬在土壤及地下水中迁移转化研究综述[J].地质与资源,2009,18(2):144-148.
    [76]荣伟英,周启星.铬渣堆放场地土壤的污染过程、影响因素及植物修复[J].生态学杂志,2010,29(3):598-604.
    [77] Francoise C. Richard and Alain C.M. Bourg. Aqueous geochemistry of chromium:review[J]. Water Research,1991,25(7):807-816.
    [78] Alumaa P, Kirso U, Petersell V, et al. Sorption of toxic heavy metals to soil[J].International Journal of Hygiene and Environmental Health,2003, B100:53-63.
    [79] Yu L J, Shukla S S, Dorris K L, et al. Adsorption of chromium from aqueoussolutions by maple sawdust[J]. Journal of Hazardous Materials,2003, B100:53—63.
    [80] Eary L E, Davis A. Geochemistry of an acidic chromiumsulfate plume[J].AppliedGeochemistry,2007,22:357-369.
    [81]任爱玲,郭斌,刘三学,等.含铬污液在土壤中迁移规律的研究.城市环境与城市生态[J].2000,13(2):54-56.
    [82]陆根初.铬污染在含水层中运移与扩散规律探索[J].工程勘察,1980,(2):14-15.
    [83]高洪阁,李自英,陈丽惠,等.铬在土壤和地下水中的相互迁移规律及地下水中铬的去除方法[J].环境研究,2002,5(1):23-24.
    [84]李桂菊.铬在植物及土壤中的迁移与转化[J].中国皮革,2004,3(4):45-49.
    [85]任欣,刘丸平,刘金洁,等.铬(VI)在粘土衬层中迁移转化的研究[J].环境科学研究,1994,7(4):25-30.
    [86]徐慧,仵彦卿.六价铬在具有渗透性反应墙的渗流槽中迁移实验研究[J].生态环境学报2010,19(8):1941-1946
    [87] Kumpiene J, Montesinos I C, Lagerkvist A, et al. Evaluation of the critical factorscontrolling stability of chromium, copper, arsenic and zinc in iron-treated soil[J].Chemosphere,2007,67:410-417.
    [88]吴敦敖,鲁文毓.铬在土壤一地下水系统中的污染研究[J].环境科学学报,1991,11(3):276-283.
    [89]刘雪,王兴润,张增强. pH和有机质对铬渣污染土壤中Cr赋存形态的影响,环境工程学报,2010,4(6):1436-1440.
    [90]朱月珍.影响土壤中铬迁移转化的几个因素[J].土壤学报,1985,22(4):390-393.
    [91] Gong C R, Donahoe R J. An experimental study of heavy metal attenuation andmobility in sandy loam soils[J]. Applied Geochemistry,1997,12:243-254.
    [92] Banks M K, Schwab A P, Henderson C. Leaching and reduction of chromium in soilas affected by soil organic content and plants[J].Chemosphere2006,62:255-264.
    [93] Makino T, Kamewada K, Hatta T, et al. Determination of optimal chromiumoxidation conditions and evaluation of soil oxidative activity in soils[J]. Journal ofGeochemical Exploration,1998,64:435-441.
    [94]陈英旭,何增辉,吴建平.土壤中的铬的形态及其转化[J].环境科学,1994,15(3):53-56.
    [95]陈英旭,骆永明,朱永官,等.土壤中铬的化学行为研究V.土壤对Cr(III)吸附和沉淀作用的影响因素[J].土壤学报,1994,31(1):77-85.
    [96]陈英旭,朱荫湄,袁可能,等.土壤中铬的化学行为研究Ⅰ.几种矿物对六价铬的吸附作用[J].浙江农业大学学报,1990,16(2):119-124.
    [97]陈英旭,朱荫湄,袁可能,等.土壤中铬的化学行为研究Ⅱ.土壤对Cr(VI)吸附和还原动力学[J].环境科学学报,1089,9(2):137-143.
    [98]刘云惠,魏显有,王秀敏,等.土壤中铬的吸附与形态提取研究[J].河北农业大学学报,2000,23(1):16-20.
    [99]伍钧,漆辉,郭佳.黄壤对铬Cr(VI)的吸附特性的研究[J].农业环境科学学报,2003,22(3):333-336.
    [100]易秀,李五福.黄土性土壤对Cr(VI)的吸附还原动力学研究[J].干旱区资源与环境,2005,5(3):41-45.
    [101]易秀,李佩成.陕西交口灌区地下水防铬砷污染安全埋深的探讨[J].农业环境科学学报,2005,24(2):333-336.
    [102]易秀.黄土性土壤对Cr(III)的吸附特性及转化率研究[J].农业环境科学学报,2004,23(4):700-704.
    [103]徐建,戴树桂,刘广良.土壤和地下水中污染物迁移模型研究进展[J].土壤与环境,2002,11(3):299-302.
    [104]张红梅,速宝玉.土壤及地下水污染研究进展[J].灌溉排水学报,2004,23(3):70-74.
    [105] Palmer I, Mansoori J.How permeability depends upon stresss and pore pressure incoalbeds:A new model[M].SPE REE,1998.
    [106] Bai M,Elsworth D. Coupled processes in subsurface deformation, flowandtransport.Reston,[M].VA: ASCEPRESS,2000.
    [107] Joshua Taron, Derek Elsworth, Ki-Bok Min.Numerical simulation of thermal-hydrologic-mechanical-chemical processes in deformable, fractured porous media[J].International Journal of Rock Mechanics&Mining Sciences,2009,46(5):842-854.
    [108] Chin-Fu Tsang. Introductory editorial to the special issue on the DECOVALEX-THMC project[J]. Environ Geol,2009,57:1217–1219.
    [109]孙培德,杨东全,陈奕柏.多物理场耦合模型及数值模拟导论[M].北京:中国科学技术出版社,2007.
    [110] Yeh G T,chang G R and Short T E. An exact peak capturing and oscillation-freescheme to solve advection-dispersion transport equations[J]. Water Resour. Res.,1992,28(11):2937-2951.
    [111] Neupauer R M and Wilson J L. Adjoint method for obtaining backward in timelocation and travel time probabilities of a conservative groundwater contaminant[J].Water Resour. Res.,1999,35(11):3389-3398.
    [112]薛禹群,谢春红著.地下水数值模拟[M].北京:科技出版社,2007.
    [113]陈泽昂,谢水波,何超冰,等.浅层地下水中污染物迁移模拟技术研究现状与发展趋势[J].南华大学学报(自然科学版),2005,(1):78-81.
    [114]黄凤玲.包气带黄土层中六价铬的分布运移规律试验研究及数学模拟[D].西安:西北农林科技大学,硕士学位论文,2008.
    [115]蔡金傍,段祥宝,朱亮.含铬废渣填埋场渗滤液污染地下水问题实例分析[J].安全与环境工程,2004,11(1):12-14.
    [116]傅臣家,刘洪禄,吴文勇,等.六价铬在土壤中吸持和迁移的试验研究[J].灌溉排水学报,2008,27(2):9-13.
    [117]张厚坚,王兴润,陈春云,等.典型铬渣污染场地健康风险评价及修复指导限值[J].环境科学学报,2010,30(7):1445-1450.
    [118]赵庆辉,王兴润,张增强.地下水六价铬运移的仿真及场地修复限值探讨[J].环境工程,2011,29(2):16-19.
    [119] Jeanine S.Geelhoed, Johannes C.L. Meeussen, et al. Identification andgeochemical modeling of Processes controlling leaching of Cr(VI)and other majorelements from chromite ore processing residue[J].Geochimica et Cosmochimica Acta,2002,66(22):3927-3942.
    [120] D.Deakin,L.J.West,D.I. Stewart,B.W.D. Leaching behaviour of a chromiumsmelter waste heap[J].Yardley Waste Management,2001,21:265-270.
    [121] Mangold D.C., C.F.Tsang. A summary of subsurface hydrological and hydrochem-ical models [J]. Rev.Geophys,1991,29:51-79.
    [122] Plummer L.N. Geochemical modeling of water-rock interaction: Past, present,future [J]. Water-Rock Interaction, Kharaka&Maest (eds.)1992,23-33.
    [123]马腾.淋滤作用影响下放射性核素在浅层地下水系统中迁移的反应一输运耦合模拟[D].武汉:中国地质大学,2000.
    [124]谢水波,刘奇,张晓健,等.尾矿库区地下水中U(VI)的反应一输运耦合模拟及参数分析[J].水科学进展,2006,17(6):803-807.
    [125]李义连,王焰新.娘子关泉域岩溶水硫酸盐污染的地球化学模拟分析[J].地球科学,2000,25(5):467-471.
    [126] Health safety and environment guidelines for chromium[M].Paris: Internationalchromium development association,2001.
    [127] Korallus. Chromium compounds: Occupational Health, toxicological andbiological monitoring[J].Toxicological and environment chemistry,1986,(12):47-59.
    [128]王永增.铬渣污染环境的经济损失分析[J].中国资源综合利用,2002,11:31-32.
    [129]李冬,司继涛,王洪涛.铬渣处理处置方法的生命周期评价[J].现代化工,2006,(S1):298-301.
    [130]兰嗣国,殷惠民,狄一安.浅谈铬渣解毒技术[J].环境科学研究,1998,11(3):53-56.
    [131]陈传红.21世纪初期中国环境保护与生态环境建设科技发展战略研究[M].北京:中国环境科学出版社,2001.
    [132]丁翼.中国铬盐生产状况与展望[J].化工进展,2004,23(4):345~349.
    [133]宋菁.典型铬渣污染场地调查与修复技术筛选[D].青岛:青岛理工大学,2010.
    [134]徐成斌,孟雪莲,马溪平,等.铬渣堆存区铬污染土壤特性的研究[J].安徽农业科学,2010,38(21):11363-11364.
    [135]肖利萍.煤研石淋溶液对地下水系统污染规律的研究[D].辽宁工程技术大学,2007.
    [136]姜利国.煤矸石山中多组分溶质释放-迁移规律的研究[D].辽宁工程技术大学,2010.
    [137]刘兆昌,张兰生,聂永丰,等.地下水系统的污染与控制,第一版[M].北京:中国环境科学出版社,1991.
    [138]仵彦卿.多孔介质污染物迁移动力学[M].上海:上海交通大学出版社,2007.
    [139]贝尔.多孔介质流体动力学[M].李竞生,陈崇希译,北京:中国建筑工业出版社,1983.
    [140]赵阳升.多孔介质多场耦合作用及其工程响应[M].北京:科学出版社,2010.
    [141]董志勇.环境水力学[M].北京:科学出版社,2006.
    [142]魏新平,王文焰.溶质运移理论的研究现状和发展趋势[J].灌溉排水,1998,(4):58-63.
    [143] Butts,M.B., Jensen,K.H. Experimental and Numerical Study of Multiphase Flowand Transport[J]. American GeoPhysical Union, AGU, Fall Meeting, SanFrancisco, CA.EOS, Transactions of the AGU,1995.
    [144]王全九,邵明安,郑纪勇.土壤中水分运动与溶质迁移[M].北京:中国水利水电出版社,2007.
    [145]朱学愚,钱孝星.地下水水文学[M].北京:中国环境科学出版社,2005.
    [146] Kotas J, Stasicka Z. Chromium occurrence in the environment and methods of itsspeciation[J]. Environmental pollution,2000,107(3):263-283
    [147] Calder LM. Chromium contamination of groundwater [J]. Advances inenvironmental science and technology,1988,20:215-229.
    [148]黄顺红.铬渣堆场铬污染特征及其铬污染土壤微生物修复研究[D].长沙:中南大学,2009.
    [149] Tessier A,Campbell PGC, Bisson M. Sequential extraction procedure for thespeciation of particulate trace metals [J]. Analytical Chemistry,1979,51(7):844-850.
    [150] Eary LE,Rai D. Chromate reduction by subsurface soils under Acidic Conditions[J]. Soil Science Society of America Journal,1991,55(3):676-683.
    [151]聂永丰,蒋建国,张继红,等.废催化剂浸出规律的静态实验方法[J].环境科学,1999,(5):76-78.
    [152]熊顺贵.基础土壤学[M].北京:中国农业大学出版社,2001.
    [153]近藤精一,石川达雄,安部郁夫著,李国希译,吸附科学(原著第二版)[M].北京:化学工业出版社,2006.
    [154]叶为民,金麒,黄雨,等.地下水污染试验研究进展[J].水力学报,2005(,2):1-6.
    [155]张志红,孙保卫,饶为国.北京地区不同类型土壤弥散试验[J].北京工业大学学报,2010,36(10):1376-1380.
    [156]祁敏.佳木斯地区地下水弥散实验研究[J].水文地质工程地质,1996.(6):48-51.
    [157]张会,马朝文,李勇.锦州自来水公司南山水源地污染调查及保护措施[J].农业与技术,2009.29(1):94-95.
    [158]陈崇希.地下水动力学[M].武汉:中国地质大学出版社,2006.
    [159]张红梅.饱和-非饱和土中氟运移规律动态实验及数值模拟研究[D].南京:河海大学,2005.
    [160]彭泽洲,杨天性,梁秀娟等.水环境数学模型及其应用[M].北京:化学工业出版社,2007.
    [161]常文越,陈晓东,冯晓斌,等.含铬(Ⅵ)废物堆放场所土壤/地下水的污染特点及土著微生物的初步生物解毒实验研究[J].环境保护科学,2002,28(114):31-33.
    [162]张丽华,王恩德.辽宁省新城子铬渣有毒物质含量分析及铬渣处理对策研究[J].中国环境科学学会学术年会优秀论文集,2008:868-870.
    [163]赵光辉,常文越,陈晓东,等.典型场地铬(Ⅵ)迁移路径分析及耐铬植物初步筛选[J].环境保护科学,2011,(3):40-43.
    [164]赵万有,郑玉兰,关连微.铬渣对地下水、土壤、蔬菜污染机制的研究[J].环境保护科学,1994,20(1):15-19.
    [165] EPA, U.S.A. Handbook on Treatment of Hazardous Waste Leachate[S]. PB87-152328/REB,1987.5-8.
    [166]李季.铬渣山的危害[J].新农业,1989,(11):1-2.
    [167]孙萍.铬渣的防渗堆放[J].冶金循环经济发展论坛,2008,322-323.
    [168]刘长河,兰铁刚.铬渣堆场地下混凝土防渗墙技术及应用[J].无机盐工业,2005,37(3):45-47.
    [169]菲利普·B·贝蒂恩特等著.地下水污染迁移与修复[M].施周等译,北京:中国建筑工业出版社,2010.
    [170]李云琴.铬渣污染控制及资源化利用试验研究[D].福州:福州大学,2002.
    [171]谭建红.铬渣治理及综合利用途径探讨[D].重庆:重庆大学,2005.
    [172]杨国清,刘康怀.固体废物处理工程[M].北京:科学出版社,2000.
    [173]郑礼胜,王士龙,李建霞.铬渣的稳定化研究[J].现代化工,1999,(3):31-33.
    [l74]杨治立,邱会东,兰伟等.铬渣无害化和资源化处置技术研究现状[J].冶金能源,2008,27(3):59-62.
    [175]张茂山,肖勇,朱元洪,等.铬渣治理技术及应用现状[J].中国资源综合利用,2007,25(10):15-17.
    [176]王兴润,李丽,刘雪,等.铬渣治理技术的应用进展及特点分析[J].中国给水排水,2009,25(4):10-14.
    [177]霍冀川、谭敏、曹卫东,等.铬渣、矿渣复合硅酸盐水泥研究[J].矿产综合利用,2000,(l):41-45.
    [178]齐涛、张鼓.铬渣零排放绿色化工新过程[J].化工冶金,1999,(l):92-97.
    [179]马丽娜.铬渣污染场地含铬废水的处理[D].武汉:武汉科技大学,2011.
    [180]孔国栋,孟凡伟.铬渣渗滤液处理方法及应用现状[J].中国资源综合利用,2008,26(2):26-28.
    [181]杨梅,费宇红.地下水污染修复技术的研究综述[J].勘察科学技术,2008,4:21-26.
    [182]陈慧敏,仵彦卿.地下水污染修复技术的研究进展[J].净水技术,2010,25(6):5-8.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700