用户名: 密码: 验证码:
羟丁基壳聚糖的制备及其水凝胶敏感性(温度/pH)与生物相容性研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
壳聚糖是广泛存在于自然界的一种氨基多糖,是甲壳素经脱乙酰基后的产物。壳聚糖具有许多独特的性质如可生物降解、无毒性、生物相容性以及抗菌性等,在生物医学领域被广泛用作药物释放载体、组织工程支架、伤口敷料等。但是由于分子链上分布着大量的氨基和羟基,形成分子内和分子间氢键,壳聚糖的结晶度较高、溶解性差,这极大地限制了它的开发和应用。通过化学改性制备水溶性壳聚糖衍生物是改善壳聚糖性能、拓宽其应用范围的重要途径之一。本文通过醚化改性方法在壳聚糖分子链上引入羟丁基基团,制备出水溶性良好的壳聚糖衍生物—羟丁基壳聚糖,研究了改性后产物的理化性质、生物活性、水凝胶敏感性、生物相容性以及作为药物缓释载体的可行性,对壳聚糖类产品的潜在应用价值的开发具有重要意义。
     本实验以1,2-环氧丁烷在碱性条件下的开环产物为醚化剂,对壳聚糖进行改性反应,制得羟丁基壳聚糖。探讨了主要反应条件如反应介质、1,2-环氧丁烷用量、反应温度和时间对产物取代度、特性粘度及水溶性的影响。实验结果表明制备羟丁基壳聚糖的最佳反应条件为壳聚糖1g,10mL50%的NaOH水溶液,N2保护下碱化24h,挤出多余碱液,异丙醇水溶液中分散(异丙醇:水(v:v)=1:1),1,2-环氧丁烷20mL,60℃反应24h。元素分析法测定此条件下产物的取代度为1.91。采用红外光谱、固体13C核磁共振对产物的分子结构进行了表征,证明在壳聚糖分子上成功引入了亲水性的羟丁基基团,取代位置为C6-OH和C2-NH2。通过多种方法测定合成产物的理化性质,与原料壳聚糖相比,羟丁基壳聚糖具有水溶性好、pH适应范围广、吸湿保湿性强等优点。
     研究了羟丁基壳聚糖抑制细胞迁移、免疫活性及抑菌活性。采用划痕法研究了羟丁基壳聚糖对L929细胞迁移的影响作用,实验由预处理阶段和细胞迁移阶段组成,两个阶段都影响羟丁基壳聚糖对L929细胞迁移的作用。预处理24h时,羟丁基壳聚糖表现出了较强的抑制L929细胞迁移的作用;细胞迁移阶段中,羟丁基壳聚糖对L929细胞迁移的抑制作用在6h时最强,作用时间和羟丁基壳聚糖对L929细胞的相对迁移率没有相关性。另外,羟丁基壳聚糖的浓度也是一个重要影响因素,浓度越高对细胞迁移的抑制作用越强,与对照组相比,羟丁基壳聚糖(0.25mg/mL)对细胞迁移速度的最大抑制率可达到48%。在免疫活性方面,考察了羟丁基壳聚糖对小鼠巨噬细胞吞噬功能和正常小鼠淋巴细胞增殖作用的影响。羟丁基壳聚糖具有免疫调节活性:①羟丁基壳聚糖可增强小鼠单核巨噬细胞和腹腔巨噬细胞的吞噬功能,并且随着剂量的提高,吞噬功能增强;②羟丁基壳聚糖能够刺激小鼠脾淋巴细胞增殖,也可同时促进ConA、LPS诱导的T、B淋巴细胞的增殖作用。采用浊度法测定了羟丁基壳聚糖的抑菌活性,在浓度﹥0.01%时,羟丁基壳聚糖表现出了对大肠杆菌和金黄色葡萄球菌生长的抑制作用,随着浓度的增加对细菌生长的抑制作用增强。
     通过分子内和分子间氢键的交联作用,在未加入任何交联剂的情况下制备了羟丁基壳聚糖水凝胶。水凝胶体系具有温度敏感性,在冰浴中为澄清透明溶液,温度升高至室温则发生凝胶化。2.5wt%的羟丁基壳聚糖水凝胶半透明,有一定的强度,可用镊子夹起。通过流变学手段系统地考察了影响水凝胶性能的主要因素,结论如下:1.随着羟丁基壳聚糖浓度和温度的提高,成胶时间缩短,不同情况下羟丁基壳聚糖的成胶时间都﹤90s,属于快速响应型水凝胶。2.羟丁基壳聚糖浓度不同、溶剂的pH不同和溶剂中的离子种类都对成胶温度造成影响:随着羟丁基壳聚糖浓度的提高,成胶温度降低;不同pH溶剂制备的羟丁基壳聚糖水溶液,成胶温度也不同,5.0wt%羟丁基壳聚糖以蒸馏水为溶剂的成胶温度为16.5℃,pH7.4的PBS缓冲液中为15.5℃,pH4的HCl溶液中为17.5℃,pH10的NaOH溶液中则不成胶,证明溶剂的pH值影响羟丁基壳聚糖的成胶温度;溶剂中的离子种类也影响成胶温度,体系中加入0.1mol/L的CaCl2、MgCl2使羟丁基壳聚糖在0℃时已表现出凝胶性质,加入0.1mol的Na+,羟丁基壳聚糖的成胶温度降至3.5℃。3.羟丁基壳聚糖属于热可逆性水凝胶,可随着体系温度的变化不断地发生sol-gel-sol之间的转换。羟丁基壳聚糖的这些性质提示其具有温度和pH敏感性。采用SEM对凝胶的内部形态进行观察,羟丁基壳聚糖水凝胶内部为多孔网络结构,孔壁光滑致密,水凝胶内部孔径随着羟丁基壳聚糖含量的增加而减小。溶胀度测试显示羟丁基壳聚糖凝胶60min内就达到了最大溶胀平衡,属于快速溶胀型水凝胶。
     依据中国卫生部《生物材料和医疗器材生物学评价技术要求》,以羟丁基壳聚糖为材料,进行细胞毒性实验、溶血实验、急性毒性试验、肌肉植入和皮下注射实验,对羟丁基壳聚糖的体内、体外生物相容性进行综合评价。选用胎鼠成纤维细胞为靶细胞,采用细胞增殖度法检测羟丁基壳聚糖溶液及其水凝胶浸提液的细胞相容性,结果表明:水溶液组,当羟丁基壳聚糖浓度﹥0.5mg/mL时表现出微弱的细胞毒性;而浸提液组不同稀释倍数及不同作用时间内,胎鼠成纤维细胞的相对增殖率都高于75%,全部无细胞毒性作用,材料的毒性评级为Ⅰ级。采用直接接触法检测壳聚糖和羟丁基壳聚糖的血液相容性,浓度为1mg/mL的壳聚糖的溶血率极高,达到15.33%,羟丁基壳聚糖具有改善壳聚糖溶血性能的作用,壳聚糖和羟丁基壳聚糖浓度为1mg/mL,m(壳聚糖):m(羟丁基壳聚糖)≦1:1时,在1h无溶血和血细胞凝聚现象发生,溶血率﹤5%,满足生物材料对血液相容性的要求。同时,不同溶剂的羟丁基壳聚糖的溶血率也不同,以0.9%生理盐水为溶剂的溶血率低于以2%醋酸为溶剂的溶血率。急性毒性实验结果表明,不同稀释倍数的羟丁基壳聚糖水凝胶浸提液都没有表现出对小鼠的毒性作用,各实验组小鼠体重增加正常,无急性不良反应,处死后解剖观察小鼠主要脏器无异常。羟丁基壳聚糖溶胶埋植于大鼠背部肌肉及注射到皮下组织都可原位形成凝胶结构,在植入和注射后的不同时期处死动物进行相关检测后发现,肌肉植入和皮下注射后,凝胶周围组织没有明显的炎症反应,未发现组织变性和坏死。在植入的初期可见水凝胶周围有纤维薄膜产生,随着时间的延长,包膜变薄直至消失。羟丁基壳聚糖水凝胶可在肌肉组织和皮下组织内缓慢降解。以上结果证明,羟丁基壳聚糖是一种无细胞毒、不致急性溶血、无急性体内毒性、并且具有良好组织相容性的生物材料。
     以羟丁基壳聚糖为载体材料,BSA为模型药物,制备负载BSA的羟丁基壳聚糖水凝胶控释体系,并对其体外释放行为进行了研究。羟丁基壳聚糖水凝胶对BSA的释放效果受羟丁基壳聚糖浓度、释放环境温度及释放环境pH值的影响。随着水凝胶内羟丁基壳聚糖浓度的增加,BSA的释放速度减慢,释放量减少;与25℃下的释放行为相比,37℃条件下BSA的释放速率较快;释放介质的pH也影响BSA的释放行为,在pH=6.0时,羟丁基壳聚糖发生溶蚀,1h内已将BSA全部释放出来,释放介质pH=7.4比pH=8.0时,药物释放速度快。实验结果提示羟丁基壳聚糖水凝胶体系是一种理想的缓释载体,可以通过调节羟丁基壳聚糖浓度、释放环境的温度和释放环境的pH控制药物的释放行为。
Chitosan (CS) is a widespread amino polysaccharide in nature, and is the product ofchitin after deacetylation. CS has many unique properties, such as biodegradability,non-toxicity, good biocompatibility, and antibacterial activity. In the biomedical field, CS iswidely used for drug delivery carriers, tissue engineering scaffolds, wound dressings, and soon. However, there are many amino and hydroxyl groups in the macromolecular chain of theCS, and those groups can form intramolecular and intermolecularhydrogen bonds. Thisreason led to be higher crystallinity and poor soluble of CS, which greatly limits itsdevelopment and application. Preparation for water soluble CS derivatives by chemicalmodification will be one important way of improving the performance and broadening itsapplication range. In this thesis we prepare a good water-soluble CS derivative–hydroxybutyl chitosan (HBCS) by etherifying modification method, which introducehydroxybutyl groups into the CS molecular chain. Then for this modified product we researchthe physical and chemical properties, gelation properties, bioactivities and biocompatibilities,and all of these will have great significance for the development of the CS products on thepotential values.
     In this study, we use the ring-opening product of1,2-epoxy butane in the alkalinecondition as the etherification agent to modify the CS. We research the main reactionconditions, such as the reaction medium, the dose of1,2-epoxy butane, the temperature andtime, all of which would have an influence on the substitution of product, the intrinsicviscosity and water-solubility. The results show that the optimum condition for thepreparation of the HBCS is as follows: CS1g,10ml50%NaOH solution, under N2protection, reacting for24h, then squeezing out the excess lye, and dispersing in the mixtureof water and isopropanol (isopropanol: water (v: v)=1:1), then adding1,2-epoxy butane20ml, and at60℃reacting for24h. By the elemental analysis, we know the substitution of theproduct under this condition is1.91. By FTIR and solid-state13C NMR, we character themolecular structure of the product, and demonstrate the successful introduction of thehydroxybutyl groups into the CS molecular, confirm the substituted position is C6-OH andC2-NH2. We further determine the physical and chemical properties of the synthesis product, and find HBCS has good water-solubility, pH wide adaptation, strongly hygroscopic andmoisture capacity and other advantages, comparing with the raw material of CS.
     We research the inhibition of cell migration, immune activity and antibacterial activity ofHBCS, respectively. Using Scratch Test, we study HBCS play the role in L929cell migration.There were two phases in this experiment, the pretreatment and cell migration, and both of thephases affect the role of HBCS impacting on the cell migration. After pretreatment for24h,HBCS show the strong inhibition of L929cell migration. During the cell migration phase, weuse HBCS (0.25mg/mL) to stimulate cells, after24h scratching, and respectively at differenttimes observe the situation of cell migration. The results show that for L929cells thestrongest inhibiting effect of HBCS is after6h, and the relative mobility is not relevant to thecell migration time. In addition, we also examine different concentration of HBCS in the roleof cell migration, the higher concentration bring the stronger inhibition of cell migration.Compared with the control group, when HBCS is0.25mg/mL, the maximum inhibiting cellmigration speed could reach48%. The results of the effects of HBCS on the phagocytosis ofmacrophage and the proliferation of lymphocyte in normal mice show that HBCS canenhance the phagocytosis function of monocyte and peritoneal macrophages, and as the doseincrease, the phagocytosis capacity enhance. Similarly, HBCS can stimulate the proliferationof lymphocyte in mice spleen, and also promote ConA, LPS-induced T, B lymphocyteproliferation. By turbidity method, we determine the antibacterial activity of the HBCS, at theconcentration>0.01%, HBCS show inhibiting the growth of Escherichia coli andStaphylococcus aureus, and this inhibiting capacity has the dependence of the concentrationof the HBCS, increasing with the concentration.
     The HBCS hydrogel is prepared through intramolecular and intermolecular hydrogenbonds without any cross-linking agent. The HBCS hydrogel is temperature-sensitive, it isclear and transparent solution in an ice bath and become to be turbidity when the temperatureincrease.2.5wt%of the HBCS hydrogel is translucent and has a certain intensity, which canbe clamped. The main factors affect the gel process are investigated by systematic rheologicalmethod, and the results are as follows:1. The gelation time decrease with increasing CSconcentration and temperature, the gelation time is <90s under different circumstances,belonging to a rapidly responsive hydrogel.2. The concentration, pH and solvent types ofHBCS all affect the gelation temperature. The gelation temperature is decrease with increasing the HBCS concentration. The solvent pH also affect the gelation temperature of theHBCS hydrogel.5wt%HBCS solution in distilled water has a gelation temperature of16.5℃, in PBS7.4is15.5℃, in pH4HCl is17.5℃and in pH10NaOH can not be a gel. Theions in the solvent also affect the gelation temperature, when the CaCl2, MgCl2is added to thesystem, the HBCS show gel characteristics at0℃. The Na+, when the concentration is0.1mol/L, the gelation temperature is3.5℃.3. HBCS hydrogel is heat reversible exchange withsurroundings temperature and can occur sol-gel-sol transformation continuously with theconversion of ambient temperature. The internal morphology of the hydrogel was observed bySEM and the results show that it is porous network structure, with smooth and dense porewalls. The pore size of the hydrogel decreased with the increasing content of HBCS. Theresults of the swelling ratio test certify the hydrogel could reach swelling equilibrium within60min, belonging to a fast swelling hydrogel.
     To study the biocompatibilities of the HBCS hydrogel, the cytotoxicity test, hemolysistest, acute systemic toxicity test, muscle and subcutaneous implantation experiments areconducted according to the "Chinese Ministry of Health, Biological evaluation of biomaterialsand medical devices". The cytotoxicity test is performed using fetal fibroblast cells as targetcells and the cell proliferation degree is detected. The result show that in the group of HBCSsolution, the HBCS demonstrate weak cytotoxicity when its concentration>0.5mg/mL.While in the extract group, the fetal mouse fibroblast cells relative growth rate is higher than75%, independent of the concentration and the stimulus time, indicating the goodcyto-compatibility. The hemolysis test of CS and HBCS is detected by direct contact methodand the results show that the1mg/mL of CS solution has a higher hemolytic rate with15.33%. HBCS could improve the hemolytic properties of CS, when the m (CS): m (HBCS)≦1:1and the concentration is1mg/ml, the hemolysis rate is <5%. The hemolysis rates are alsodifferent when the solvents of the HBCS are different, the solution with a0.9%NaCl assolvent has a2.24%hemolysis rate, while solution with a2%acetic acid as solvent has a2.67%hemolysis rate. The results of the acute systemic toxicity show that the HBCShydrogel extracts has not toxic effects in mice. The weight gain of the mice is normal, noadverse reactions are found, and sections of the main organs in mice are normal too. When theHBCS solution is embedded in the back muscles and subcutaneous tissue of mice, it can forma gel structure in situ, the tests are conducted at different time after implantation. There are no significant surrounding tissue inflammation, tissue degeneration and necrosis afterimplantation. In the early stages after implantation, the fibrous capsule can be seen around thehydrogel. With the time extend, the fibrous capsule become thinner until disappearance. TheHBCS hydrogel could be slowly depredated within the muscle tissue and subcutaneous tissue.All results prove that the HBCS hydrogel has no cytotoxicity in vitro, no acute hemolytic, noacute toxicity in vivo, and good tissue compatibility.
     We use HBCS as the carrier material and BSA as a model drug to prepare HBCShydrogel delivery systems which is loaded BSA. The release behaivor in vitro is studied. Therelease of BSA resulted from HBCS hydrogel is affected by the concentration of HBCS,environmental temperature and pH values. As the increase of the HBCS concentration, theBSA release speed becomes slower and the release ratio decrease. Compared with the releasebehavior at25℃, the BSA release speed becomes faster at37℃. The pH also affects theBSA release behavior, at pH=6.0, HBCS begins to be dissolute and all of the BSA is releasedout in1h. Compared with at pH=9.0, the BSA release is faster at pH=6.0. These resultssuggest that HBCS hydrogel is an ideal delivery system, which can be adjusted by theconcentration of HBCS, the release of environmental including the release temperature andpH to control the release behavior.
引文
Allan C R,hadwiger L A. The fungicidal effect of chitosan on fungi of varying cell wall composition.Experimental Mycology,1979,3:285-287.
    Agnihotri SA, Mallikarjuna NN, Aminabhavi TM. Recent advances on chitosan-based micro andnanoparticles in drug delivery[J]. Journal of Controlled Release,2004,100(1):5–28.
    Agnihotri Sunil A, Aminabhavi Terjraj. Novel interpenetrating network chitosan-poly(ethyleneoxide-g-acrylamide) hydrogel microspHeres for the controlled release of capecitabine[J]. Internationaljournal of Pharmaceutics2006,324(2):103-115
    Anderson DP. Adjuvants and immunost imulants for enhancing vaccine potency in fish[J]. Dev. Biol. Stand.1997,90:257-265.
    Anitha A, Divya Rani VV, Krishna R, et al. Synthesis, characterization, cytotoxicity and antibacterialstudies of chitosan, O-carboxymethyl and N,O-carboxymethyl chitosan nanoparticles[J], CarbohydratePolymers,2009,78(4):672-677.
    Balakrishnan B., Jayakrishnan A. Self-cross-linking biopolymers as injectable in situ formingbiodegradable scaffolds [J]. Biomaterials,2005,26(18):3941–3951.
    Blanchard J, Proniuk S. Some important considerations in the use of cyclodextrins[J]. PHarmChemicalsResearch,1999,16(12):1796–1798.
    Begona Cg, Ruth D. Evaluation of the biological properties of soluble chitosan and chitosanmicrospheres[J]. International Journal of Pharmaceutics,1997,148:231-240.
    Bernkop-Schnürch A, Kast CE. Chemically modified chitosans as enzyme inhibitors [J]. Advanced DrugDelivery Reviews,2001,52(2):127-37.
    Bhattarai N, RamayhR,gunn J, et al. PEg-grafted chitosan as an injectable thermosensitive hydrogel forsustained protein release [J]. Journal of Controlled Release,2005,103(3):609–624.
    Cao YX, Zhang C, Shen WB, et al. Poly (N-isopropylacrylamide)-chitosan as thermosensitive insitugel-forming system for ocular drug delivery[J]. Journal of Controlled Release,2007,120(3):186-194
    Capitani D, Crescenzi V, De Angelis AA, Segre AL. Water in hydrogels. An NMR study ofwater/polymerinteractions in weakly crosslinked chitosan networks[J]. Macromolecules2001,34(12):4136-4144.
    CarrenogB, Duncan R. Evaluation of the biological properties of soluble chitosan and microspheres.International Journal of Pharmaceutics,1997,148(2):231-240.
    Chauhan D, Lig, Podar K, et al. A novel carbohydrate-based therapeuticgcs-100overcomes bortezomibresistance and enhances dexamethasone-induced apoptosis in multiple myeloma cells [J]. CancerReseatch,2005,65:8350-8358.
    Chen BY, Dang JY, et al. Dynamics of smooth muscle cell deadhesion from thermosensitive hydroxybutylchitosan[J]. Biomaterials,2007,28:1503-1514
    Chen LY, Tian Z, Du YM. Synthesis and pH sensitivity of carboxymethyl chitosan-based polyampHolytehydrogels for protein carrier matrices [J], Biomaterials,2004,25(17):3725–3732.
    Chen J, Nho YC, Kwon Oh,hoff'man AS.grafting copolymerization of acrylamide onto preirradiated PPfilms[J]. Radiation PHysics and Chemistry,1999,55:87-92.
    Chen J, Seviour R. Medicinal importance of fungal-(1-3),(1-6}-glucans [J]. Mycological Research,2007,111:635-652.
    Chen, L, Du Y, Wuh, Xiao L. Relationship between molecular structure and moisture-retention ability ofcarboxymethyl chitin and chitosan[J].Journal of Applied Polymer Science,2002,83(6):1233–1241.
    Chen S, Liu M., Jin S., et al. Preparation of ionic-crosslinked chitosan-basedgel beads and eddect ofreaction conditions on drug release behaviors [J]. International Journal of Pharmaceutics,2008,349(1-2):180-187.
    Chenite A, Chaput C, Wang D, et al. Novel injectable neutral solutions of chitosan form biodegradablegelin situ[J]. Biomaterials,2000,21(21):2155-2161.
    Chenite A, Buschmann M, Wang D, et al. Rheological Characterisation of ThermogellingChitosan/glycerol-phosphate Solutions. Carbohydrate Polymers[J],2001,46:39-47.
    Chen Xg, ParkhJ. Chemical characteristics of O-carboxymethyl chitosans related to the preparationconditions[J]. Carbohydrate Polymers,2003,53(4):355–359.
    Chiuh C,hsiuegh, Lee Y P. Synthesis and characterization of pH-sensitive dextranhydrogels as a potentialcolon-specific drug delivery system.[J]. Journal of Biomaterials Science Polymer,1999,10:591-608.
    Chung JE. Yokoyama M. Yamato M. Thermo-responsive drug delivery from polymeric micellesconstructed using block copolymers of poly(N-isopropylacrylamide) and poly(butylmethacrylate)[J].Journal of Controlled Release,1999,62(1-2):115-27.
    Cho Jh, Kim Sh, Park KD, et al. Chondrogenic differentiation o fhuman mesenchy mL stem cells using athermosensitive poly (N-isopropy-lacrylamide) and water-soluble chitosan copolymer[J]. Biomaterials,2004,25(26):5743-5751.
    Chungh.J.,go D.h., Bae J.W., et al. Synthesis and characterization of Pluronic grafted chitosan copolymeras a novel injectable biomaterial [J]. Current Applied PHysics,2005,5(5):485–488.
    Chun Kh, Kwon IC, Kim Yh, et al. Preparation of sodium alginate microspHeres containinghydropHilic-lactam antibiotics[J].Archives of Pharmacal Research,1996,19(2):106-111.
    Colinet I, Dulong V, Mocanug, et al. Effect of chitosan coating on the swelling and controlled release of apoorly water-soluble drug from an amphiphilic and pH-sensitivehydrogel[J]. International Journal ofBiological Macromolecules,2010,47(2):120-125.
    Crompton K.E., Prankerd R.J., Paganin D.M., et al. Morphology and gelation of thermosensitive chitosanhydrogels[J]. BiopHysical Chemistry,2005,117(1):47–53.
    Dang JY, Sun DD, Shin-Ya Y, et al. Temperature-responsive hydroxybutyl chitosan for the culture ofmesenchymal stem cells and intervertebral disk cells[J]. Biomaterials,2006,27(3):406-418.
    Dang JY, Kam W. Myogenic induction of aligned mesenchymal stem cell sheet by culuture on thermallyresponsive electropun nanofibers[J]. Advanced Materials,2007,19:2775-2779.
    Dos Santos ZM, Caroni ALPF, Pereira MR, et al. Determination of deacetylation degree of chtiosan: acomparison between conductometric titration and CHN elemental analysis[J], Carbohydrate Research,2009,344(18):2591-2595.
    K. Wang, Dusek K, Responsivegels: Volume Transitions II, Advances in Polymer Science, vol.110,Springer, Berlin/heidelberg,1993, pp.67–79.
    Stanley SD. Delivery of peptide and non-peptide drugs through the respiratory tract. School ofPharmaceutical Sciences,1999;2(11):450-456
    Dong Yanming, Wu Yusong, Wang Jianwe, Wang Mia. Influence of degree of molar etherification oncritical liquid crystal behavior of hydroxypropyl chitosan[J]. European Polymer Journal,2001,37:1713-1720.
    Ekici S., Saraydin D.. Synthesis, characterization and evaluation of IPN hydrogels for antibiotic release[J]. Drug Delivery,2004,11(6):381–388.
    Elisseeff J., Anseth K., Sims D., et al. Transdermal photopolymerization for minimally invasiveimplantation [J]. Proceedings of the National Academy of Sciences, USA,1999,96:3104–3107.
    Fang B, Jiang T. Study on the preparation of hydroxyethyl chitosan sulfate[J]. Chinese Journal ofBiochemical Pharmaceutics,1998,19:163–166.
    Fan YY, ChenghR, Liu D, et al. The inhibitory effect ofginseng pectin on L-929cell migration[J]. Archivesof pHarmacal research,2010,33(5):681-689.
    Fistre JS, Memoli VA,galante JO, et al. Biocomptibility of Delrin150: A creep-resistant polymer for totaljoint prostheses[J]. Journal of materials research,1985,5(19):519-553.
    Fujita M, Ishihara M, Morimoto Y, et al. Efficacy of pHotocrosslinkable chitosan hydrogel containingfibroblast growth factor2in a rabbit model of chronic myocardial infarction[J]. Journal of SurgicalResearch,2005,126:27
    Ganji F, Abdekhodaie MJ,Ramazani ASA.gelation time and degradation rate of chitosan-based injectablehydrogel[J]. Journal of Sol–gel Science and Technology,2007,42(1):47-53.
    George AF, JuliangD. Determination of the Mark-houwink equation for chitosan with different degreesdeacetylation [J]. International Journal of Biological Macromolecules,1982,4:374-377.
    Gerhard M, Thomas C,guenther L. Chitin and Chitosan, eds Skjak-brackg., Anthonsen T, Sand P. London:Elsvier Applied,1989.389-395.
    Gorbach VI, Krasikova IN, Lukyanov PA, et al. Newglycolipids (chitooligosaccharide derivatives)possessing immunostimulation and antitumor activities[J]. Carbohydrate Research,1994,260:73-82.
    Guo BL,gao QY. Preparation and properties of a pH/temperature-responsive carboxymethylchitosan/poly(N-isopropylacrylamide) semi-IPN hydrogel for oral delivery of drugs[J]. CarbohydrateResearch.2007,342(16):2416-2422.
    Guo ZY, Chen R, Xing R,et al. Novel derivatives of chitosan and their antifungal activities invitro[J].Carbohydrate Research,2006,341(1):351-354.
    Goycoolea FM,heras A, Aranaz I, et al. Effect of chemical crosslinking on the swelling andshrinkingproperties of thermal and pH-responsive chitosan hydrogels[J]. Macromolecular Bioscience,2003,3(10):612–619.
    Grigoriy A. Muna, Zauresh S. Nurkeeva, Sergey A. Dergunov, et al. Studies ongraft copolymerization of2-hydroxyethyl acrylate onto chitosan[J], Reactive and Functional Polymers,2008,68(1):389–395.
    Guilherme MR, da Silva R., Rubira AF, et al. Thermosensitive hydrogels membranes from PAAm networksand entangled PNIPAAm: effect of temperature, cross-linking and PNIPAAm contents on the wateruptake and permeability [J]. Reactive Functional Polymers,2004,61(2):233–243
    GYu, Fg Morin,g A R Nobes, et al. Degree of acetylation of chitin and extent of grafting PHB on chitosandetermined by solid state15N NMR[J]. Macromolecules,1999,32:518-520.
    Hidennori Yamada, Taiji Imoto. A convenient synthesis of glycolchitin,a substrate of lysozyme[J].Carbohydrate Research,1981,92(1):160-162.
    Hill R, Garnett MC, Bignotti F, Davis SS. In vitro cytotoxicity of poly(amidoamine)s: relevance to DNAdelivery[J]. Biochimica et Biophysica Acta,1999,1427(2):161–74.
    Hoemann CD, Sun J, Legare A, et al. Tissue engineering of cartilage using an injectable and adhesivechitosan-based cell-delivery vehicle[J]. Osteoarthritis Cartilage,2005,13(4):318.
    Hsu SH, Whu SW, Hsieh SC, et al. Evaluation of chitosanalginate-hyaluronate complexes modified by anRGD-containing protein as tissue-engineering scaffolds for cartilage regeneration[J]. Artificial Organs,2004,28(8):693–703.
    Hidennori Yamada, Tai J i Imoto. A convenient synthesis of glycol chitin, a substrate of lysozyme.Carbohydrate Research,1981,92:160-162.
    Huang Ronghua, Du Yumin, Yang Jianhong. Preparation and anticoagulant activity ofcarboxybutyrylated hydroxyethyl chitosan sulfates. Carbohydrate Polymers,2003,51(4):431–438
    Hu B, Jin XH, Tan TW. Swelling characteristic and the application of compound sodium alginatEGel-a pHsensitive chitosan[J].中国临床康复,2004,8(11):2162-2163.
    Itoh Y., Matsusaki M., Kida T., et al. Enzyme-responsive release of encapsulated proteins frombiodegradable hollow capsules [J]. Biomacromolecules,2006,7(10):2715–2718.
    Jagur-Grodzinski J.Polymeric gels and hydrogels for biomedical and pharmaceutical applications[J].PolymAdv Technol,2009,21(1):27-47.
    Jayakumar R., Nagahama H., Furuike T., et al. Synthesis of phosphorylated chitosan by novel method andits characterization [J]. International Journal of Biological Macromolecules,2008,42(1):335–339.
    Jayakumar R., Prabaharan M., Nair S. V., et al. Novel chitin and chitosan nanofibers in biomedicalapplications[J]. Biotechnology Advances,2010,28(1):142–150.
    Jayakumar R., Deepthy M., Manzoora k., et al. Biomedical applications of chitin and chitosan basednanomaterials—A short review [J]. Carbohydrate Polymers,2010,82(2):227-232.
    Janes K A, Fresneau M P, Marazuela A et a1.Chitosan nanoparticles as delivery systems fordoxorubicin[J].Journal of Controlled Release,2001,73(2):255-267.
    Jatuporn NgoenkamNgoenkam J, Potential of an injectable chitosan/starch/beta-glycerol phosphatehydrogel for sustaining normal chondrocyte function[J]. International Journal of Pharmacology,391(1-2):115-124.
    Jeon YJ, Kim SK. Potential immuno-stimulating effect of antitumoral fraction of chitosatanoligosaccharides. Journal of Chitin and Chitosan[J],2001,6:163-167.
    Ju HK, Kim SY, Lee YM. pH/temperature-responsive behaviors of semi-IPN and comb-typEGrafthydrogels composed of alginate and poly(N-isopropylacrylamide)[J]. Polymer,2001,42(16):6851–6857.
    Jung KIL, Soo U, Jung HK,e t al. Modification of chitosan to improve its hypocholesterolemic capacity[J].Bioscience, Biotechnology, and Biochemistry,1999,63(5):833-838.
    Kas HS. Chitosan: Properties, preparation and application to microparticulate systems[J]. Journal ofMicroencapsulation,1997,14(6):689–711.
    Kaetsu, I, Uchida, K, Sutani, K, et al. Intelligent biomembrane obtained by irradiation techniques[J].Radiation Physics and Chemistry,2000,57(3-6):465–469.
    Kitamura A, Higuchi S, Hata M, et al. Effect of-1,6-glucan inhibitors on the Invasion process of Candidaalbicans: Potential mechanism of their in vivo efficacy [J]. Antimicrobial Agents and Chemotherapy,2009,53:3963-3971.
    Kathleen Van de Velde, Paul Kiekens. Structure analysis and degree of substitution of chitin, chitosan anddibutyrylchitin by FTIR spectroscopy and solid state13C NMR[J]. Carbohydrate Polymers,2004,58(4):409-416.
    Kingston HGM, Catherine C, Edel A. McNeela, et al. Protective Levels of Diphtheria-NeutralizingAntibody Induced in Healthy Volunteers by Unilateral Priming-Boosting Intranasal ImmunizationAssociated with Restricted Ipsilateral Mucosal Secretory Immunoglobulin A[J]. Infection and immunity,2003,71(2):726-732.
    Kotecha B, RichardsongP. Ototoxicity in vitro: effects of neomycin, gentamicin, dihydrostreptomycin,amikacin, spectinomycin, neamine, spermine and poly-L-lysine[J]. Hearing Research,1994,73(2):173–84.
    Kuen YL, Wan SH, Won HP. Blood compatibility and biodegradability of partially N-acylated chitosanderivatives[J]. Biomaterials,1995,16(16):1211-1121.
    Kundra V et al. Regulation of chemotaxis by the platelet-derived growth factor receptor-β[J]. Nature,1994,367:474-476.
    Kumar MNVR., Muzzarelli RAA., Muzzarelli C, et al. Chitosan chemistry and pharmaceuticalperspectives[J]. Chemical Reviews,2004,104(12):6017-6084.
    Kyoko Kofuji, Yuzhou Huang, Kazufumi Tsubaki, et al. Preparation and evaluation of a novel wounddressing sheet comprised of-glucan–chitosan complex[J]. Reactive and FunctionalPolymers,2010,70(10):784–789.
    Li L.Thermal gelation of methylcellulose in water: scaling and thermoreversibility[J].Macromolecules.2002,35:5990-5998.
    Li Z, Ramay HR, Hauch KD, et a. Chitosan alginate hybrid scaffolds for bone tissueengineering[J].Biomaterials,2005,26(18):3919-3928.
    Lin YW, Chen Q, Luo HB. Preparation and characterization of N-(2-carboxybenzyl) chitosan as a potentialpH-sensitive hydrogel for drug delivery [J]. Carbohydrate Research,2007,342(1):87-95.
    Lo CL, Lin KM. HsiuEGH. Preparation and characterization of intelligent core-shell nanoparticles basedon poly (d,l-lactide)-g-poly(N-isopropyl acrylamide-co-methacrylic acid)[J]. Journal of ControlledRelease,2005,104(3):477–488
    Magnin D, Dumitriu S, Chornet E. Immobilization of Enzymes into a Polyionichydrogel: ChitoXan[J].Journal of Bioactive and Compatible Polymers,2003,18(5):355–373.
    Maeda Y, Kimura Y. Antitumor effects of various low-molecular weight chitosans are due to increasednatural killer activity of intestinal intraepithelial lymphocytes insarcotma180-bearing mice [J]. Journalof Nutrition,2004,134(4):945-950.
    Marsano E, Bianchi E, Vicini S, et al. Stimuli responsivEGels based on interpenetrating network ofchitosan and poly(vinylpyrrolidong)[J]. Polymer,2005,46(5):1595-1600.
    Martin L, Wilson CG, Koosha F, et al. The release of model macromolecules may be controlled by thehydrophobicity of palmitoyl glycol chitosan hydrogels[J]. Journal of Controlled Release,2002,80(1-3):87–100.
    Matsumura S, Cheng H.C., minami M., et al. Synthesis and water uptake and holding capacity of chitin andchitosan derivatives [J]. International Journal of Cosmetic Science,1989,38(6):492-500.
    Matsusaki M, Akashi M. Novel Functional Biodegradable Polymer IV: pH-Sensitive Controlled Releaseof Fibroblast Growth Factor-2from a Poly(γ-glutamic acid)-Sulfonate Matrix for Tissue Engineering[J].Biomacromolecules,2005,6(6):3351–3356.
    Mi FL, Shyu SS, Wu YB, et al. Fabrication and characterization of a sponge-like asymmetric chitosanmembrane as a wound dressing[J]. Biomaterials,2001,22(2):165-173.
    Miyata T, Uragami T, Nakamae K. Biomolecule-sensitive hydrogel[J]. Advanced Drug Delivery Reviews,2002,54:79-98.
    Mohammad R, Kasaai. Determination of the degree of N-acetylation for chitin and chitosan by variousNMR spectroscopy techniques: A review[J], Carbohydrate Polymers,2010,79(4):801-810.
    Mosmann T. Rapid colorimetric assay for celluar growth and survial: cation to proliferation cytotoxicityassays[J]. Journal of Immunological Methods,1983,65(1):55-63.
    Muhannad J, FranZh F, Bernd WM. A new lipid emulsion formulation with high antimicrobial efficacyusing chitosan[J]. European Journal of Pharmaceutics and Biopharmaceutics,2002,53:115-123.
    Muzzarelli RAA. Biochemical significance of exogenous chitins and chitosans in animals and patients[J].Carbohydrate Polymers,1993,20(1):7–16.
    Muzzarelli R A A, Biagini G, DeBenedittis A, et al. Chitosan-oxychitin coatings for prosthetic materials[J].Carbohydrate Polymers,2001,45(1):35-41.
    Mocanu G, Mihai D, Le Cerf D, et al. Synthesis of new associativEGel microspheres from carboxymethylpullulan and their interactions with lysozyme[J]. European Polymer Journal,2004,40(2):283–289.
    Nicole JE, Kelly RS, Kao WJ. Synthesis and physiochemical analysis of gelatin-based hydrogels for drugcarrier matrices. Biomaterials,2002,24:509-523.
    Nishimura S, Nish N, Tokura, S. Inhibition of the hydrolytic activity of thrombin by chitin heparinoids[J].Carbohydrate Research,1986,156:286–292.
    Nishinari K, Takahashi R. Interaction in polysaccharide solutions and gels[J]. Current Opinion in Colloidand Interface Science,2003,8:396-400.
    Norihito S, Toshihito T, Masumi U, et al. Chitosan dispersed system for colon-specific drug delivery[J]. International Journal of Pharmaceutics,2002,245(1-2):45–54.
    Nqoenkam J, Faikrua A, Yasothornsrikul S, et al. Potential of an injectable chitosan/starch/beta-glycerolphosphate hydrogel for sustaining normal chondrocyte function[J]. Internatioanal Journal ofPharmacutics,2010,391(1-2):115-124.
    Ogawa K. Effect of heating an aqueous suspension of chitosan on the crystallinity and polymorphs [J].Agricultural Biological Chemistry,1991,55(9):2375–2377
    Ogawa M, Kananlaru J, Miyashita H. Alpha—helical structure of fish actomyosin:changes duringsetting[J]. Journal of Food Science,1995,60(2):297-299.
    Oh JK, Siegwart DJ, Matyjaszewski K. Synthesis and biodegradation of nanogels as delivery carriers forcarbohydrate drugs [J]. Biomacromolecules,2007,8(11):3326–3331.
    Okuyama K, Nioguchi K, Miyazawa T, et al. Molecular and crystal structure of hydrated Chitosan [J].Macromolecules,1997,30(19):5849–5855.
    Omura Y, Shigemoto M, Akiyama T, Saimoto H, et al. Antimicrobial activity of chitosan with differentdegrees of acetylation and molecular weights[J]. Biocontrol Science,2003,8(1):25-30.
    Ono K, Saito Y, Yura H, Ishikawa K, et al. Photocrosslinkable chitosan as a biological adhesive[J],Biomedical Materials Research,2000,49(2):289–295.
    Ou CY, Zhang CH, Li SD, et al. Thermal degradation kinetics of chitosan–cobalt complex as studied bythermogravimetric analysis[J]. Carbohydrate Polymers,2010,82(4):1284–1289.
    Pae HO, Seo WG, Kim NY. Induction of granulocytic differentiation in acute promvelocytic leukemia cells(HL-60) by water-soluble chitosan oligomer [J]. Leukemia Research,2001,25(4):339-346.
    Park YD, Tirelli N, Hubbell JA, Photopolymerized hyaluronic acid-based hydrogels and interpenetratingnetworks [J]. Biomaterials,2003,24(6):893–900.
    Peng YF, Han BQ, Liu WS, Xu XJ. Preparation and antimicrobial activity of hydroxypropyl chitosan[J].Carbohydrate Research,2005,340(11):1846–1851.
    Peng Yanfei, Han Baoqin, et al. Pervaporation dehydration of isopropanol using blend membranes ofchitosan and hydroxypropyl cellulose. Journal of Membrane Science,2007(1-2),304,102–111.
    Poiporatto C, Bianco ID, Cabanillas AM,et al. Early events associated to the oral co-administration of typeII collagen and chitosan: induction of anti一inflammatory cytokines[J]. International immunology,2004.16(3):433-441.
    Qin CQ, Du YM, Xiao L. Effect of hydrogen peroxide treatment on the molecular weight and structure ofchitosan[J]. Polymer Degradation and Stability,2002,76(2):211–218.
    Qiu Y, Park K. Environment-sensitive hydrogels for drug delivery[J]. Advanced Drug Delivery Reviews,2001,53(3):321-339.
    Qu X, Wirsen A, Albertsson AC. Novel pH-sensitive chitosan hydrogels: swelling behavior and states ofwater [J]. Polymer,2000,41(12):4589–4598.
    Radhakumary C, Molly Antonryb, et al. Drug loaded thermoresponsive and cytocompatible chitosan basedas a potential wound dressing[J].Carbohydrate Polymers,2011,83:705–713.
    Rao SB, Sharma CP. Use of chitosan as a biomaterial: studies on its safety and hemostatic potential[J].Journal of Biomedial Materials Research,1997,34(1):21-28.
    Radhakumary C, Molly Antonty, Sreenivasan K. Drug loaded thermoresponsive and cytocompatiblechitosan based as a potential wound dressing[J]. Carbohydrate Polymers,83(2):705-713.
    Rapp A, Schnell I, Sebastiani D, et al. Supramolecular assembly of dendritic polymers elucidated by1H and13C solid-state MAS NMR spectroscopy[J], American Chemical Society,2003,125(43):13284-13297.
    Ravi Kumar, et al. A review of chitin and chitosan applications [J]. Reactive and Functional Polymers,2000,46(1):1–27.
    Rinaudo M. Chitin and chitosan: properties and applications[J]. Progress in Polymer Science,2006,31(7):603–632.
    Ruel-Gariepy E. Chenite A. Chaput C. Guirguis S. Leroux J.C. Characterization of thermosensitivechitosangels for the sustained delivery of drugs[J]. International Journal of Pharmaceutics,2000,203:89-98.
    Sashiwa H, Kawasaki N, Nakayama A, et al. Chemical modification of Chitosan.14(1): Synthesis ofwater-soluble chitosan derivatives by simple acetylation[J]. Biomacromolecules,2002,3(5):1126–1128.
    Sathisha UV, Jayaram S, Nayaka MAH, et al. Inhibition of galectin-3mediated cellular interactions bypolysaccharides from dietary sources [J]. Glycoconjugate Journal,2007,24(8):497-507.
    Schmidt-Rohr K, Spies HW. Multidimensional Solid-state NMR and Polymers[M]. London: AcademicPress,1994.
    Shaban MAT, Hesham MHS. Antibacterial activity of chitosan against Aeromonas hydrophila[J].Nahrung/Food,2002,46(5):337-340.
    Shibata Y, Foster LA, Metzger WJ and Myrvik QN.Alveolar macrophage priming by intravenousadministration of chitin particles, polymers of N-acetyl-D-glucosamine, in mice[J]. Infection andimmunity,1997,65(5):1734-1741.
    Shibata YS, Honda I, Justice JP, et al. Th1Adjuvant N-Acetyl-D-Glucosamine Polymer Up-Regulates Th1Immunity but Down-Regulates Th2Immunity against a Mycobacterial Protein (MPB-59) inInterleukin-10-Knockout and Wild-Type Mice[J]. American society for microbiology.2001,69(10):6123-6130.
    Shibayama M, Ikkai F, Moriwaki R, Nomura S. Complexation of polyvinyl alcohol)-congo red aqueoussolutions.1.Viscosity behavior and gelation mechanism[J]. Macromolecules,1994,27:1738-1743.
    Shi J, Alves NM, Mano JF. Drug Release of pH/Temperature-Responsive CalciumAlginate/Poly(N-isopropylacrylamide) Semi-IPN Beads[J]. Macromolecular Bioscience,2006,6(5):358–363.
    Singh DK, Ray AR. Biomedical applications of chitin, chitosan, and their derivatives[J]. MacromolecularChemistry and Physics,2000,40(1):60-83.
    Soltanian S, Stuyven E, Cox E, et al. Beta-glucans as immunostimulant in vertebrates and invertebrates [J].Critical reviews in microbiology,2009,35(2):109-138.
    Suh JK, M atthew HW. Application of chitosan-based polysaccharide biomaterials in cartilage tissueengineering: a review[J]. Biomaterials,2000,21(24):2589-2598.
    Sunil A. Agnihotri, Tejraj M, Aminabhavi. Novel interpenetrating network chitosan-poly(ethyleneoxide-g-acrylamide)hydrogel microspheres for the controlled release of capecitabine[J]. InternationalJournal of Pharmaceutics,324(2):103-115.
    Son YJ, Jang JS, Cho YW, et al. Biodistribution and Anti-Tumor Efficacy of Doxorubicin LoadedGlycol-Chitosan Nanoaggregates by EPR Effect.Journal of Controlled Release,2003,91(1-2):135-145.
    Stevens MM, Qanadilo HF, Langer R, Shastri VP, A rapid-curing alginatEGel system: utility inperiosteum-derived cartilage tissue engineering[J]. Biomaterials,2004,25(5):887–894.
    Sun L P, Du Y M, Chen L Y, et al. The synthesis of carboxymethyl chitosan hydrogel and the application indrug controlled release systems [J]. Acta Polymerica Sinica,2004,(2):191-195.
    Takeuchi H, Yamamoto H, Kawashima Y. Mucoadhesive nanoparticulate systems for peptide drug delivery[J]. Advanced Drug Delivery Reviews,2001,47(1):39–54.
    Ta HT, Dass CR, Larson I, et al. A chitosan-dipotassium orthophosphate hydrogel for the delivery ofDoxorubic in the treatment of osteosarcoma[J]. Biomaterials,2009,30(21):3605-3613.
    Tanaka Y, Gong JP, Osada Y. Novel hydrogels with excellent mechanical performance [J]. Progress inPolymer Science,2005,30(1):1-9.
    Tang YF, et al. Rheologica chracterisation o f a novel thermo sensitive chitosan/poly (vinyl alcohol) blendhydrogel[J]. Carbohydrate Polymer,2007,67(4):491-499.
    Tahara T, Shibata T, Wang F, et al. Mannan-binding lectin B allele is associated with a risk of developingmore severEGastric mucosal atrophy in helicobacter pylori-infected Japanese patients [J]. EuropeanJournal of Gastroenterology and Hepatology,2009,21:781-786.
    Terada N, Bjursten LM, Lunaborg G, et al. The role of macrophages in bioartificial nervEGrafts based onrosorbablEGuiding filament structures [J]. Journal of materials science: materials in medicine,1997,(8):391-394.
    Tokura S, Ueno K, Miyazaki S, Nishi N. Molecular weight dependent antimicrobial activity by Chitosan[J].Macromolecular Symposia,1997,120(1):1–9.
    Tolaimate A., Desbrieres J., Rhazi M., et al, On the influence of deacetylation process on thephysicochemical characteristics of chitosan from squid chitin[J]. Polymer,2000,41(7):2463-2469.
    Tsuchida S, Hiroshi, Yamanami T, etal. Manufacture of hydroxyalhylated chitosans and their use incosmetic products.[P] JP0665304,1994.
    Vandamme TF, Lenourry A, Charrueau C, Chaumeil JC. The use of polysaccharides to target drugs to thecolon [J]. Carbohydrate Polymers,2002,48(3):219-231.
    VandeVord PJ, Matthew HW, DeSilva SP, et al. Evaluation of the biocompatibility of a chitosan scaffoldin mice[J]. Journal of Biomedical Materials Research,2002,59(3):585-590.
    Van TQ, Kim MM, Kim SK. Inhibitory effect of chitooligosaccharides on matrix metalloproteinase-9inhuman fibrosarcoura cells (HT1080)[J]. Marine Biotechnology,2006,8(6):593-599.
    Varm AJ, Deshpande SV, Kennedy JF. M, et al Complexation by chitosan and its derivatives: a review[J].Carbohydrate Polymers,2004,55(1):77-93.
    V. Dulong, D. Le Cerf, L. Picton, G. Muller. Carboxymethylpullulan hydrogels with a ionic and/oramphiphilic behavior: Swelling properties and entrapment of cationic and/orhydrophobic molecules[J]. Colloid and Surfaces A,2006,274(1-3):163–169.
    Veerapur RS, Gudasi KB, Aminabhavi TM. Pervaporation dehydration of isopropanol using blendmembranes of chitosan and hydroxypropyl cellulose[J], Journal of Membrane Science,2007,304(1-2):102–111.
    Verestiuc L, Ivanov C, Barbu E, Tsibouklis J. Dual-stimuliresponsive hydrogels based onpoly(N-isopropylacrylamide)/chitosan semiinterpenetrating networks[J]. International Journal ofPharmaceutics,2004,269(1):185–194.
    Wang Jiaqi, Tao Xinyi, Zhang Yufei, et al. Reversion of multidrug resistance by tumor targeted delivery ofantisense oligodeoxynucleotides in hydroxypropyl-chitosan nanoparticles[J]. Biomaterials,2010,31(15):4426-4433.
    Wang KL, Burban JH, Cussler EL, ResponsivEGels: Volume Transitions II, Advances in Polymer Science,1993,110:67–79.
    Wang Shilu, Liu Wanshun, Han Baoqin, et al. Study on a hydroxypropyl chitosan–gelatin based scaffoldfor corneal stroma tissue engineering[J]. Applied Surface Science,2009,255(20):8701–8705
    Wang XL, Gu Q, Sun Q, et al. Characterization of Polymer Compatibility by1H Dipolar Filter Solid-StateNMR under Fast Magic Angle Spinning[J]. Macromolecules,2007,40(25):9018—9025.
    Weecharangsan W, Opanasopit P, Ngawhirunpat T, Apirakaramwong A, Rojanarata T, Ruktanonchai U, etal. Evaluation of chitosan salts as non-viral gene vectors in CHO-K1cells[J]. International Journal ofPharmaceutics,2008,348(1–2):161–168.
    Wu J, Su ZG, Ma GH. A thermo-and pH-sensitive hydrogel composed of quaternizedchitosan/glycerophosphate[J], International Journal of Pharmaceutics,2006,315(1-2):1-11.
    Wei CZ, Hou CL, et al. A thermosensitive chitosan-based hydrogel barrier for post-operative adhesionsprevention [J], Biomaterials,2009,30(29):5534–5540.
    Wu J, Wei W, Wang L Y, et al. A thermosensitive hydrogel based on quaternized chitosan andpoly(ethylenEGlycol) for nasal drug delivery system [J]. Biomaterials2007,28(13):2220-2232.
    W Paul, C P Sharma. Chitosan, a drug carrier for the21st century: a review [J]. STP Pharma Sciences,2000,10:5–22.
    Wang Jiaqi, Tao Xinyi, Zhang Yufei, et al. Reversion of multidrug resistance by tumor targeted delivery ofantisense oligodeoxynucleotides in hydroxypropyl-chitosan nanoparticles[J]. Biomaterials,2010,31(15):4426-4433.
    Wang Shilu, Liu Wanshun, Han Baoqin,et al. Study on a hydroxypropyl chitosan–gelatin based scaffold forcorneal stroma tissue engineering[J]. Applied Surface Science,2009,255:8701–8705.
    Wang Shilu, Liu Wanshun, Han Baoqin, et al. Study on a hydroxypropyl chitosan–gelatin based scaffoldfor corneal stroma tissue engineering[J]. Applied Surface Science,2009,255(20):8701–8705.
    Wang Z, Zheng L, Yang S, et al. N-Acetylchitooligosaccharide is a potent angiogenic inhibitor both in vivoand in vitro[J]. Biochemical and Biophysical Research Communications,2007,367(1):26-31.
    Wilcoci A, Pavis H, Wilcock A, Edgecombe J, et al. Nasal morphine for the treatment of breakthrough painin cancer patients. Journal of Pain and Symptom Management,2002,24(6):598-602.
    Xie W, Xu P, Wang W, Liu Q. Preparation and antibacterial activity of a water-soluble chitosanderivative[J]. Carbohydrate Polymer[J].2002,50:35–40.
    Xing K, Chen XG, Li YY, Liu CS, et al. Antibacterial activity of oleoyl-chitosan nanoparticles: A novelantibacterial dispersion system[J]. Carbohydrate Polymers,2008,74(1):114-120.
    X Qu, A Wirsen, AC Alebertsson. Nowel pH-sensitive chitosan hydrogels: swelling behavior and states ofwater [J].Polymer,2000,41(12):4589-4598.
    Xu YM, Du YM, Chen LY, et al. Preparation and modification of N-(2-hydroxyl)propyl-3-trimethylammonium chitosan chloride nanoparticle as a protein carrier[J]. Biomaterials,2003,24(27):5015-5022.
    Yang LM, Shi LL, Chen J. Preparation and Characterization of pH-sensitive Hydrogel Film ofChitosan/Poly(acrylic acid) Copolymer[J]. Macromolecular Symposia,2005,225(1):95-102.
    Yanming D, Yusong., Jianwei W, et al. Influence of degree of molar etherification on critical liquidcrystal behavior of hydroxypropyl chitosan[J]. Euopean Polymer Journal,2001,(3):1712-1720.
    Yoshimura M, NishinariK. Dynamic viscoelastic study on thEGelation of konjac glucomannan withdifferent molecular weights[J]. Food Hydrocolloids.1999,13(3):227-233.
    Yuan Q, Venkatasubramanian R, Hein S, Misra RDK. A stimulus-responsive magnetic nanoparticle drugcarrier: magnetite encapsulated by chitosangrafted-copolymer[J]. Acta Biomaterialia,2008,4(4):1024–37.
    Zan J, Zhu D, Tan F, et al. Preparation of Thermosensitive Chitosan Formulations Containing5-Fluorouraci/Poly-3-hydroxybutyrate Microparticles Used as Injectable Drug Delivery System.[J]Chinese Journal of Chemical Engineering,2006,14(2):235-241.
    Zhai M, Zhao L, Yoshii F, Kume T. Study on antibacterial starch/chitosan blend film formed under theaction of irradiation [J]. Carbohydrate Polymers,2004,57(1):83–88.
    Zhang H, Mardyani S, Chen W. Kumacheva E. Design of biocompatible chitosan microgels for targetedpH-mediated intracellular release of cancer therapeutics [J]. Biomacromolecules,2006,7(5):1568–1572.
    Zhang JT, Huang SW, Cheng SX, et al. Preparation and properties ofpoly(N-isoproplyacylamide)/poly(N-isopropylacrylamide) interpenetrating polymer networks for drugdelivery[J]. Journal of Polymer Science A: Polymer Chemistry,2004,42(5):1249-54.
    Zhang YW, Zhao HY, Zhang N, et al. Preparation and characterization of a new injectable thermosensitivehydrogel for sustained drug release. Journal of BeiJing University of Chemical Technology(NaturalScience edition),2007,34(5):535-539.
    Zhao YQ, Chen J, Zeng EM, Hu X.L., Et al. Synthesis and characterization of hydroxyethylchitosangrafted by carboxyl ending DOVOB dendrimer[J]: A novel liquid crystalline polymerCarbohydrate Polymers,2008,74(4):828–833.
    蔡文萍,李铁杰.聚乙二醇修饰的壳聚糖包裹DNA的转染效果研究[J].生物技术,2010,20(5):29-32.
    迟玮,周雪琴,吕楠,刘东志.两亲性高分子量壳聚糖的合成与表征[J].化学研究与应用,2005.
    陈新,邵正中,黄郁芳等.不同交联剂含量对戊二醛交联壳聚糖膜结构与性能影响的研究[J].化学学报,2000,58(12):1654-1659.
    陈忻,袁毅桦,张莉萍,洪祥乐.羟丙基壳聚糖的制备.合成化学,2004,12:85-88.
    邓代举.聚丙烯催化热解及与几种典型生物质共热解研究.[硕士学位论文],四川大学,2006.
    戴宗祥,姬秋彦,杨增福,杨旭等.重组人粒细胞-巨噬细胞集落刺激因子壳聚糖-海藻酸钠微囊的制备[J].中国生物制品学杂志,2010,23(10):1099-1101.
    方波,江体乾.磺化羟乙基壳聚糖的研制.中国生化药物杂志.1998,10(12):222-228.
    高卫栋,王红兵,吴泽志等.肿瘤细胞迁移特性及细胞迁移能力表征[J].细胞生物学杂志,2008,30:451-456.
    黄林莫,曾南,覃敏. ICR小鼠胚胎干细胞滋养层制备条件的实验研究[J].现代生物医学进展,2010,10(1):62-65.
    胡思隽.壳聚糖与免疫调节[J].江西医药,2006,41(10):803-805.
    黄增慰,黄道战.羧甲基壳聚糖防止硫酸钙水垢的性能研究[J].广西民族学院学报,自然科学版,2001,7(2):104-106.
    蒋丽霞,李智,董加喜,顾其生.壳聚糖温敏性凝胶的制备及其热敏性实验研究[J].上海生物医学工程杂志,2002,23(2):19-21.
    蒋挺大.壳聚糖[M].北京:化学工业出版社,2001.
    黎碧娜,王奎兰,吴勇.壳聚糖磺化衍生物的制备及抑菌性能研究[J].香料香精化妆品,2003,1:16-18.
    李建军,韩冬,刘建国等.腺病毒介导的骨形态发生蛋白2基因转染对成骨及血管化的影响[J].中华显微外科杂志,2004,27:284-285.
    李文俊,王汉夫,卢玉华等.壳聚糖/聚丙烯酸配合物半互穿聚合物网络膜及其对pH和离子的刺激响应[J].高分子学报,1997,1:109-113.
    卢文宁.基于温敏性壳聚糖水凝胶的可注射性组织工程化心肌实验研究:[硕士学位论文].中国人民解放军军事医院科学院,2008.
    梁文杰,刘东青,单保恩,张静,李巧霞.北豆根提取物对小鼠和人淋巴细胞及巨噬细胞作用的体外实验研究.中国免疫学杂志,2005.21(1):56-59.
    李文俊,王汉夫,卢玉华等.壳聚糖.聚丙烯酸配合物半互穿聚合物网络膜及其对pH和离子刺激的响应[J].高分子学报,1997,1:106-110.
    李玉林,唐建武编.病理学,人民卫生出版社,2004,第6版.
    李忠海,钟海雁,魏元青,黄卫文.林擒叶提取成分对小鼠免疫功能的影响.中南林学院学报,2003,23(4):28-31.
    吕中明,石根勇,陈新霞,凌宝银.壳聚糖免疫调节作用研究.实用预防医学[J],实用预防医学,2001,8(5):330-332.
    缪锦来,李光友,王波.硒化壳聚糖理化性质和分子结构的研究[J].中国海洋药物,2000,19(1):7-10.
    强正.混合酸制备壳聚糖温敏水凝胶的研究[J].化学世界,2010,8:470-472.
    孟庆廷,陈万东.壳聚糖-海藻酸钠叶绿素亚铁微胶囊的制备及缓释性能研究[J],食品科学,2010,31(20):137-140.
    宋克东.生物反应器内成骨细胞的扩增和组织工程骨的构建:[博士学位论文],大连理工大学,2006.
    孙皎,顾国珍,钱云芳.生物材料不同接触方式和条件对溶血作用影响的研究.生物医学工程学杂志,2003,20(1):8-10.
    施亦东,季莉,陈衍夏,何国琼.水溶性羟丙基壳聚糖的制备与结构特征.印染助剂,2006,23(3):26-30.
    宋献周,沈月新.不同平均分了量α-壳聚糖的抑菌作用.上海水产大学学报,2000,9(2):138-141.
    唐新峰,杜予民,黎厚斌,詹怀宇.中性造纸助剂羟丙基壳聚糖的增强作用与助滤性能[J].造纸科学与技术,2005,24(1):1-4.
    唐振兴,钱俊青,葛立军,何志平.甲壳素/壳聚糖的化学修饰及其研究进展[J].浙江化工,2003,34(7):4-6.
    薛庆善.体外培养的原理与技术[M].第1版.北京:科学出版社,2001,516-517.
    吴国杰.固定化载体材料壳聚糖基水凝胶的研究.[博士学位论文],西北工业大学,2008.
    王爱勤,谭干祖.羟丙基壳聚糖的制备与表征.天然产物研究与开发,1997,9(1):33-36.
    王爱勤,肖玉方,曹农,贾宝全,薛佐良.壳聚糖的改性和应用研究[J];中国生化药物杂志,1997,18(1):16-18.
    王爱勤,李洪启,俞贤达,等.不同介质中乙二醇壳聚糖的合成及性能研究[J].天然产物研究与开发,1997,9(2):28-31.
    王爱勤,李洪启,俞贤达.不同来源甲壳素和壳聚糖的吸湿与保湿性[J].日用化学工业,1999,5:22—23
    王爱勤,俞贤达.烷基化壳聚糖衍生物的制备与性能研究[J].功能高分子学报,1998,11(1):83-86.
    王爱勤,苏海翔,俞贤达.羟基化壳聚糖衍生物的制备及其抗凝血特性.中国海洋药物杂质1997,62(2):13-15
    王超莉,李扬忠.羟乙基壳聚糖硫酸酯的合成与表征[J].江西师范大学学报(自然科学版),2009,33(3):272-274.
    王芳宇,何淑雅,李邦良等.水溶性壳多糖抗肿瘤作用的实验研究[J].中国生化药物杂志,2001,22(1):21-22.。
    万荣欣.羧甲基壳聚糖的生物学评价.[硕士学位论文],天津医科大学,2006.
    许晶,周雪琴,姚康德,迟玮,刘东志等.水溶性O-羟乙基壳聚糖的合成.化学研究与应用,2004,16(2):225-226
    徐叔云,卞如濂,陈修.药理实验方法学[M].北京:人民卫生出版社,2002,1421.
    周永国,杨越冬,侯文龙等.化学修是壳聚糖的血液相容性[J].高分子通报,2008,6:28-33
    吴海明,华晓阳,何登全.壳寡糖抗肿瘤作用及兔疫调节机理的研究[J].中华医学研究杂志,2005(,8):729-732.
    吴五洲,喻爱喜,孙艳玲等.壳聚糖作为rhBMP-2体外缓释载体的实验研究[J].中华显微外科杂志,2006,29(3):214-216.
    姚康德,迟玮,刘东志.水溶性0-羟乙基壳聚糖的合成[J].化学研究与应用,2004,16(2):225-226.
    杨黎明.壳聚糖的改性及其智能水凝胶的研究.[博士学位论文],上海大学,2005.
    袁毅桦.羟丙基壳聚糖的制备及其吸湿、保湿性研究.[博士学位论文],中国科学院上海冶金研究所材料物理与化学(专业),2000.
    余艺华,何炳林.甲壳素/壳聚糖的化学修饰[J].高分子通报,1997,4:232-237.
    张彩霞,孙皎.紫外分光光度仪测定不同含量银汞合金细胞毒性的新方法.中华口腔医学杂志,1990,25(4):216-218.
    赵大成.聚合物水凝胶的结构评价及hPAM溶液的流变学性质研究:[博士学位论文],吉林大学,2006.
    朱慧勇,吴求亮,申屠建中等.多孔聚乳酸一聚乙醇酸共聚物作为缓释重组人骨形态发生蛋白-2载体的实验研究[J],中华创伤杂志,2004,20:602-605.
    张杰,褚良银,张诗博等.可生物降解温度/pH双重感应型壳聚糖凝胶载体的制备和性能研究[J].四川大学学报(工程科学版),2006,38(1):54-48.
    张建国,任慧霞,刘其峰等.低分子壳聚糖季铵盐对小鼠实体瘤及其免疫系统的影响[J].中国生化药物杂志,2005,26(2):93-95.
    张镜吾,程发,李桂风等.羧甲基纤维素取代基沿分子链分布的均一性(I)-溶剂种类对均一性的影响[J].天津大学学报,1995,28(5):647-652.
    张建湘,汤健,徐斌.壳聚糖棒材的组织相容性和安全性评价.生物医学生理学杂志[J].1995,13(4):293-297.
    张昆,冯立群,余昌钰等.机器人柔性手腕的球面齿轮设计研究.清华大学学报,1994,34(2):1-7.
    朱明华,杨成民.水凝胶接枝胶原共聚物的短期生物相容性研究.国外医学生物医学工程分册,1981,2:111-113.
    张楠,陈蕾,刘永乐,胡祖明等.气固相反应制备羟乙基甲壳素的水溶性影响因素《.东华大学学报(自然科学版)》,2007,6.
    张楠,陈蕾,胡祖明等.羟乙基甲壳素水溶液的流变特性[J].材料导报,2007,11(21):399-411.
    张先正,卓仁禧.快速温度敏感聚(N-异丙基丙烯酰胺-co-丙烯酰胺)水凝胶的制备及性能研究[J].高等学校化学学报,2000,21(8):1309-1311.
    张延坤,刘国忠.甲壳素与壳聚糖及其衍生物的制备和在日化工业中的应用[J].日用化学工业,1998,28(4):36-40.
    赵希荣,夏文水.对羟基苯甲酸壳聚糖酯的抑菌活性研究[J].食品科学,2007,28(2):78-82.
    赵小萍,王豫,邱海燕,王晓博. pH敏感性尼莫地平水凝胶的制备及其性能研究[J].现代生物医学进展,2009,9(17):3317-3318.
    赵育.羟乙基甲壳素及其水凝胶的制备及其理化性能和药物缓释性能研究.[硕士学位论文],中国海洋大学,2004.
    赵育,陈国华等.温度及pH敏感性羟乙基甲壳素水凝胶的合成及其性能研究[J].中国海洋大学报,2005,35(2):38-42.
    中国卫生部《.生物材料和医疗器材生物学评价技术要求》附件八:植入实验.北京:人民卫生出版社,1997,517-523.
    中国卫生部.《生物材料和医疗器材生物学评价技术要求》附件五:溶血实验.北京:人民卫生出版社,1997,505-506.
    中华人民共和国卫生部药典委员会编.中华人民共和国药典:一九九五年版(二部)北京:化学工业出版社,1995.114:附录68:附录177:506

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700