用户名: 密码: 验证码:
水飞蓟宾对人宫颈癌和胃癌细胞凋亡作用及机制研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
水飞蓟素(Silymarin)是从水飞蓟的种子中提取出来的一种黄酮木质素类混合物,它包括水飞蓟宾(Silibinin,或Sylibin)、异水飞蓟宾(isosylibinin)、水飞蓟亭(silicristin)、水飞蓟宁(silidianin)等成分。水飞蓟宾本身也是由等比例水飞蓟宾A和水飞蓟宾B构成的两个非对映体混合物,体外和动物研究认为其有很好的保护肝细胞免受毒素损伤的护肝作用,被称为“天然的保肝药”。在动物研究实验中没有明显的慢性毒副作用。近些年来的研究发现,水飞蓟宾还具有较强的抗肿瘤活性,其抗肿瘤作用和分子机制研究都取得了较大进展。体外研究表明,对于雄性激素依赖型和非依赖型前列腺癌、皮肤癌、膀胱癌、肺癌、结肠癌、乳腺癌、卵巢癌、肾癌、肝癌、宫颈癌和舌癌均具有抑制作用。
     本研究的主要目的是探讨水飞蓟宾在宫颈癌及胃癌中的功能及其抑制肿瘤细胞增殖的机制。首先,我们以宫颈癌作为研究模型,流式细胞术的检测结果显示水飞蓟宾使宫颈癌HeLa细胞阻滞在G2/M期。用200μM的水飞蓟宾处理HeLa细胞24h后,G2/M期的细胞比例由对照组的5.64%增至22.67%。蛋白免疫印迹分析表明,水飞蓟宾能够以浓度依赖的方式下调CDK1(Cdc2)和CDK2蛋白水平;细胞周期蛋白Cyclin A和Cyclin B1没有明显变化;形态学分析表明,水飞蓟宾处理的细胞出现了染色质皱缩等细胞凋亡特征;流式细胞术的分析结果显示水飞蓟宾能够以浓度和时间依赖的方式诱导HeLa细胞凋亡,Caspase3,8,9被激活,PARP被切割; Bcl-2蛋白水平下降,Bax没有明显变化,细胞色素C从线粒体释放到胞浆中,Caspase9被激活,即细胞凋亡的线粒体通路被激活;同时, Fas、Fas L的蛋白水平明显上调, Caspase8被激活,即细胞凋亡的膜受体通路被激活。
     迄今为止,水飞蓟宾在胃癌中的研究报道很少。因此,本文着重研究了水飞蓟宾在胃癌中的作用。我们应用胃癌细胞系SGC-7901, BGC-823, HGC-27作为研究模型,研究其诱导细胞凋亡和周期阻滞的分子机制。我们发现SGC-7901、BGC-823、HGC-27对水飞蓟宾有不同的敏感性。其中,HGC-27最为敏感,SGC-7901次之,BGC-823最不敏感。在SGC-7901细胞中,水飞蓟宾上调p53和p21的表达量,下调CDK1,进而减少CDK1-Cyclin B1复合体,使细胞阻滞在G2/M期。值得注意的是,水飞蓟宾能够诱导SGC-7901的凋亡,但并没有激活SGC-7901细胞的Caspase3,8,9的活性,是以一种caspase非依赖的方式诱导其凋亡。在BGC-823细胞中,水飞蓟宾的作用最不敏感,只能微弱下调CDK1(Cdc2)和微弱的激活Caspase3,9。因此,也只能引起较轻微的周期阻滞和细胞凋亡现象。然而,水飞蓟宾却显著的抑制HGC-27细胞的增殖;下调HGC-27细胞中CDK1、Cyclin B1的蛋白表达水平,引起G2/M期细胞周期阻滞;水飞蓟宾还激活了Caspase3, PARP被切割,导致细胞凋亡;在此过程中,Bcl-2明显减少,Bax增加,细胞色素C从线粒体释放到胞浆中,Caspase9被激活,即凋亡的线粒体途径被激活;并且,Caspase8也被激活,即凋亡的死亡受体通路也可能参与凋亡过程。
     辅助化疗在晚期胃癌患者的治疗中起到了关键的作用。然而,大多数患者在起初对化疗药物是敏感的,但最后都对其化疗药物产生抗性而导致化疗失败。因此,具有低毒副作用、高抗癌活性的植物性治疗试剂可能与抗癌药物产生协同作用,是我们目前研究的最佳候选者。在此,我们评价了水飞蓟宾是否能与紫杉醇、阿霉素、喜树碱在胃癌细胞SGC-7901中产生协同作用。实验结果显示水飞蓟宾能够与紫杉醇产生很好的协同促进作用,诱导SGC-7901细胞G2/M期阻滞及凋亡。
Silymarin, an extract of the milk thistle seeds, is mixture of flavonolignansconsisting of among others of Silibinin, isosilibinin, silicristin, and silidianin.Silibinin itself is mixture of two diastereomers silibinin A and silybinin B inapproximately equimolar ratio. Both in vitro and animal research suggest thatsilibinin, as a ‘narural hepatoprotective drug’, has hepatoprotective (antihepatotoxic)properties that protect liver cells against toxins. Animal experiments showed thatSilibinin has no obivousely toxin side effect. Recent studies have showed strongerefficacy of Silibinin and more progress has been made towards antitumor role andmolecular mechanism. In vitro studies have also showed Silibinin processesinhibitory role against male hormone-dependent and hormone-nondependent cancerincluding prostate cancer, skin cancer, urinary bladder cancer, lung cancer, coloncancer, breast cancer, ovarian cancer, kindney cancer, hepatic cancer, cervical cancer,and tongure cancer.
     The purpose of this study was to investigate the function and molecular mechanismsof Silibinin in cell growth in cervical cancer and gastric cancer. First, we had cervicalcancer (HeLa) as a model. Flow cytometry results showed Silibinin arrested HeLacells in G2/M phase. After24h treatment with200μM silibinin, percentages of G2/Mphase cells increased from5.64%(control) to22.67%. Using immunoblot analysis, wealso observed that Silibinin decreased the expression of CDK2and CDK1(Cdc2)levels in HeLa cell lines in a dose-dependent manner, which might be the possiblemolecular mechanism of Silibinin efficacy in growth inhibition in HeLa cells. In thestudies assessing Silibinin effect on cyclin levels, no changes were observed in CyclinA and Cyclin B1protein levels. Morphological analysis using DAPI staining revealedthe presence of nuclei with chromatin condensation and the formation of apoptoticbodies in cells cultured with Silibinin. In addition, flow cytometric analyses revealedenhanced apoptosis of HeLa cells treated with Silibinin in a concentration-dependentand time-dependent manner. Western-blot analysis revealed Silibinin significantly cleaved the PARP and reduced pro-caspase3/8/9in dose-dependent manner.Furthermore,our data also demonstrated that Silibinin significantly downregulated theratio of Bcl-2/Bax that was accompanied by a subsequent evident release ofcytochrome c from mitochondria to cytoplasm and activation of caspase-9. Meanwhile,the expression of Fas and Fas L were upregulated in a dose-dependent manner andcaspase8was activated. All these findings implicated that the Silibinin-drivenapoptosis was conducted in both the mitochondrial pathway and the deathreceptor-mediated pathway.
     Silibinin, a flavonoid compound, has shown to be of chemopreventive potentialagainst many cancers. However, its efficacy against gastric cancer has not been wellelucidated. Here, we assessed the activity of Silibinin on apoptosis and cell-cyclearrest in human gastric cells culture system using SGC-7901, BGC-823, HGC-27asthe model. We observed that SGC-7901, BGC-823, HGC-27have different sensitivityto Silibinin. In SGC-7901cells, Silibinin showed a G2phase arrest upregulating theexpression p53, p21protein, downregulating the expression CDK1, and decreasing theactivity of CDK1-Cyclin B1complex. Silibinin induced G2phase arrest in thecell-cycle progression of SGC-7901cell line. Surprisingly, our data demonstrated thatSilibinin treatment did not show any increase in the activities of Caspase3,8,9. Thesefindings clearly demonstrated Silibinin treatment resulted in apoptotic death ofSGC-7901cells, which was independent of caspase activation. In BGC-823cells, theeffects of Silibinin are the most insensitive. Silibinin slightly downregulated CDK1and slightly activated Caspase3,9. However, Silibinin could significantlydownregulate the expression of CDK1and Cyclin B1in HGC-27cells. Furthermore,Silibinin could activite Caspase3,8,9, downregulate the Bcl-2, and upregulate theBax. These data demonstrated that Silibinin arrested G2/M phase and inducedapoptosis in both the mitochondrial pathway and the death receptor-mediated pathwayin HGC-27cells.
     Palliative chemotherapy may play a very important role in the treatment of patientswith advanced gastric cancer. However, most patients who are sensitive to initial chemotherapy will eventually fail to react to further cytotoxic chemotherapeuticagents. Therefore, phytotherapeutic agents with high anticancer efficacy and leasttoxicity to normal tissues are suggested as possible candidates to be investigated fortheir synergistic efficacy in combination with anticancer drugs. Herein we assessedwhether Silibinin could synergize the therapeutic efficacy of Paclitaxel, or doxorubicin,or camptothecine in human gastric cancer cell line SGC-7901. The results showed thatSilibinin strongly synergized human gastric cancer SGC-7901cells toPaclitaxel-induced growth inbition, G2/M cell cycle arrest, and apoptosis. Together,we gained a deeper insight into synergetic efficacy of Silibinin in combination withPaclitaxel in human gastric cancer cells.
引文
[1] Post-White J, Ladas EJ, Kelly KM. Advances in the use of milk thistle(Silybum marianum)[J]. Integr Cancer Ther,2007,6:104-109.
    [2] Kroll DJ, Shaw HS, Oberlies NH. Milk thistle nomenclature: why it matters incancer research and pharmacokinetic studies [J]. Integr Cancer Ther,2007,6:110-119.
    [3] Al-Anati L, Essid E, Reinehr R, Petzinger E. Silibinin protectsOTA-mediated TNF-alpha release from perfused rat livers and isolated ratKupffer cells [J]. Mol Nut Food Res,2009,53(4):460–466.
    [4] Jayaraj R, Deb U, Bhaskar AS, et al. Hepatoprotective efficacy of certainflavonoids against microcystin induced toxicity in mice [J]. Environ Toxicol,2007,22(5):472–479.
    [5]. Lee DYW, Liu Y. Molecular structure and stereochemistry of silybin A,silybin B, isosilybin A, and isosilybin B, isolated from Silybum marianum(milk thistle)[J]. J Nat Prod,2003,66:1171-1174.
    [6] Kim NC, Graf TN, Sparacino CM, et al. Complete isolation andcharacterization of silybins and isosilybins from milk thistle (Silybummarianum)[J]. Org Biomol Chem,2003,1:1684–1689.
    [7] Boigk G, Stroedter L, Herbst H, et al. Silymarin retards collagenaccumulation in early and advanced biliary fibrosis secondary to completebile duct obliteration in rats [J]. Hepatology,1997,26(3):643-649.
    [8] Basiglio CL, Sanchez Pozzi EJ, Mottino AD, et al. Differential effects ofsilymarin and its active component silibinin on plasma membrance stabilityand hepatocellular lysis [J]. Chem-Biol Interact,2009,179:297-303.
    [9] Deep G, Agarwal R. Antimetastatic efficacy of Silibinin: MolecuLarmechanisms and therapeutic potential against cancer [J]. Cancer MetastasisRev,2010,29:447–463.
    [10] Hahn VG, Lehmann HD, Kürten M, et al. Pharmacology and toxicology ofsilymarin antihepatotoxic agent of Silybum marianum(L) gaertn [J].Arzneimittel Forsch-Drug Res,1968,18:698–704.
    [11] Vogel G, Trost W, Braatz R, et al. Pharmacodynamics, site and mechanism ofaction of silymarin, the antihepatoxic principle from Silybum mar.(L) Gaertn.1. Acute toxicology or tolerance, general and specific (liver-) pharmacology[J]. Arzneimittel Forsch-Drug Res,1975,25:82–89.
    [12] Flora K, Hahn M, Rosen H, et al. Milk thistle (Silybum marianum) for thetherapy of liver disease [J]. Am J Gastroenterol,1998,93:139-143.
    [13] Wellington K, Jarvis B. Silymarin: A review of its clinical Properties in themanagement of hepatic disorders [J]. Biodrugs,2001,15:465–489.
    [14] Deep G, Agarwal, R. Antimetastatic efficacy of silibinin: molecularmechanisms and therapeutic potential against cancer [J]. Cancer MetastasisRev,2010,29:447–463.
    [15] Zi XL, Agarwal R. Silibinin decreases prostate-specific antigen with cellgrowth inhibition via G1arrest, leading to differentiation of prostatecarcinoma cells: Implications for prostate cancer intervention [J]. Proc NatlAcad Sci,1999,96:7490–7495.
    [16] Agarwal C, Singh RP, Dhanalakshmi S, et al. Silibinin upregulates theexpression of cyclin-dependent kinase inhibitors and causes cell cycle arrestand apoptosis in human colon carcinoma HT-29cells [J]. Oncogene,2003,22:8271–8282.
    [17] Tyagi A, Agarwal C, Harrison G, et al. Silibinin causes cell cycle arrest andapoptosis in human bladder transitional cell carcinoma cells by regulatingCDKI--CDK--cyclin cascade, and caspase3and PARP cleavages [J].Carcinogenesis,2004,25:1711-1720.
    [18] Lah JJ, Cui W, Hu KQ. Effects and mechanisms of silibinin on humanhepatoma cell lines [J]. World J Gastroentero,2007,13(40):5299-5305.
    [19] Li LH, Wu LJ, Tashiro SI, et al. Activation of the S IRT1pathway andmodulation of the cell cycle were involved in silymarins' protection againstUV-induced A375-S2cell apoptosis [J]. J Asian Nat Prod Res,2007,9:245-252.
    [20] Singh RP, Agarwal R. Mechanisms and preclinical efficacy of silibinin inpreventing skin cancer [J]. Eur J Cancer,2005,41:1969–1979.
    [21] Gharagozloo M, Amirghofran Z. Effects of silymarin on the spontaneousproliferation and cell cycle of human peripheral blood leukemia T cells [J]. J.Cancer Res Clin Oncol,2007,133:525–532.
    [22] Mateen S, Tyagi A, Agarwal C, et al. Silibinin inhibits human nonsmall celllung cancer cell growth through cell-cycle arrest by modulating expressionand function of key cell-cycle regulators [J]. Mol Carcinogen,2010,49:247–258.
    [23] Tyagi A, Bhatia N, Condon MS, et al. Antiproliferative and apoptotic effectsof silibinin in rat prostate cancer cells [J]. The Prostate,2002,53:211-217.
    [24] Tyagi AK, Singh RP, Agarwal C, et al. Silibinin strongly synergizes humanprostate carcinoma DU145cells to doxorubicin-induced growth inhibition,G2/M arrest, and apoptosis [J]. Clin Cancer Res,2002,8:3512–3519.
    [25] Dhanalakshmi S, Agarwal P, Glode LM, et al. Silibinin sensitizes humanprostate carcinoma DU145cells to cisplatin-and carboplatin-induced growthinhibition and apoptotic death [J]. Int J Cancer,2003,106:699–705.
    [26] Agarwal C, Tyagi A, Kaur M, et al. Silibinin inhibits constitutive activationof Stat3, and causes caspase activation and apoptotic death of human prostatecarcinoma DU145cells [J]. Carcinogenesis,2007,28:1463–1470.
    [27] Li L, Gao Y, Zhang L, et al. Silibinin inhibits cell growth and inducesapoptosis by caspase activation, down-regulating survivin and blockingEGFR–ERK activation in renal cell carcinoma [J]. Cancer Lett,2008,272:61–69.
    [28] Tyagi A, Singh RP, Agarwal C, et al. Silibinin activates p53-caspase2pathway and causes caspase-mediated cleavage of Cip1/p21in apoptosisinduction in bladder transitional-cell papilloma RT4cells: evidence for aregulatory loop between p53and caspase2[J]. Carcinogenesis,2006,27:2269–2280.
    [29] Zhong X, Zhu Y, Lu Q, et al. Silymarin causes caspases activation andapoptosis in K562leukemia cells through inactivation of Akt pathway [J].Toxicology,2006,227:211-216.
    [30] Li LH, Wu LJ, Jiang YY, et al. Silymarin enhanced cytotoxic effect ofanti-Fas agonistic antibody CH11on A375-S2cells [J]. J Asian Nat Prod Res,2007,9:593-602.
    [31] Singh RP, Dhanalakshmi S, Agarwal C, et al. Silibinin strongly inhibitsgrowth and survival of human endothelial cells via cell cycle arrest anddownregulation of survivin, Akt and NF-κB: Implications forangioprevention and antiangiogenic therapy. Oncogene,2005,24(7):1188–1202.
    [32] Raina K, Rajamanickam S, Singh RP, et al. Stage-specific inhibitory effectsand associated mechanisms of silibinin on tumor progression and metastasisin transgenic adenocarcinoma of the mouse prostate model. Cancer Res,2008,68(16):6822–6830.
    [33] Singh RP, Deep G, Chittezhath, M, et al. Effect of silibinin on the growth andprogression of primary lung tumors in mice. J Natl Cancer I,2006,98(12):846–855.
    [34] Gallo D, Giacomelli S, Ferlini C, et al. Antitumour activity of thesilybin-phosphatidylcholine complex, IdB1016, against human ovariancancer [J]. Eur J Can cer,2003,39(16):2403-2410.
    [35] Mehlen P, Puisieux A. Metastasis: A question of life or death [J]. Nat RevCancer,2006,6(6):449–458.
    [36] Nguyen DX, Massague J. Genetic determinants of cancer metastasis [J].Nature Rev Genet,2007,8(5):341–352.
    [37] Monteiro J, Fodde R. Cancer stemness and metastasis: Therapeuticconsequences and perspectives [J]. Eur J Cancer,2010,46(7):1198–1203.
    [38] Polyak K, Weinberg R. A. Transitions between epithelial and mesenchymalstates: Acquisition of malignant and stem cell traits [J]. Nat Rev Cancer,2009,9(4):265–273.
    [39] Joyce JA, Pollard JW. Microenvironmental regulation of metastasis [J]. NatRev Cancer,2009,9(4):239–252.
    [40] Yang J, Weinberg RA. Epithelial–mesenchymal transition: At the crossroadsof development and tumor metastasis [J]. Dev Cell,2008,14(6):818–829.
    [41] Kingsley LA, Fournier PG, Chirgwin JM, Guise TA. Molecular biology ofbone metastasis [J]. Mol Cancer Ther,2007,6(10):2609–2617.
    [42] Clarke NW, Hart CA, Brown MD. Molecular mechanisms of metastasis inprostate cancer [J]. Asian J Androl,2009,11(1):57–67.
    [43] Buijs JT, van der Pluijm G. Osteotropic cancers: From primary tumor to bone[J]. Cancer Lett,2009,273(2):177–193.
    [44] Singh RP, Raina K, Sharma G, et al. Silibinin inhibits established prostatetumor growth, progression, invasion, and metastasis and suppresses tumorangiogenesis and epithelial–mesenchymal transition in transgenicadenocarcinoma of the mouse prostate model mice [J]. Clin Cancer Res,2008,14(23):7773–7780.
    [45] Mokhtari MJ, Motamed N, Shokrgozar MA. Evaluation of silibinin on theviability, migration and adhesion of the human prostate adenocarcinoma(PC-3) cell line [J]. Cell Biol Int,2008,32(8):888–892.
    [46] Wu KJ, Zeng J, Zhu GD, et al. Silibinin inhibits prostate cancer invasion,motility and migration by suppressing vimentin and MMP-2expression [J].Acta Pharmacol Sin,2009,30(8):1162–1168.
    [47] Deep G, Gangar SC, Agarwal R.(2010). Silibinin inhibits epithelial tomesenchymal transition in prostate cancer cells: Role of E-cadherin andbeyond. Proceedings of the101th AACR Annual Meeting, Washington DC,April2010. Abstract number5650.
    [48]. Provinciali M, Papalini F, Orlando F, et al. Effect of the silybin–phosphatidylcholine complex (IdB1016) on the development of mammarytumors in HER-2/neu transgenic mice [J]. Cancer Research,2007,67(5):2022-2029.
    [49] Lee SO, Jeong YJ, Im HG, et al. Silibinin suppresses PMA-induced MMP-9expression by blocking the AP-1activation via MAPK signaling pathways inMCF-7human breast carcinoma cells [J]. Biochem Bioph Res Co,2007,354(1):165–171.
    [50] Chen PN, Hsieh YS, Chiang CL, et al. Silibinin inhibits invasion of oralcancer cells by suppressing the MAPK pathway [J]. J Dent Res,2006,85(3):220–225.
    [51] Chu SC., Chiou HL, Chen PN, Y et al. Silibinin inhibits the invasion ofhuman lung cancer cells via decreased productions of urokinase-plasminogenactivator and matrix metalloproteinase-2[J]. Mol Carcinogen,2004,40(3):143–149.
    [52] Hsieh YS, Chu SC, Yang SF, et al. Silibinin suppresses human osteosarcomaMG-63cell invasion by inhibiting the ERK-dependent c-Jun/AP-1inductionof MMP-2[J]. Carcinogenesis,2007,8(5):977–987.
    [53] Chittezhath M, Deep G, Singh RP, et al. Silibinin inhibits cytokine-inducedsignaling cascades and down-regulates inducible nitric oxide synthase inhuman lung carcinoma A549cells [J]. Mol Cancer Ther,2008,7:18171826.
    [54]王红军,姜媛媛,路平,王琼,池岛乔.水飞蓟宾的抗肿瘤、抗氧化和免疫调节分子药理学机制研究进展[J]。药学学报,2010,45(4):413-421.
    [55] Kiruthiga PV, Shafreen RB, Pandian SK, et al. Silymarin protection againstmajor reactive oxygen species released by environmental toxins: exogenousH2O2exposure in erythrocytes [J]. Basic Clin Pharmacol Toxicol,2007,100:414419.
    [56] Fu H, Lin M, Muroya Y, et al. Free radical scavenging reactions andantioxidant activities of silybin: mechanistic aspects and pulse radiolyticstudies [J]. Free Radic Res,2009,43:887897.
    [57] Fu H, Katsumura Y, Lin M, et al. Fast repair activities towards dGMPhydroxyl radical adducts by silybin and its analogues [J]. J Radiat Res,2008,49:609614.
    [58] Kidd P. Silybin–phosphatidylcholine complex [J]. Altern Med Rev,2009,14(4),385–390.
    [59] Kidd PM. Bioavailability and activity of phytosome complexes frombotanical polyphenols: The silymarin, curcumin, green tea, and grape seedextracts [J]. Altern Med Rev,2009,14(3):226–246.
    [60] Kidd P, Head K. A review of the bioavailability and clinical efficacy of milkthistle phytosome: A silybin–phosphatidylcholine complex (Siliphos)[J].Altern Med Rev,(2005).10(3),193–203.
    [61] Flaig TW, Glode M, Gustafson D, et al. A study of high-dose oralsilybin–phytosome followed by prostatectomy in patients with localizedprostate cancer [J]. Prostate,2010,70(8):848–855.
    [62] Flaig TW, Gustafson DL, Su LJ, et al, Crighton F, Harrison GS, et al. Aphase I and pharmacokinetic study of silybin-phytosome in prostate cancerpatients [J]. Inves New Drug,2007,25(2):139–146.
    [63] Post-White J, Ladas EJ, Kelly KM. Advances in the use of milk thistle(Silybum marianum)[J]. Integr Cancer Ther,2007,6(2):104–109.
    [64] Wang Y, Zhang D, Liu Z, et al. In vitro and in vivo evaluation of silybinnanosuspensions for oral and intravenous delivery [J]. Nanotechnology,2010,21(15):104-115.
    [65] Deep G, Singh RP, Agarwal C, et al. Silymarin and silibinin cause G1andG2-M cell cycle arrest via distinct circuitries in human prostate cancer PC3cells: A comparison of flavanone silibinin with flavanolignan mixturesilymarin [J]. Oncogene,2006,25(7):1053-1069.
    [66] Tyagi A, Agarwal C, Agarwal R. The cancer preventive flavonoid silibinincauses hypophosphorylation of Rb/p107and Rb2/p130via modulation of cellcycle regulators in human prostate carcinoma DU145cells [J]. Cell Cycle,2002,1:137-142.
    [67] Kaur M, Velmurugan B, Tyagi A, et al. Silibinin suppresses growth andinduces apoptotic death of human colorectal carcinoma LoVo cells in cultureand tumor xenograft [J]. Mol Cancer Thera,2009,8(8):2366–2374.
    [68] Agarwal C, Singh RP, Dhanalakshmi S, et al. Silibinin upregulates theexpression of cyclin-dependent kinase inhibitors and causes cell cycle arrestand apoptosis in human colon carcinoma HT-29cells [J]. Oncogene,2003,22(51):8271–8282.
    [69] Wang HJ, Tashiro S, Onodera S, et al. Inhibition of insulin-like growth factor1receptor signaling enhanced silibinin-induced activation of death receptorand mitochondrial apoptotic pathways in human breast cancer MCF-7cells[J]. J Pharmacol Sci,(2008).107(3),260–269.
    [70] Son YG, Kim EH, Kim JY, et al. Silibinin sensitizes human glioma cells toTRAIL-mediated apoptosis via DR5up-regulation and down-regulation ofc-FLIP and survivin [J]. Cancer Res,2007,67(17):8274–8284.
    [71] Singh RP, Sharma G, Dhanalakshmi S, et al. Suppression of advanced humanprostate tumor growth in athymic mice by silibinin feeding is associated withreduced cell proliferation, increased apoptosis, and inhibition of angiogenesis[J]. Cancer Epidem Biomar,2003,12(9),933–939.
    [72] Singh RP, Agarwal R. Prostate cancer chemoprevention by silibinin: Benchto bedside [J]. Mol Carcinogen,2006,45(6):436–442.
    [73] Rajamanickam S, Velmurugan B, Kaur M, et al. Chemoprevention ofintestinal tumorigenesis in APCmin/+mice by silibinin [J]. Cancer Res,2010,70(6):2368–2378.
    [74] Singh RP, Agarwal R. Prostate cancer prevention by silibinin [J]. Curr CancerDrug Tar,2004,4(1):1–11.
    [75] Singh RP, Raina K, Deep G, Chan D, Agarwal R. Silibinin suppresses growthof human prostate carcinoma PC-3orthotopic xenograft via activation ofextracellular signalregulated kinase1/2and inhibition of signal transducersand activators of transcription signaling [J]. Clin Cancer Res,2009,15(2):613–621.
    [76] Li L, Zeng J, Gao Y, He D. Targeting silibinin in the antiproliferativepathway [J]. Expert Opin on Inv Drug,2010,19(2):243–255.
    [77] Tyagi A, Sharma Y, Agarwal C, Agarwal R. Silibinin impairs constitutivelyactive TGFalpha-EGFR autocrine loop in advanced human prostatecarcinoma cells [J]. Pharm Res,2008,25(9):2143–2150.
    [78] Jung HJ, Park JW, Lee JS, et al. Silibinin inhibits expression of HIF-1alphathrough suppression of protein translation in prostate cancer cells [J].Biochem Bioph Res Co,2009,390(1):71–76.
    [79] Cooper GM. The cell: a molecular approach [M].2nd ed. Washington, D.C:ASM Press,2000.
    [80] What is a cell? http://www.ncbi.nlm.nih.gov/About/primer/genetics_cell.html.
    [81] Morgan, David O. The Cell Cycle: Principles of Control [M].1st ed. London:New Science Press,2007.
    [82] Melanie L, Paul N. Complementation used to clone a human homologue ofof the fission yeast cell cycle control gene cdc2[J]. Nature,1987,327:31-35.
    [83] Carnero A. Targeting the cell cycle for cancer therapy [J]. British Journal ofCancer,2002,87:129–133.
    [84] Kaldis P, Russo AA, Chou HS, et al. Human and yeast cdk-activating kinases(CAKs) display distinct substrate specificities [J]. Mol Biol Cell,1998,9:2545-2560.
    [85] Hanahan D, Weinberg RA. The hallmarks of cancer [J]. Cell,2000,100(1):57-70.
    [86] Amati B, Alevizopoulos K, Vlach J. Myc and the cell cycle [J]. Front Biosci,1998,3: d250-268.
    [87] Bates S, Vousden KH. p53in signaling checkpoint arrest or apoptosis [J].Curr Opin Genet Dev,1996,6(1):12-18.
    [88] Prives C, Hall PA. The p53pathway [J]. J Pathol,1999,187(1):112-126.
    [89] Schwartz GK, Shah MA. Targeting the cell cycle: a new approach to cancertherapy [J]. J Clin Oncol,2005,23:9408-9421.
    [90] Malumbres M, Barbacid M. To cycle ornot to cycle: A critical decision incancer [J]. Nat Rev Cancer,2001,1:222-231.
    [91] Evans T, Rosenthal ET, Youngblom J, et al. Cyclin: A protein specified bymaternal mRNA in sea urchin eggs that is destroyed at each cleavage division[J]. Cell,1983,33:389-396.
    [92] Brown NR, Noble ME, Endicott JA, et al. The crystal structure of cyclin A[J]. Structure,1995,3(11):1235-1247.
    [93] Davies TG, Tunnah P, Meijer L, et al. Inhibitor binding to active and inactiveCDK2: the crystal structure of CDK2-cyclin A/indirubin-5-sulphonate [J].Structure,2001,9(5):389-397.
    [94] Chaudhry P, Asselin E. Resistance to chemotherapy and hormone therapy inendometrial cancer [J]. Endocr Relat Cancer,2009,16:363-380.
    [95] Culurmen Be, Robert JM. Cell cycle and cancer [J]. J Natl Cancer I,1995,87:1499-1598.
    [96] Hartwell LH, Kastan MB. Cell cycle control and cancer [J]. Science,1994,266:1821–1828.
    [97] Harper JW, Elledge SJ. cdk inhibitors in development and cancer [J]. CurrOpin Genet Dev,1996,6:56–64.
    [98] Wajed SA, Laird PW, DeMeester TR. DNA methylation: an alternativepathway to cancer [J]. Ann Surg,2001,234:10-20.
    [99] Sutherland RL, Musgrove EA. Cyclin D1and mammary carcinoma: newinsights from transgenic mouse models [J]. Breast Cancer Res,2002,4:14-17.
    [100] Buckley MF, Sweeney KJ, Hamilton JA, et al. Expression and amplificationof cyclin genes in human breast cancer [J]. Oncogene,1993,8:2127-2133.
    [101] Chen YN, Sharma SK, Ramsey TM, et al. Selective killing of transformedcells by cyclin/cyclin-dependent kinase2antagonists [J]. Proc Natl Acad Sci,1999,96:4325-4329.
    [102] Losiewicz MD, Carlson BA, Kaur G, et al. Potent inhibition of cdc2kinaseactivity by the flavonoid L86-8275[J]. Biochem Bioph Res Commun,1994,201:589-595.
    [103] Carlson BA, Dubay MM, Sausville EA, et al. Flavopiridol induces G1arrestwith inhibition of cyclin-dependent kinase (CDK)2and CDK4in humanbreast carcinoma cells [J]. Cancer Res,1996,56:2973-2978.
    [104] Konig A, Schwartz GK, Mohammad RM, et al. The novel cyclin-dependentkinase inhibitor flavopiridol downregulates Bcl-2and induces growth arrestand apoptosis in chronic B-cell leukemia cell lines [J]. Blood,1997,90:4307-4312.
    [105] Byrd JC, Shinn C, Waselenko JK, et al. Flavopiridol induces apoptosis inchronic lymphocytic leukemia cells via activation of caspase-3withoutevidence of bcl-2modulation or dependence of functional p53[J]. Blood,1998,92:3804-3816.
    [106] Cartee L, Wang Z, Decker RH, et al. The cyclin-dependent kinase inhibitor(CDKI) flavopiridol disrupts phorbol12-myristate13-acetateinduceddifferentiation and CDKI expression while enhancing apoptosis in humanmyeloid leukemia cells [J]. Cancer Res,2001,61:2583-2591.
    [107] Motwani M, Jung C, Sirotnak FM, et al. Augmentation of apoptosis andtumor regressions by flavopiridol in the presence of CPT-11in HCT116colon cancer monolayers and xenografts [J]. Clin Cancer Res,1001,7:4209-4219.
    [108] Kitada S, Zapata J, Andreeff M, et al. Protein kinase inhibitors flavopiridoland7-hydroxystaurosporine down-regulate antiapoptosis proteins in B-cellchronic lymphocytic leukemia [J]. Blood,2000,96:393-397.
    [109] Gao N, Dai Y, Rahmani M, et al. Contribution of disruption of the nuclearfactor-kappaB pathway to induction of apoptosis in human leukemia cells byhistone deacetylase inhibitors and flavopiridol [J]. Mol Pharmacol,2004,66:956-963.
    [110] Carlson B, Lahusen T, Singh S, et al. Down-regulation of cyclin D1bytranscriptional repression in MCF-7human breast carcinoma cells inducedby flavopiridol [J]. Cancer Res,1999,59:4634-4641.
    [111] Wall NR, O’Connor DS, Plescia J, et al. Suppression of survivinphosphorylation on Thr34by flavopiridol enhances tumor cell apoptosis [J].Cancer Res,2003,63:230-235.
    [112] Byrd JC, Lin TS, Dalton JT, et al. Flavopiridol administered using apharmacologically derived schedule is associated with marked clinicalefficacy in refractory, genetically high-risk chronic lymphocytic leukemia [J].Blood,2007,109:399–404.
    [113] Phelps MA, Lin TS, Johnson AJ, et al. Clinical response andpharmacokinetics from a phase1study of an active dosing schedule offlavopiridol in relapsed chronic lymphocytic leukemia [J]. Blood,2009,113:2637-2645.
    [114] Burdette–Radoux S, Tozer RG, Lohmann RC, et al. Phase Ⅱtrial offlavopiridol, a cyclin dependent kinase inhibitor, in untreated metastaticmalignant melanoma [J]. Invest New Drugs,2004,22:315-322.
    [115] Grendys EC Jr, Blessing JA, Burger R, Hoffman J. A phase Ⅱevaluation offlavopiridol as second-line chemotherapy of endometrial carcinoma: aGynecologic Oncology Group study [J]. Gynecol Oncol,2005,98:249-253.
    [116] Dispenzieri A, Gertz MA, Lacy MQ, et al. Flavopiridol in patients withrelapsed or refractory multiple myeloma: a phase2trial with clinical andpharmacodynamic end-points [J]. Haematologica,2006,91:390-393.
    [117] Shah MA, Kortmansky J, Motwani M, et al. A phase Ⅰclinical trial of thesequential combination of irinotecan followed by flavopiridol [J]. ClinCancer Res,2005,11:3836–3845.
    [118] George S, Kasimis BS, Cogswell J, et al. Phase Ⅰ study of flavopiridol incombination with paclitaxel and carboplatin in patients with non-small-celllung cancer [J]. Clin Lung Cancer,2008,9:160–165.
    [119] Bible KC, Lensing JL, Nelson SA, et al. Phase Ⅰ trial of flavopiridolcombined with cisplatin or carboplatin in patients with advancedmalignancies with the assessment of pharmacokinetic and pharmacodynamicend points [J]. Clin Cancer Res,2005,11:5935–5941.
    [120] El-Rayes BF, Gadgeel S, Parchment R, Lorusso P, Philip PA. A phase Ⅰstudy of flavopiridol and docetaxel [J]. Invest New Drugs,2006,24:305–310.
    [121] Karp JE, Smith BD, Levis MJ, et al. Sequential flavopiridol, cytosinearabinoside, and mitoxantrone: a phase Ⅱ trial in adults with poor-risk acutemyelogenous leukemia [J]. Clin Cancer Res,2007,13:4467–4473.
    [122] Takahashi I, Saitoh Y, Yoshida M. UCN-01and UCN-02, new selectiveinhibitors of protein kinase C: Purification, physico-chemical properties,structural determination and biological activities [J]. J Antibiot,1989,42:571-576.
    [123] Kawakami K, Futami H, Takahara J, et al. UCN-01,7-hydroxylstaurosporine,inhibits kinase activity of cyclin-dependent kinases and reduces thephosphorylation of the retinoblastoma susceptibility gene product in A549human lung cancer cell line [J]. Biochem Biophys Res Commun,1996,219:778-783.
    [124] Akiyama T, Yoshida T, Tsujita T, et al. G1phase accumulation induced byUCN-01is associated with dephosphorylation of Rb and CDK2proteins aswell as the induction of CDK inhibitor p21/CIP/WAF1/Sdi1in p53-mutatedhuman epidermoid carcinoma A431cells [J]. Cancer Res,1997,57:1495-1501.
    [125] Fan G, Steer CJ. The retinoblastoma gene product is a negative modulator oftheapoptotic pathway [J]. Adv Enzyme Regul,1996,36:283-303.
    [126] Hsueh CT, Kelsen D, Schwartz GK. UCN-01suppresses thymidylatesynthase gene expression and enhances5-fluorouracil-induced apoptosis in asequence-dependent manner [J]. Clin Cancer Res,1998,4:2201-2206.
    [127] Sausville EA, Arbuck S, Messmann R, et al. Phase I trial of72-hourcontinuous infusion of UCN-01in patients with refractory neoplasms [J]. JClin Oncol,2001,19:2319-2333.
    [128] Fuse E, Tanii H, Kurata N, et al. Unpredicted clinical pharmacology ofUCN-01caused by specific binding to human alpha1-acid glycoprotein [J].Cancer Res,1998,58:3248-3253.
    [129] Tamura T, Sasaki Y, Minami H, et al. Phase I study of UCN-01by3-hourinfusion. Proc Amer Assoc Oncol,1999,18(Meeting abstract).
    [130] Mutter R, Wills M. Chemistry and clinical biology of the bryostatins [J].Bioorg Med Chem,2000,8:1841-1860.
    [131] Wender PA, Cribbs CM, Koehler KF, et al. Modeling of the bryostatins to thephorbol ester pharmacophore on protein kinase C [J]. Proc Natl Acad Sci,1998,85:7197-7201.
    [132] Asiedu C, Biggs J, Lilly M, et al. Inhibition of leukemic cell growth by theprotein kinase C activator bryostatin-1correlates with the dephosphorylationof cyclin-dependent kinase2[J]. Cancer Res,1995,55:3716-3720.
    [133] Vrana JA, Saunders AM, Chellappan SP, et al. Divergent effects of bryostatin1and phorbol myristate acetate on cell cycle arrest and maturation in humanmyelomonocytic leukemia cells (U937)[J]. Differentiation,1998,63:33-42.
    [134] Vrana JA, Kramer LB, Saunders AM, et al. Inhibition of protein kinase Cactivator-mediated induction of p21cip1and p27kip1by deoxycytidineanalogs in human leukemia cells: Relationship to apoptosis anddifferentiation [J]. Biochem Pharmacol,1999,58:121-131.
    [135] Koutcher JA, Motwani M, Dyke JP, et al. The in vitro effect of bryostatin-1on paclitaxelinduced tumor growth, mitotic entry, and blood flow [J]. ClinCancer Res,2006:1498-1507.
    [136] Jayson GC, Crowther D, Prendiville J, et al. A phase I trial of bryostatin1inpatients with advanced malignancy using a24-hour intravenous infusion. BrJ Cancer,1995,72:461-468.
    [137] Camidge DR, Pemberton M, Growcott J, et al. A phase i pharmacodynamicstudy of the effects of the cyclin-dependent kinase-inhibitor AZD5438on cellcycle markers within the buccal mucosa, plucked scalp hairs and peripheralblood mononucleocytes of healthy male volunteers [J]. Cancer ChemotherPharmacol,2007,60:479–488.
    [138] Camidge DR, Smethurst D, Growcott J, et al. A first-in-man phase itolerability and pharmacokinetic study of the cyclin-dependentkinase-inhibitor AZD5438in healthy male volunteers [J]. Cancer ChemotherPharmacol,2007,60:391–398.
    [139] Dickson MA, Schwartz GK. Development of cell-cycle inhibitors forcancer therapy [J]. Curr Oncol,2009,16:36-43.
    [140] Jones SF, Burris HA, Kies M, et al. A phase I study to determine the safetyand pharmacokinetics (PK) of BMS-387032given intravenously every threeweeks in patients with metastatic refractory solid tumors [J]. Proc Am SocClin Oncol,2003,22:199.
    [141] Shapiro GI, Lewis N, Bai S, et al. A phase I study to determine the safety andpharmacokinetics (PK) of BMS-387032with a24-hour infusion given everythree weeks in patients with metastatic refractory solid tumors [J]. Proc AmSoc Clin Oncol,2003,22:199.
    [142] Horvitz HR. Genetic control of Programmed cell death in the nematodeCaenorhabditis elegans [J]. Cancer Res,1999,59:1701-1706.
    [143] Jacobson MD, Weil M, Raff MC. Programmed cell death in animaldevelopment [J]. Cell,1997,88:347-354.
    [144] Popov SG, Villasmil R, Bernardi J. Lethal toxin of Bacillus anthracis causesapoptosis of macrophages [J]. Biochem Biophys Res Commun,2002,293(1):349–355.
    [145] Büne B. Nitric oxide: NO apoptosis or turning it ON?[J]. Cell Death Differ,2003,10(8):864-869.
    [146] Eastman A, Rigas JR. ModuLation of apoptosis signaling pathways and cellcycle reguLation [J]. Semin Oncol,1999,26(5):7-16.
    [147] Micheau O, Tschopp J. Induction of TNF Receptor I-Mediated Apoptosis viaTwo Sequential Signaling Complexes [J]. Cell,2003,114:181–190.
    [148] Holler N, Zaru R, Micheau O, et al. Fas triggers an alternative,Caspase-8-independent cell death pathway using the kinase RIP as effectormolecuLe [J]. Nat Immunol,2000,1:489-495.
    [149] Wajant H. The Fas signaling pathway: more than a paradigm [J]. Science,2002,296:1635–1636.
    [150] Cotran RS. Robbins Pathologic Basis of Disease [M]. Philadelphia: W.BSaunders Company,1998.
    [151] Fesik SW, Shi Y. Controlling the caspases [J]. Science,2001,294:1477–1478.
    [152] Dejean LM, Martinez-Caballero S, Kinnally KW. Is MAC the knife that cutscytochrome c from mitochondria during apoptosis?[J]. Cell Death Differ,2006,13(8):1387–1385.
    [153] Armstrong EP. Prophylaxis of Cervical Cancer and Related Cervical Disease:A Review of the Cost-Effectiveness of Vaccination Against Oncogenic HPVTypes [J]. J Manage Care Pharm,2010,16(3):217–230.
    [154] Schiffman M, Castle PE, Jeronimo J, Rodriguez AC, Wacholder S. Humanapillomavirus and cervical cancer [J]. Lancet,2007,370:890-907.
    [155] Rebecca S, Deepa N, Naishadham MA, et al. Cancer statistics2012[J]. CA:A Cancer Journal for Clinicians,2012,62:10-29.
    [156] García-Maceira P, Mateo J. Silibinin inhibits hypoxia-inducible factor-1α andmTOR/p70S6K/4E-BP1signalling pathway in human cervical and hepatomacancer cells: implications for anticancer therapySilibinin inhibits mTOR andHIF-1α [J]. Oncogene,2009,28:313-324.
    [157] Mayr NA, Small W, Gaffney DK. Cervical Cancer. Decision Making inRadiation Oncology [M],1st ED,2011.
    [158] Fan S, Li LH, Chen SG, et al. Silibinin induced-autophagic and apoptoticdeath is associated with ROS and RNS increase in HeLa cells [J]. Free RadicRes,2011,1:38–45.
    [159] Martin BJ, Laura DA. The role of apoptosis in cancer development andtreatment respose [J]. Nat Rev Cancer,2005,5:231-237
    [160] Fulda S, Debatin KM. Extrinsic versus intrinsic apoptosis pathways inanticancer chemotherapy [J]. Oncogene,2006,25:4798-4811.
    [161] World Health Oganization. Cancer,2012,2. http://www.who.int/mediacentre/factsheets/fs297/en/.
    [162] Ferlay J, Bray F, Pisani P, Parkin DM. GLOBOCAN2002: Cancer incidence,mortality and prevalence worldwide. Lyon: IARCPress, Cited2005-04-15;Available from: URL: http://wwwdep.iarc.fr/
    [163] Roder DM. The epidemiology of gastric cancer [J]. Gastric Cancer,2002,5suppl1:5-11
    [164] Soetikno R, Kaltenbach T, Yeh R, Gotoda T. Endoscopic Mucosal Resectionfor Early Cancers of the Upper Gastrointestinal Tract [J]. J Clin Oncol,2005,23(20):4490–4498.
    [165] Kim S, Choi MG, Lee HS, et al. Silibinin Suppresses TNF-α-InducedMMP-9Expression in Gastric Cancer Cells through Inhibition of the MAPKPathway [J]. Molecules,2009,14,4300-4311.
    [166] Agarwal R. Cell signaling and regulators of cell cycle as molecular targets forprostate cancer prevention by dietaryagents [J]. Biochem Pharmacol,2000,60:1051–1059.
    [167] Meyerson M, Harlow E. Identification of G1kinase activity for cdk6, a novelcyclin D partner [J]. Mol Cell Biol,1994,14:2077–2086.
    [168] Jozefa WG, Marieta G, Marcel H. Dual action of cyclindependent kinaseinhibitors: induction of cell cycle arrest and apoptosis. A comparison of theeffects exerted by roscovitine and cisplatin [J]. Pol J Pharmacol,2003,55:895–902.
    [169] Swanton C. Cell-cycle targeted therapies [J]. Lancet Oncol,2004,5:27–36.
    [170] Neehar B, Rajesh A. Detrimental effect of cancer preventive phytochemicalssilymarin, genistein and epigallocatechin3-gallate on epigenetic events inhuman prostate carcinoma DU145cells [J]. Prostate,2001,46:98–107.
    [171] Fischer PM. Recent advances and new directions in the discovery anddevelopment of cyclin-dependent kinase inhibitors [J]. Curr Opin Drug DiscovDevel,2001,4:623–634.
    [172] Singh RP, Dhanalakshmi S, Agarwal R. Phytochemicals as cell cyclemodulators-a less toxic approach in halting human cancers [J]. Cell Cycle,2002,1:156–161.
    [173] Tyagi AK, Singh RP, Agarwal C, Chan DC, Agarwal R. Silibinin stronglysynergizes human prostate carcinoma DU145cells to doxorubicin-inducedgrowth inhibition, G2-M arrest, and apoptosis [J]. Clin Cancer Res,2002,8:3512–3519.
    [174] Zhai Dezhong,Huang Qiang. A Research on cyclin dependent kinase cdc2and the development of malignancy [J]. Cancer,2006,26:489-495.
    [175] Scott WL, Athena WL. Apoptosis in cancer [J]. Carcinogenesis,2000,21:485–495.
    [176] Petak I, Houghton JA. Shared pathways: death receptors and cytotoxic drugsin cancer therapy [J]. Pathol Oncol Res,2001,7:95–106.
    [177] Klaus-Michael D, Delphine P, Guido K. Chemotherapy: targeting themitochondrial cell death pathway [J]. Oncogene,2002,21:8786–8803.
    [178] Von Hoff DD, Layard MW, Basa P, et al. Risk factors fordoxorubicin-induced congestive heart failure [J]. Ann Intern Med,1979,91:710–717.
    [179] Raghavan D, Koczwara B, Javle M. Evolving strategies of cytotoxicchemotherapy for advanced prostate cancer [J]. Eur J Cancer,1997,33:566–574.
    [180] Figg WD, Arlen P, Gulley J, et al. A randomized Phase II trial of docetaxel(taxotere) plus thalidomide in androgen-independent prostate cancer [J].Semin Oncol,2001,28:62–66.
    [181] Millikan R, Baez L, Banerjee T, et al. Randomized phase2trial ofketoconazole and ketoconazole/doxorubicin in androgen independent prostatecancer [J]. Urol Oncol,2001,6:111–115.
    [182] Anil K, Tyagi PS, Singh CA, et al. Silibinin Strongly Synergizes HumanProstate Carcinoma DU145Cells to Doxorubicin-induced Growth Inhibition,G2-M Arrest, and Apoptosis [J]. Clinical Cancer Research,2002,8:3512-3519.
    [183] Chou TC, Talalay P. Analysis of combined drug effects: a new look at a veryold problem [J]. Trends Pharmacol Sci,1983,4:450–454.
    [184] Chou TC, Motzer RJ, Tong Y, et al. Computerized quantitation of synergismand antagonism of Taxol, topotecan, and cisplatin against humanteratocarcinoma cell growth: a rationale approach to clinical protocol design[J]. J Natl Cancer Inst,1994,86:1517–1524.
    [185] Bharadwaj R, Yu HT. The spindle checkpoint, aneuploidy, and cancer [J].Oncogene,2004,23(11):2016–2027.
    [186] Brito DA, Yang Z, Rieder C L. Microtubules do not promote mitotic slippagewhen the spindle assembly checkpoint cannot be satisfied [J]. The Journal ofCell Biology,2008,182(4):623–629.
    [187] Saville MW, Lietzau J, Pluda JM, et al. Treatment of HIV-associatedKaposi's sarcoma with paclitaxel[J]. The Lancet,1995,346:26–28.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700