用户名: 密码: 验证码:
可穿戴型并联式髋关节助力机器人研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
助力机器人是目前机器人领域研究和发展的一个重要课题,而可穿戴型助力机器人又是使助力机器人走向室外更广阔空间的必要手段之一。可穿戴型助力机器人通过把助力机构穿戴在使用者身上,进而可以辅助使用者,如具有行动困难的老年人或残障人士,可以帮助他们克服困难,实现正常人的日常行动。因此,可穿戴型助力机器人受到领域专家学者的重视。随着现代机器人技术的发展,可穿戴型助力机器人面临巨大的发展挑战与机遇。可穿戴助力机器人的研究囊括了从膝关节助力、髋关节助力,到人体下肢助力、上肢助力,从特定动作如上下楼梯、行走到广泛动作的助力。
     本论文面向人体髋关节助力,从各个方面讨论了髋关节助力机器人的研究现状和应用需求。以国家“十一五”863服务机器人重点项目“可穿戴型助残助老智能机器人示范平台”为基础,旨在进一步深入研究认识、理解人体助力的基础上,设计和研制出针对人体特定部位髋关节的助力机器人,达到人体髋关节3自由度助力和减轻髋关节负担的目的。本论文的主要研究工作概括如下:
     基于人体髋关节的解剖结构特征,从机器人学、人体工程学、仿生学的角度,设计和研制了一套新型的髋关节3自由度助力机构。该机构不同于其他髋关节助力机构,它是一个6自由度3UPS并联机构,能够和人体大腿共同完成3自由度的运动。另外为了满足建立人体大腿和助力机构的运动学模型的要求,采用了计算机视觉技术来检测人体髋关节的位置信息;
     结合串联机构学,构建了人体大腿和UPS支链的运动学模型,并且构建了助力机构的逆运动学雅克比。针对并联机构比较难建立正雅克比的问题,我们从并联机构的几何约束方程出发,通过微分法得到了被动关节和主动关节之间的速度关系,在此基础上提出了新的并联机构正运动学雅克比构建方法;
     在机构特性方面,无论是串联机构,还是并联机构,都存在机构奇异的问题。目前的机构奇异空间求解往往是通过扫描的方法实现的,求解效率比较低。本文结合随机逼近的思想,利用机构雅克比本身具有的特性,提出了一种新的机构奇异值快速查找算法;
     助力机构的设计优劣直接影响到助力机构的最终助力结果,但是目前仍然没有有效的方法可以在助力机构的设计优化阶段评价其助力性能。针对该问题,我们从助力机构的本质物理意义出发,从运动学的角度,通过比较人体模型的可操作性椭球和从动助力机构的可操作性椭球,可以评价助力机构的助力可行性和助力效果。该方法有助于提高可穿戴型助力机器人的设计效率,加强其助力性能;
     助力机构的控制直接影响到助力机构的助力性能。结合助力机构与人体之间的力传感器提供的人机交互信息,我们采用了基于假想柔顺的控制策略。通过仿真实验、基于假肢的实验以及实际人腿实验,验证了该控制策略的可行性。同时也验证了本文提出的并联机构正运动学雅克比建立方法的正确性。
Among the assistive robots, with supplementingthe function of human limb or replacing it completely, wearable assistive robot has become an attractive method of power assisting, since it can be used for a wide range of application. Wearable assistive robot, which is person-oriented robots, can be worn by human operator through operating alongside human limbs.With the assistance provided by the wearable assistive robot, the operator feels scaled-down loads as part of the load is being assisted by the wearable assistive robot.
     In our research, we focused on human hip joint power assist, which is also part of the work of the Research of Intelligent Robot for the Old and Disabled Power Assist (supported by the National High Technology Research and Development Program863). The aim is to design and manufacture a human hip joint3-DOF power assist robot.
     Based on the analytical architecture of hip joint and combined with robotics, bionics and human engineering, we have designed a robot for human hip joint3-DOF power assist. Different than other hip joint assistive robots, the proposed robot is a3UPS parallel mechanism. This robot can keep hip joint's own3-DOF, and then move with human thigh avoiding interference. In order to obtain the parameters of hip joint, we have designed a stereophotogrammetry localization system. This system can measure the position of hip joint center. Then we can build the kinematical model for human thigh and assistive mechanism.
     For the human limb and assistive robot, we consider them as a whole parallel mechanism. Through the serial robotics, we build the kinematics model for human thigh and UPS chain, and then we build the inverse Jacobian for the parallel mechanism. In order to build the direct Jacobian for parallel mechanism, we proposed a method based on differing the geometry constraint equations. After differentiation, we can obtain the velocity relation between the passive joints and active joints, and then we can use this relation to build the direct Jacobian for parallel mechanism.
     For the mechanical singularity, we proposed a quick algorithm based on stochastic approximation (SA) which is used to seek mechanical singularity. Different from conventional methods, the proposed SA algorithm is quicker and much more effective. Integrated with mechanical kinematic Jacobian matrix, the SA algorithm is based on the strict and integrated illation process. During the illation process, the restrictive qualifications for this algorithm are also outlined. Through the applications on several mechanisms, it is found that the algorithm can be used for those mechanisms which satisfy the restrictive qualifications to seek out singular points near the initial working points in workspace quickly and effectively.
     The purpose of the design optimization for assistive mechanism is ensuring that assistive mechanism is able to satisfy assistive feasibility and realizes better assistive effect in the whole expected workspace. For this purpose, based on manipulability comparison between assisted limb and slave-active-assistive mechanism, Manipulability Inclusive Principle (MIP) is proposed as an effective and simple method to consider assistive feasibility and assistive effect in terms of kinematics. Then MIP evaluation criterions are proposed to evaluate assistive feasibility and assistive effect in mathematical ways. Concretely, weak inclusive judgment algorithm and strong inclusive judgment algorithm are proposed for judging inclusive cases to evaluate assistive feasibility, and evaluation criterion proposed for evaluating assistive effect considers in terms of assistive efficiency, assistive ability and assistive isotropy. The applications show design optimization based on MIP can effectively optimize the parallel assistive mechanism to realize better assistance.
     The control stratgy also has influence on assistive result. The basic principle for the control of assist robot rests on the notion that the assistive robot needs to shadow the wearer's movements quickly, and without delay. This requires an effective control to minimal the response between human and the exoskeleton quickly, where in our research pseudo-compliance control is adopted. Through the simulation, experiment on artificial limb and experiment on human limb, we have proved that the control stragety is available for hip joint assistive robot. Additionally, the results also show that the prposed method for building direct parallel Jacobian is available.
引文
[1]B.J. Makinson, General Electric CO. Research and Development Prototype for Machine Augmentation of Human Strength and Endurance, Hardiman I Project [M] General Electric Report S-71-1056, Schenectady, NY,1971.
    [2]Adam Zoss, H. Kazerooni, Andreaw Chu. On the Mechanical Design of the Berkeley Lower Extremity Exoskeleton (BLEEX) [C]. IEEE/RSJ International Conference on Intelligent Robots and Systems,2005:3132-3139.
    [3]M.伍科布拉托维奇著/马蓓荪译,步行机器人和动力型假肢,北京:科学出版社,1983.7.
    [4]路甬祥,陈鹰.人机一体化系统科学体系和关键技术[J].机械工程学报,1995,1:1-7.
    [5]Yoshikawa T. Foundations of robotics:analysis and control [M]. Cambridge:MIT Press, 1990.
    [6]蒋新松.未来机器人技术发展方向的探讨[J].机器人,1996,5:285-291.
    [7]钱学森主编.论人体科学与现代科技[M].上海:上海交通大学出版社,1998:1-59.
    [8]熊有伦.机器人学[M].北京:机械工业出版社,1992.
    [9]郑秀媛等.运动生物力学进展[M].北京:国防工业出版社,1998.
    [10]Berkley Robotics Laboratory. http://www.berkeleybionics.com/Unrestricted/HULC.html.
    [11]Yamamoto Keijiro, Hyodo Kazuhito, Ishi Mineo, Matsuo Takashi. Development of power assisting suit for assisting nurse labor [J]. JSME International Journal, Series C:Mechanical Systems, Machine Elements and Manufacturing,2002,45(3):703-711.
    [12]Kota Kasaoka, Yoshiyuki Sankai. Predictive Control Estimating Operator's Intention for Stepping-up Motion by Exo-Sckeleton Type Power Assist System HAL [C]. Proceedings of 2004 IEEE/RSJ International Conference on Intelligent Robots and Systems,2004:1578-1583.
    [13]Tomohiro Hayashi, Hiroaki Kawamoto, Yoshiyuki Sankai. Control Method of Robot Suit HAL working as Operator's Muscle using Biological and Dynamical Information [C]. Proceedings of 2005 IEEE/RSJ International Conference on Intelligent Robots and Systems, 2005:3455-3460.
    [14]Feng Chen, Yong Yu, Yunjian Ge. Dynamic Model and Motion Control Analysis of the Power Assist Intelligence Leg [C]. Proceedings of the 6th World Congress on Control and Automation,2006.
    [15]Feng Chen, Yong Yu, Yunjian Ge, Baoyuan Wu, Jian Sun. Basic Research on Power Assist Walking Leg Using Force Velocity Control Strategies [C]. Proceedings of the 2006 IEEE International Conference on Information Acquistion,2006.
    [16]Feng Chen, Yong Yu, Yunjian Ge, Jian Sun, Baoyuan Wu. A PAWL for Enhancing Strength and Endurance during Walking Using Interaction Force and Dynamical Information [C]. Proceedings of the 2006 IEEE International Conference on Robotics and Biomimetics, 2006.
    [17]Feng Chen, Yong Yu, Yunjian Ge, Jian Sun, Xiaohong Deng. A PAWL for enhancing strength and endurance during walking using interaction force and dynamical information, in:Climbing & walking robots, towards new applications [M]. Austria:Ⅰ-Tech Publishers, 2007:417-428.
    [18]Yong Yu, Wenyuan Liang. Design Optimization for Lower Limb Assistive Mechanism Based on Manipulability Inclusive Principle [C]. Proceedings of the 2012 IEEE International Conference on Robotics and Biomimetics,2012.
    [19]Yong Yu, Wenyuan Liang. Design Optimization for Parallel Mechanism Using on Human Hip Joint Power Assisting Based on Manipulability Inclusive Principle [C]. Proceedings of the 2012 IEEE/RSJ International Conference on Robotics and Automation,2012: 2306-2312.
    [20]Yong Yu, Wenyuan Liang, Yunjian Ge. Jacobian Analysis for Parallel Mechanism Using on Human Walking Power Assisting [C]. Proceedings of the 2011 IEEE International Conference on Mechatronics and Automation,2011:282-288.
    [21]Yong Yu, Wenyuan Liang, Yunjian Ge. Analysis of Parallel Mechanism for Human Hip Joint Power Assist [C]. Proceedings of the 8th World Conference on Intelligent Control and Automation,2010:1444-1449.
    [22]Yong Yu, Wenyuan Liang, Yunjian Ge. A Parallel Mechanism Used on Human Hip Joint Power Assist [C]. Proceedings of the 2009 IEEE International Conference on Robotics and Biomimetics,2009:1007-1012.
    [23]Yong Yu, Hongbing Tao, Wenyuan Liang, et al. A Parallel Mechanism and Pseudo-compliance Control Using on Wearable Power Assist Hips [C]. Proceedings of the 2012 IEEE International Conference On Mechatronics and Automation,2012:1502-1507.
    [24]M. Wapler et al. A stewart platform for precision surgery [J]. Trans. Of the Institute of Measurement and Control,2003,25:329-334.
    [25]D. Stewart. A platform with six degrees of freedom [J]. Proceedings of the Institution of Mechanical Engineers,1965,180:371-385.
    [26]Wikipedia..http://en.wikipedia.org/wiki/Hip.
    [27]黄真,孔令富,方跃法.并联机器人机构学理论及控制[M].北京:机械工业出版社,1997.
    [28]J.P. Merlet. Parallel Robots [M]. Spring:Solid Mechanics and its Applications,1999(128).
    [29]Mircea Badescu, Constantinos Mavroidis. Workspace Optimization of 3-Legged UPU and UPS Parallel Platforms With joint Constraints [J].Jouranl of Mechanical Design,2004,126: 291-300.
    [30]S.A. Joshi. Comparison Study of a Class of 3-DOF Parallel Manipulators [D]. University of Maryland, College Park, May,2002.
    [31]C. Gosselin, J. Angeles. The Optimum Kinematic Design of a Spherical Three-Degree-of-Freedom Parallel Manipulator [J]. ASME J. Mech. Transm., Autom. Des., 1989:202-207.
    [32]A. Cappozzo, F. Catani, Della Croce, U. Leardini. Position and orientation in space of bones during movement:anatomical frame definition and determination [J]. Clinical Biomechanics,1995,10:171-178.
    [33]S. Corazza, L. Mundermann, T. Andriacchi. A framework for the functional identification of joint centers using markerless motion capture, validation for the hip joint[J]. Journal of Biomechanics,2007,40:3510-3515.
    [34]R. Stagni, A. Leardini, A. Cappozzo, M.G. Benedetti, A. Cappello. Effects of hip joint centre mislocation on gait analysis results [J]. Journal of Biomechanics,2006,39:1096-1106.
    [35]B. Jaramaz, A.M. Di Gioia, Blackwell, C.M. Nikou. Computer assisted measurement of cup placement in total hip replacement [J]. Clinical Orthopaedics and Related Research,1998, 354:70-81.
    [36]G.K. Seidel, D.M. Marchinda, M. Dijkers, R.W. Soutas-Little. Hip joint center location from palpable bony landmarks-a cadaver study [J]. Journal of Biomechanics,1995,28:995-998.
    [37]A.L. Bell, D.R. Pedersen, R.A. Brand. A comparison of the accuracy of several hip center location prediction methods [J]. Journal of Biomechanics,1990,23:617-621.
    [38]A. Cappozzo. Gait analysis methodology [J]. Human Movement Science 1984,3:25-54.
    [39]S.J. Piazza, N. Okita, P.R. Cavanagh. Accuracy of the functional method of hip joint centre location:effects of limited motion and varied implementation [J]. Journal of Biomechanics, 2001,34:967-973.
    [40]S.S.H.U. Gamage, J. Lasenby. New least squares solutions for estimating the average centre of rotation and the axis of rotation [J]. Journal of Biomechanics,2002,35:87-93.
    [41]F. Marin, H. Mannel, L. Claes, L. Durselen. Accurate determination of a joint rotation center based on the minimal amplitude point method [J]. Computer Aided Surgery,2003,8: 30-34.
    [42]E. Stindel, D. Gil, J-L. Briard, P. Merloz, F. Dubrana, C. Lefevre. Detection of the center of the hip joint in computer-assisted surgery:an evaluation study of the Surgetics algorithm [J]. Computer Aided Surgery,2005,10(3):133-139.
    [43]F. Picard, F. Leitner, A. Gregori, P. Martin. A cadaveric study to assess the accuracy of computer-assisted surgery in locating the hip center during total knee arthroplasty [J]. The Journal of Arthroplasty 2007,22(4):590-595.
    [44]S. Corazza, G. Pillonetto, R. Frezza, C. Cobelli. Numerical approach to skin artifacts correction in stereophotogrammetry [C]. Proceedings of the 27th Annual Meeting of the American Society of Biomechanics,2003.
    [45]A. Cappozzo. Three-dimensional analysis of human locomotor acts:experimental methods and associated artefacts [J]. Hum Mov. Sci.,1991,10:589-602.
    [46]A. Cappozzo, U. Della Croce, A. Leardini, L. Chiari. Human movement analysis using stereophotogrammetry. Part 1. Theoretical background [J]. Gait Posture,2004.
    [47]L. Chiari, U. Della Croce, A. Leardini, A. Cappozzo. Human movement analysis using stereophotogrammetry. Part 2. Instrumental errors [J]. Gait Posture,2004.
    [48]B. Khambay, N. Nairn, A. Bell. Validation and reproducibility of a high-resolution three-dimensional facial imaging system [J]. Br J Oral Maxillfac Surg,2008,46(1):27-32.
    [49]A. Leardini, L. Chiari, U. Della Croce, A. Cappozzo. Human movement analysis using stereophotogrammetry. Part 3. Soft tissue artifact assessment and compensation [J]. Gait Posture,2005.
    [50]百度百科. http://baike.baidu.com/view/238259.htm.
    [51]蔡自兴.机器人学[M].北京:清华大学出版社,2000.
    [52]K.H. Hunt. Kinematic geometry of mechanisms [M]. Oxford:Clarendon Press,1978.
    [53]J.M. McCarthy. An introduction to theoretical kinematics [M]. MIT Press,1990.
    [54]R. Murray, ZX Li, S. Sastry. A Mathematical Introduction to Robotics Manipulation [M]. CRC press,1994.
    [55]J.M. Selig. Geometrical Methods in Robotics [M]. Srigner-Verlage,1996.
    [56]J. Angeles. Fundamentals of Robotic Mechanical Systems Theory, Method, and Algorithms [M]. Springer,1996.
    [57]R.S. Ball. The theory of screws [M]. Cambridge University Press,1998.
    [58]L.W. Tsai. Robot Analysis:the Mechanics of Serial and Parallel Manipulators [M]. Wiley, 1999.
    [59]黄真.空间机构学[M].北京:机械工业出版社,1989..
    [60]杨廷力.机器人机构拓扑结构学[M].北京:机械工业出版社,2004.
    [61]C. Gosselin, J. Angeles. Singularity analysis of closed loop kinematic chains [J]. IEEE Transaction on Robotics and Automation,1990,6(3):281-290.
    [62]J.S. Dai, J.J. Rees. Mobility in metamorphic mechanisms of foldable/erectable kinds [J]. ASME Journal of Mechanical Design,1999,121(3):375-382.
    [63]J.S. Dai, D. Li, Q. Zhang, G.G. Jin. Mobility analysis of a complex structured ball based on mechanism decomposition and equivalent screw analysis [J]. Mechanism and Machine theory,2004,39(4):445-458.
    [64]J.A. Carretero, M. Nahon, R.P. Podhorodeski. Workspace analysis of a 3-dof parallel mechanism [C]. Proceedings of the 1998 IEEE/RSJ International Conference on Intelligent Robots and Systems,1998:1021-1026.
    [65]Li-jie Zhang, Yue-wei Niu, Yong-quan Li, Zhen Huang. Analysis of the Workspace of 2-DOF Spherical 5R Parallel Manipulator [C]. Proceedings of the 2006 IEEE International Conference on Robotics and Automation,2006:1123-1128.
    [66]L. Sciavicco, B. Siciliano. Modelling and Control of Robot Manipulators [M]. Springer, 1999.
    [67]F. Chapelle, P. bidaud. A closed form for inverse kinematics approximation of general 6R manipulators using genetic programming [C]. Proceedings of the 2001 IEEE International Conference on Robotics and Automation,2001:3364-3369.
    [68]Jihong Lee, K.T. Won. Inverse kinematic solution based on decomposed manipulability [C], Proceedings of the 1999 IEEE International Conference on Robotics and Automation,1999: 1514-1519.
    [69]Yong Yu, Zhanwu Pei, Showzow Tsujio. Direct Jacobian Analysis of Closed-Loop Paralell Manipulators [C]. Proceedings of 2005 SICE System Integration Division Annual Conference,2005:2H2-4.
    [70]J.-P. Merlet. Direct Kinematics of Parallel Manipulators [J]. IEEE Transaction on Robotics and Automation,1993,9(8):842-846.
    [71]Stefan Dutre, Herman Bruyninckx, Joris De Schutter. The analytical Jacobian and its derivative for a parallel manipulator [C]. IEEE International Conference on Robotics and Automation,1997:2961-2966.
    [72]Yong Yu, Daisuke Yoshimitsu, Showzow Tsujio, Ryota Hayashi. Power assist system with power-damped operation information feedbacking [C]. IEEE International Conference on Robotics and Biomimetics,2009:1709-1714.
    [73]LA. Bonev, D..Zlatanov, C.M. Gosselin. Singularity analysis of 3-DOF planar parallel mechanism via screw theory [J]. ASME Journal of Mechanical Design,2003,125:573-581.
    [74]M. Carricato, V. Parenti-Castelli. Singularity-free fully isotropic translational parallel mechanisms [J]. International Journal of Robotics Research,2002,21(2):161-174.
    [75]Z. Huang, L.H. Chen, Y.W. Li. The singularity principle and property of Stewart parallel manipulator [J]. Journal of Robotic Systems,2003,20(4):163-176.
    [76]G. Liu, Y. Lou, Z. Li. Singularities of Parallel Manipulators:A Geometric Treatment [J]. IEEE Transaction on Robotics and Automation,2003,19(4):579-594.
    [77]J.-P. Merlet. Singular configurations of parallel manipulators and Grassmann geometry [J]. International Journal of Robotics Research,1989,8(5):45-46.
    [78]F.C. Park, J.M. Kim. Singularity analysis of closed kinematic chains [J]. ASME Journal of Mechanical Design,1999,121(1):32-38.
    [79]S.B. Nokleby, R.P. Podhorodeski. Reciprocity-based resolution of velocity degenracies (singularities) for redundant manipulators [J]. Journal of Mechanism and Machine Theory. 2001:397-409.
    [80]S.A. Joshi, L.W. Tsai. Jacobian analysis of limited-DoF parallel manipulators [J]. ASME Journal of Mechanical Design,2002,2:254-258.
    [81]E.F. Fichter. A Stewart platform-based manipulator:general theory and practical construction [J]. The International Journal of Robotics Research,1986,2:157-182.
    [82]陈翰馥.连续时间系统的随机能观测性和缺初值估计[J].中国科学,Ser.A,1978,3
    [83]朱允文.随机递推算法的某些新进展[J].大自然探索,1992,11(2):49-57.
    [84]H. Robbins, S. Monro. A stochastic approximation method [J]. Annals of Mathematical Statistics,1951,22:400-407.
    [85]E.G. Gladyshev. On Stochastic Approximation [J]. Theory of Probability and its Applications,1965,10:297-300.
    [86]James C. Spall. Adaptive Stochastic Approximation by the Simultaneous perturbation Method [J]. IEEE Transaction on Automatic Control,2000,45(10):1839-1853.
    [87]Jack K. Holmes. Two Stochastic Approximation Procedures for Identifying Linear Systems [J]. IEEE Transaction on Automatic Control,1969, JUNE:292-295.
    [88]奚宏生.随机过程引论[M].合肥:中国科学技术大学出版社.
    [89]Wenyuan Liang, Yong Yu, Yunjian Ge. A Quick Algorithm for Finding Mechanical Singularity by Stochastic Approximation [C]. Proceedings of the 2010 IEEE International Conference on Mechatronics and Automation,2010:1042-1047.
    [90]V. Parenti-Castelli, R. Di Gregorio, F. Bubani. Workspace and Optimal Design of a Pure Translation Parallel Manipulator [J].2000,.35(3):230-214.
    [91]C. Gosselin, J. Angeles. A global performance index for the kinematic optimization of robotic manipulators [J]. ASME Journal of Mechanical Design,1991,113:220-226.
    [92]L.W. Tsai, S. Joshi. Kinematics and optimization of a spatial 3-UPU parallel manipulator. ASME Journal Mechanical Design,2000,122:439-446.
    [93]J.-P. Merlet, D. Daney. Appropriate Design of Parallel Manipulators [M]. INRIA Sophia-Antipolis.
    [94]Richard E. Stamper, Lung-Wen Tsai. Optimization of a Three DOF Translational Platform for Well-Conditioned Workspace [M]. ISR,1997.
    [95]J.-P. Merlet. Jacobian, manipulability, condition number, and accuracy of parallel robots [J]. ASME Journal Mechanical Design,2006,128:199-206.
    [96]Wu Chao, Xin-Jun Liu, Liping Wang, Jinsong Wang. Optimal Design of Spherical 5R Parallel Manipulators Considering the Motion/Force Transmissibility [J]. ASME Journal Mechanical Design,2010,132:1-10.
    [97]T. Yoshikawa. Manipulability of robotic mechanisms [J]. International Journal of Robotics Research,1985,4(2):3-9.
    [98]D.W. Repperger, B.O. Hill, C. Hasser, M. Roark, C.A. Phillips. Human tracking studies involving an actively powered augmented exoskeleton [C]. Proceedings of 15th southern biomedical engineering conference,1996:28-31.
    [99]H. Kazerooni. The human amplifier technology at the University of California, Berkeley [J]. Robotics and autonomous systems,1996,19:179-187.
    [100]G.T. Huang. Wearable robots [M]. Technol Review:70-73.
    [101]Wikipedia. http://en.wikipedia.org/wiki/Electromyography.
    [102]S.B.Niku著/孙富春等译.机器人学导论-分析、系统及应用[M].北京:电子工业出版社,2004.
    [103]谢光汉,章云,李秀华,符曦,蔡自兴.机器人轨迹跟踪的滑膜变结构控制机器人[J].1999,22(1):46-49,56.
    [104]马毅潇,钱东海,赵锡芳,陈卫东.基于串级变结构神经网络的机器人补偿控制[J].上海交通大学学报,1999,33(7):842-846.
    [105]李清泉.自适应控制[J].计算机自动测量与控制,1999,7(3):56-60.
    [106]王耀南.机器人智能控制工程[M].北京:科学出版社,2004.
    [107]Richard P. Paul. Robot Manipulators:mathematics, programming, and control [M]. MIT Press,1981.
    [108]M.A. Jilani. Force Feedback Hydraulic Servo for Advanced Automation Machines. SM Thesis, MIT Mechanical Engineering Department,1974.
    [109]D.E. Whitney. Force feedback control of manipulator fine motions [C]. Proceedings of the Joint Automatic Control Conference,1976:687-693.
    [110]M.T. Mason. Compliance and force control for computer controlled manipulators [J]. IEEE Transactions on Systems, Man and Cybernetics,1981,11(6):418-432.
    [111]H. Bruyninckx, S. Dumey, S. Dutre, J. De Schutter. Kinematic models for model-based compliant motion in the presence of uncertainty [J]. International Journal of Robotics Research,1995,14:465-482.
    [112]J. De Schutter, H. Bruyninckx, S. Dutre, J. De Geeter, J. Katupitiya, S. Demey, T. Lefebvre. Estimating first-order geometric parameters and monitoring contact transitions during force-controlled compliant motions [J]. International Journal of Robotics Research,1999, 18:1161-1184.
    [113]中国新闻网:中国老年人口占总人口13.7%社会养老难题待破.
    [114]Kazuaki Sakai, Toshihiko Yasuda, Katsuyuki Tanaka. Improvement of Manipulation Torque Transfer and Assist Unit for One Hand Drive Wheelchair with a Triple Ring [C]. Proceedings of the 2009 IEEE International Conference on Robotics and Biomimetics, 2009.
    [115]Toshihiko Yasuda, Katsuyuki Tanaka. Strategies for collision Prevention of a Compact Powered Wheelchair using SOKUIKI Sensor and applying Fuzzy Theory [C]. Proceedings of the 2009 IEEE International Conference on Robotics and Biomimetics,2009.
    [116]Re Walk:http://www.argomedtec.com.
    [117]360个人图书馆:机器人能帮瘫痪病人L厕所.
    [118]K. Yamamoto, K. Hyodo, M. Ishi, T. Matsuo. Development of power assisting suit for assisting nurse labor [J]. JSME International Journal Series C Mechanical Systems, Machine Elements and Manufacturing 2002,45(3):703-711.
    [119]K. Kasaoka, Y. Sankai. Predictive control estimating operator's intention for stepping-up motion by exosckeleton type power assist System HAL [C]. Proceedings of the IEEE/RSJ International Conference on Intelligent Robots and Systems; 2004:1578-1583.
    [120]C.R. Carignan, M.P. Naylor, S.N. Roderick. Controlling shoulder impedance in a rehabilitation arm exoskeleton. Proceedings of the 2008 IEEE International Conference on Robotics and Automation [C],2008:2453-2458.
    [121]R.A.R.C. Gopura, K. Kiguchi. Development of a 6DOF exoskeleton robot for human upper-limb motion assist. International Conference on Information and Automation for Sustainability [C],2008:13-18.
    [122]J.C. Perry, J. Rosen, S. Burns. Upper-limb powered exoskeleton design. IEEE/ASME Transaction on Mechatronics,2007,12(4):408-417.
    [123]H. Kazerooni, R. Steger. The Berkeley lower etremity exoskeleton. Journal of Dynamic Systems, Measurement, and Control,2006,128(1):14-25.
    [124]C.J. Walsh, K. Pasch, H. Herr. An autonomous, underactuated exoskeleton for load-carrying augmentation. Proceedings of IEEE/RSJ International Conference on Intelligent Robots and Systems [C],2006:1410-1415.
    [125]J.E. Pratt, B.T. Krupp, C.J. Morse. The RoboKnee:an exoskeleton for enhancing strength and endurance during walking [C]. Proceedings of the 2004 IEEE International Conference on Robotics and Automation,2004:2430-2435.
    [126]http://www.lockheedmartin.com/us/products/hulc.html
    [127]T. Nakamura, K. Saito, Z.D. Wang, K. Kosuge. Realizing a posture-based wearable antigravity muscles support system for lower extremities [C]. Proceedings of the 2005 IEEE 9th International Conference on Rehabilitation Robotics,2005:273-276.
    [128]http://www.honda.co.jp/ASIMO/new-tech.
    [129]Wikipedia:Three Laws of Robotics.
    [130]百度百科:特种机器人.
    [131]H. Kazerooni, L. Huang, R. Steger. On the Control of the Berkeley Lower Extremity Exoskeleton (BLEEX) [C]. IEEE International Conference on Robotics and Automation, 2005:4353-4360.
    [132]THE MAN AMPLIFIER:http://www.christianristow.com/themanamplifier.htm.
    [133]Ilian Alexandrov Bonev.2002. Geometric Analysis of Parallel Mechanisms [D]:[Doctor]. Quebec:University Laval.
    [134]B.保罗著/汪一麟、董师予、石少琳译.机构运动学与动力学[M].上海:上海科学技术出版社,1989.
    [135]S. Lee, Y. Sankai. Power assist control for walking aid with HAL-3 based on EMG and impedance adjustment around knee joint [C]. IEEE International Conference on Intelligent Robotics and Systems,2002:1499-1504.
    [136]郑成闻.2011.基于柔性双足信息的助力机器人行走控制方法研究[D]:[硕士].合肥:中国科学技术大学.
    [137]陈峰.2007.可穿戴助力机器人技术研究[D]:[博士].合肥:中国科学技术大学.
    [138]姚俊章.2011.可穿戴助力机器人传感器信号预测算法和控制器的设计[D]:[硕士].合肥:中国科学技术大学.13328106719
    [139]PUMA History:http://theatronics.com/PUMA_History.html
    [140]XU Zong-gang. Singularity analysis of 3-PCR parallel mechanism [J]. Journal of Shangdong University of Technology,2009,23:17-20.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700