用户名: 密码: 验证码:
中药有效成分分析的新方法新技术研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本论文以寻找中药有效成分为出发点,以色谱、质谱技术为基础,尝试探索中药研究的新方法和新技术。建立了以提取手段、色谱质谱联用技术、基于细胞模型的活性成分筛选技术互相搭配的分离分析手段用于中药有效成分的提取、分离、筛选和鉴定;同时,针对中药复方方剂的配伍比例进行了优化探索,并采取先分解再组合的实验思路建立基于中药复方叠加效应的有效成分筛选方法,并搭建了两维色谱体系用于分离复方中药中的复杂成分,从而实现了在综合考量中药多组分、多靶点、多效应特点上的较为全面的活性物质分离鉴定;此外,以基质辅助激光解吸飞行质谱(MALDI-TOF-MS)为出发点,通过采用新基质成功实现了高通量的中药化合物筛选及长链脂肪酸富集;在此基础上,将MALDI-TOF-MS筛查扩展到了固定酶抑制剂的高通量筛查,从而扩宽了高通量MALDI-TOF-MS技术的筛查范围。相关研究工作及成果的摘要如下:
     第一章文献综述部分充分描述了中药的丰富内涵,突出了中药有效成分在中药质量筛查中的重要性,以及探索中药药效机理对于药物筛选与研发的必要性;介绍了色谱技术作为一种现代高效分离工具在中药研究方面的发展与应用;阐述了针对中药有效成分研究的各种提取技术,围绕中药多组分、多靶点、多效应等特点展开的数学实验思考,以及对于中药有效成分筛查的体外生物模型研究方法;同时,详细描述了在化合物分离鉴定方面发挥重要作用的多维色谱、质谱技术,概述了当前应用于中药分离的多维色谱模式以及在中药研究中逐渐展露身手的质谱鉴定技术。从中药的提取预处理、到数学思维综合考量、到多维色谱高效分离、到生物模型科学筛分、到质谱技术高通量鉴定等多种化学生物技术相互结合的方式,对于中药有效成分的分析具有十分重要的意义。通过描述该研究的基本思路和进展状况,阐明了本课题选题及研究的学术意义和技术背景。
     第二章将提取、分离、筛选、鉴定技术互相搭配,从而实现对中药有效成分的分离分析。以中药半枝莲为分析样本,探索不同提取方法对于其中有效成分-野黄芩苷的提取效率。通过纳升级的色谱\质谱联用模式来定性鉴定和定量测量经过红外提取后的半枝莲中的成分野黄芩苷。同时,红外提取的各个过程各个实验参数都进行了优化,从而验证了该提取方法的可靠性及高效性。同时,通过与其他几种提取方法,例如常规的加热回流方法、超声提取方法、微波提取方法等进行比较可知,红外提取能够获得更高的提取效率。同时,中药半枝莲在纳升级色谱质谱联用模式下得到了有效分离。通过参照野黄芩苷标准品的色谱保留时间及质谱结构信息,即可以快速准确的确定半枝莲中野黄芩苷的相关信息,从而实现高效定性鉴定。此外,通过建立野黄芩苷标准曲线从而获得相应的定量信息,进而得到较为满意的方法有效性、线性以及检测限。结果显示,该方法在0.6至20ng mL-1范围内线性良好,相关系数(R2)为0.9973,检测限(LOD)为0.5ng mL-1(S/N=3)。
     第三章将中药复方作为分析对象,以探索复方配伍合理性,考量复方药效叠加作用以及分析复方中药复杂组分为出发点,通过提取优化、生物检测细胞模型、两维色谱分离及高效准确质谱鉴定等技术,尝试从更为全面的角度来分析纷繁复杂的中药有效成分。首先,从探究复方方剂的配伍比例合理性出发,针对特定的中药复方方剂(该方剂由三种单味药),在结合细胞生物筛查效果的基础上,进行方剂配伍比例值的优化探索;其次,鉴于中药各个组分之间的药效叠加效应,从整体着眼,根据先分解再组合的思想重新进行细胞增殖生物筛查,进而从更为全面的角度对有效成分进行筛查;然后,以紫杉提取液为实验对象,继续按照先分解再整合的实验思路对其中的有效成分进行筛查,根据实验结果,紫杉醇被确定为其中的有效成分,从而验证了这一筛选方法的有效性;最后,将亲水色谱柱和反相色谱柱相结合,搭建两维色谱分离系统,经过验证,该系统具有更好的正交性和更高的峰容量,继而将此两维色谱分离体系与细胞模型、质谱鉴定相结合,从而实现高通量的药物筛选,对于药物研发及药物筛查具有重要意义。
     第四章以基质辅助激光解吸飞行质谱(MALDI-TOF-MS)为出发点,将石墨烯和氧化石墨烯用作MALDI基质,来鉴定传统中药化合物。由于石墨烯和氧化石墨烯的表面积较大,从而避免了MALDI离子源与真空系统的污染。同时,由于石墨烯优异的电学、热学以及机械性能使得MALDI-TOF-MS可以在浓度为100nM时达到稳定的分析,且免除背景噪音干扰。实验采用当归和半枝莲做为检测样本,将当归中的阿魏酸(m/z194)、半枝莲中的野黄芩苷(m/z462)及汉黄芩素(m/z284)作为检测的目标化合物。实验表明,这两种MALDI基质对于中药中组分的不同浓度不具有歧视效果。此外,石墨烯和氧化石墨烯还可以作为样品的吸附剂展示其富集功效,从而使被测物的检测限获得较大幅度的降低。实验表明,这种MALDI-TOF-MS方法具有简单灵敏、快速经济、以及高通量等突出特点,可以为中药快速质量筛查提供新的技术手段。
     此外,还将石墨烯和氧化石墨烯用于富集长链脂肪酸。将5种长链脂肪酸,即十二烷酸(C12)、十四烷酸(C14),十六烷酸(C16),十八烷酸(C18)和二十烷酸(C20),用作为代表性样本。由于石墨烯或氧化石墨烯较大的表面积和强烈相互作用,这5种长链脂肪酸被石墨烯和氧化石墨烯有效富集,实现了高通量的检测。同时,本方法还可以成功用于低浓度下检测实际生物样品中的5种长链脂肪酸样本,从而证明了这种MALDI-TOF-MS方法可以实现简单灵敏、快速经济并且高通量的检测长链脂肪酸。
     第五章则在上述MALDI-TOF-MS检测技术的基础上,将这种高通量筛查技术用于酶抑制剂的筛选中,该筛选由固定酶磁性碳球和以氧化石墨烯为基质的MALDI-TOF-MS结合完成。首先,将乙酰胆碱酯酶(AChE)固定于3-glycidoxypropyltrimethoxysilane (GLYMO)修饰的磁性碳球上,该固定酶磁性碳球具有高效的酶活性和稳定性,并可以将酶从底物和产物中有效分离出来。固定化乙酰胆碱酯酶AChE的效率则通过固定酶磁性碳球和样品底物之间的反应加以验证,而后续的定量分析底物乙酰胆碱和产物胆碱则通过基于氧化石墨烯为基质的MALDI-TOF-MS方法完成,该MALDI-TOF-MS方法没有背景干扰。乙酰胆碱的检测限LOD是0.25fmol/μL,在0.5至250fmol/μL范围内有良好的线性值(R2=0.9998)。而胆碱则在0.05至15pmol/μL内有很好的线性(R2=0.9994)和低检测限LOD(0.15fmol/μL)。在标准曲线的浓度范围内有良好的准确度和精确度。共有8种化合物(4种已知乙酰胆碱酯酶AChE抑制剂和4种没有乙酰胆碱酯酶AChE抑制效果的对照化合物)用此方法进行验证,所得结果证明该高通量筛分方法可以大大推动日常酶抑制剂筛选的进程。
     总体而言,本论文围绕中药有效成分研究为核心,以色谱、质谱技术为基础,着重发展新方法和新技术。首先,建立了包含提取、分离、筛选、鉴定的操作技术方法;其次,围绕中药复方这一复杂体系,着重优化复方配伍比例值,探索基于复方药效叠加作用基础上的有效成分筛选方法,建立两维色谱分离模式以实现更为全面的中药复方分离分析;同时,将MALDI质谱技术成功用于中药分子检测及长链脂肪酸富集,从而为高通量的中药质量筛查提供新的技术基础;最后,固定酶抑制剂的高通量MALDI检测的实现,大大拓宽了该MALDI质谱检测新技术的应用领域,具有极大潜力。本论文以色谱质谱等现代仪器手段为基础,结合生物模型,着重发展中药有效成分分离分析的新方法新技术。以高效灵敏、准确可靠的分离、筛选、鉴定中药中的有效成分为目标,发展了包含提取手段、分离鉴定、基于细胞模型的活性成分筛选、高通量中药化合物鉴定等新技术和新方法,为中药有效成分的分离分析提供了较为全面的研究方法。这些新方法和新技术的发展对于中药有效成分的分离分析十分重要,有利于中药的质量筛查及物质基础探索。这些针对中药有效成分分析的新方法和新技术的建立,有利于不断的在中药研究领域挖掘出更多的创新型解决方案。
As one of the greatest achievements, Traditional Chinese medicines (TCMs) play a vital role in history. With the development of modern scientific technology, TCMs have aroused many attentions from all over the world. To understand TCMs, the priority thing is to analysis their bioactive compounds, because it is the bioactive compounds that function a lot in terms of pharmacological effect and metabolic process. And also, bioactive compounds are key targets in TCMs'quality control. As two powerful analytical techniques, liquid chromatography (LC) and mass spectrometry (MS) are very important to the separation and identification of TCMs' compounds. Bid the aid of LC and MS, the quality control of TCMs would work out well in the aspect of qualification and quantification. However, the intrinsic characteristics of TCMs, especially the Compound TCMs make the analysis of TCMs not that much easy. For example, TCMs tend to have numerous compounds which differ with each other not only in structure but also in amount. Besides, all those uncountable compounds would react with each other, so as to exhibit some co-effects, like synergistic effect. Hence, to get an all-around understanding of TCMs, more comprehensive method or techniques are imperative.
     In this study, both LC and MS were optimized so as to gain a better perform in terms of bioactive compounds analysis. First, to have a rapid and effective analysis of bioactive compounds from TCMs, a workflow made up of the extraction, nano-LC/MS as well as cell bioassay model in vitro was established; second, on considering the complicated factors in compound TCMs, two mathematical models was designed here, which are the triangle model to investigate the proportion value of Compound TCMs and the additional model to integrate and mimic the synergistic effect, followed by the yew extraction was also utilized here to verify the additional model, and then, the pipeline of multidimensional LC coupled with cell bioassay model as well as electro-spray MS was established here to gain a high throughput screening of the bioactive compounds in Compound TCMs; third, the matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF MS) was introduced here to identify the small compounds from TCMs successfully, which means a lot for the high throughput TCMs screening; last but not least, the brand new MALDI-TOF MS method was also applied to the screening of enzyme inhibitor and long chain fatty acid, which shows great potential in terms of the high throughput screening of small compounds. This dissertation can be divided into the following five parts.
     In chapter one, a brief review was introduced as to the importance of TCMs analysis. By describing the mostly utilized chemical and analytical techniques, the different LC separation and extraction methodology unfold their respect characteristics gradually. Also, the progresses of mathematical calculation and biological screening models as well as MS technology were also described. Thus, from extraction to separation, from mathematical calculation to bioassay tests, and finally, to MS identification, the overall process for TCMs study presented here. Based on all this awareness, the importance and meaning of this dissertation were illustrated here.
     In chapter two, the workflow of infrared-assisted extraction (IAE) coupled with nano-LC/MS and cell bioassay test was established to analyze TCMs. Scutellaria barbata D. Don was used as the model TCM in the study, in which scutellarin is the main active component. The extraction of scutellarin in Scutellaria barbata D. Don was carried out in a home-made IAE system, and the IAE parameters were studied. It is found that, as a brand new sample preparation method for Scutellaria barbata D. Don, IAE gives the best result when compared with conventional methods including reflux extraction (RE), ultrasonic extraction (USE) and microwave-assisted extraction (MAE). The high efficiency of IAE can be due to that IR can not only be a heating resource, but also vibrate the inner molecules whether they are polar or non-polar ones. Here, scutellarin was analyzed by nano-LC/MS. The results showed that the combined IAE and nano-LC-MS method exhibits a good linearity (R2=0.9973,0.6-20ng mL-1) and a low limit of detection (0.5ng mL-1, S/N=3). This combinatory method demonstrates itself to be simple, rapid, effective and safe. Besides, fractions were also collected after LC separation and undergone cell bioassay test to screen out the bio-effective fraction, followed by MS identification. And scutellarin demonstrated to be the bioactive components in its original herb, which fully demonstrated the high efficient of the established workflow.
     In chapter three, apart from the combination of traditional biological and chemical techniques, two innovative mathematical designations were introduced for the first time to compound TCM research, a compound TCM model which consist three kinds of herbs was utilized as the model. Firstly, triangle mathematical mode and cell bioassay model method were tied up to obtain the optimized prescription proportion of compound TCM model; secondly, LC/cell bioassay model/MS pipeline was employed, according to the promoted addition principle, to screen and identify the bioactive compounds from compound TCM model. Compared with other methodologies, this mathematical appended method outstanding itself by simultaneously possessed the advantaged of mathematically simplification, biologically validation as well as high throughput. A reliable result was obtained here after taking the synergistic effect into consideration; thirdly, the yew extraction was introduced here as the check point to verify the addition principle; finally, an offline two dimensional LC system was established here, which demonstrated excellent orthogonality by the satisfying separation of polar and medium-polarity compounds that cannot be resolved by uni-dimensional chromatography, also, the notable cell bioassay model was again utilized to screen the bioactive compounds from compound TCM, so as to provide powerful scientific evidence for the medical effect, followed by the capable MS identification. And reliable result was obtained here, which opened a more executive and valid door for future compound TCM research.
     In chapter four, graphene or graphene oxide was utilized, for the first time, to identify small molecular components from TCM herbs, by acting as matrix of MALDI-TOF-MS. Due to the large surface area of graphene or graphene oxide, the analytes were trapped tightly to the matrix, which avoids the contamination of the ion source and vacuum system. Besides, their excellent electronic, thermal, and mechanical properties make them desired matrices for MALDI-TOF-MS. Stable analysis was achieved with no background inference even at the concentration of100nM. Moreover, the limit of detection could be greatly lowered by utilizing graphene or graphene oxide as a pre-enrichment adsorbent. In summary, the promoted MALDI-TOF-MS methodology was demonstrated to be simple, sensitive, fast, cost effective and most importantly--high throughput.
     In chapter five, the above mentioned MALDI-TOF-MS method was utilized to two other targets.
     The first target is enzyme inhibitors. The experiment was carried out by combining enzyme immobilized magnetic carbonaceous microspheres and MALDI-TOF-MS with grapheme oxide as matrix. First, model enzyme acetylcholinesterase (AChE) was immobilized onto the3-glycidoxypropyltrimethoxysilane (GLYMO)-modified magnetic carbonaceous (MC) microspheres, displaying a high enzyme activity and stability, and also facilitating the separation of enzyme from substrate and product. The efficiency of immobilized AChE was monitored by biochemical assay, which was carried out by mixing enzyme-immobilized MC microspheres with model substrate acetylcholine (ACh), and subsequent quantitative determination of substrate ACh and product choline using graphene oxide-based MALDI-TOF-MS with no background inference. The limit of detection for ACh was0.25fmol/μL, and excellent linearity (R2=0.9998) was maintained over the range of0.5and250fmol/μL. Choline was quantified over the range of0.05and15pmol/μL, also with excellent linearity (R2=0.9994) and low limit of detection (0.15fmol/μL). Good accuracy and precision were obtained for all concentrations within the range of the standard curves. All together eight compounds (four known AChE inhibitors and four control chemical compounds with no AChE inhibit effect) were tested with our promoted methodology, and the obtained results demonstrated that our high throughput screening methodology could be a great help to the routine enzyme inhibitor screening.
     Another target was long chain fatty acid. And graphene or graphene oxide was utilized to enrich and ionize long chain fatty acids. All together five long chain fatty acids were selected as models here, which are n-dodecanoic acid (C12), n-tetradecanoic acid (C14), n-hexadecanoic acid (C16), n-octadecanoic acid (C18), and n-eicosanoic acid (C20). Due to the large surface area and strong interaction force of G or GO, all the five long chain fatty models were effectively enriched by graphene or graphene oxide. On the other hand, the excellent electronic, thermal, and mechanical properties enable graphene and graphene oxide to be prefect energy receptacles for laser radiation, which make the ionization steps more effectively. Eventually, the promoted graphene and graphene oxide methodology can sensitively detect the five long chain fatty acid models from real biological samples even at low concentrations. Meanwhile, by adopting our promoted methodology, the detection of long chain fatty acids by MALDI-TOF-MS was demonstrated to be simple, sensitive, fast, cost effective and high throughput, which is meaningful as to practical usage.
     To sum up, this dissertation aims at the analysis of bioactive compounds from TCMs. By utilizing LC and MS, brand new methods and technology were promoted. A pipeline consists of extraction, separation, bio-screening and identification was firstly established; and then, two mathematical models and multi-dimensional LC separation as introduced to obtain a comprehensive understanding of Compound TCM; besides, MALDI-TOF-MS was successfully utilized not only in TCM screening, but also in enzyme inhibitors as well as long chain fatty acids screening, this methodology means a lot for the high throughput screening of small compounds. All those new methods and techniques were designed for bioactive compounds analysis in TCMs, so as to inspire the emergence of more innovative solutions to TCMs research.
引文
[1]马文骏,世界科学技术——中药现代化,1999,1(2):23
    [2]《神农本草经》,东汉:
    [3]苏敬,《新修本草》,公元657-659年:
    [4]李时珍,《本草纲目》,1590年,五十二卷:
    [5]蔡天巍,孙加国,中药研究概述,黑龙江医学杂志,2011,24(2):270
    [6]国家药典委员会,《中国药典》,2010:
    [7]杜方麓,中药的出路在哪里?,科技成果管理与研究,2008:1 12
    [8]王国芳,吴织芬,王勤涛,中药有效成分研究与中医现代化,医学与哲学,2005,26(8):59
    [9]张均田,中国建国50年中药化学与药理研究的主要成就和面临的问题及对策,中国中药杂志,2000,25(7):387
    [10]叶文才,中药现代化研究中存在的一些问题,中国处方药,2005,8(41):21
    [11]荔霞,刘永明,王胜义,齐志明,董书伟,刘世祥,中药新药质量标准研究进展,安徽农业科学,2010,38(8):4361
    [12]金建文,中药方剂的作用机理探讨,中医药临床杂志,2008,20(2):110
    [13]宋岳,王力,刘艳新,中药及复方的药效物质基础研究概况,中国实用医药,2011,6(31):237
    [14]马英丽,季宇彬,段富津,中药复方(方剂)现代研究的必由之路--对复方的物质性研究,中医药学报,1997,25(5):40
    [15]石任兵,刘斌,中药复方化学与创新药物研究,世界科学技术—中医药现代化,2003,5(6):6
    [16]景怡,任远,中药药效物质基础研究的思路与方法,甘肃中医学院学报,2009,26(1):45
    [17]邢建月,中药方剂现代化发展的评述,中医药信息,2009,26(5):89
    [18]刘华钢,黄慧学,梁秋云,中药成分分离技术应用进展,中国中医药信息杂志,2007,14(11):89
    [19]王海南,中药有效成分研究与中药新药研发,中华中医药杂志,2007,22(5):268
    [20]王瑞玲,论中药化学研究在中药现代化发展中的意义及作用,光明中医,2006,21(3):1
    [21]张雯洁,金永清,林增余,云南中医中药杂志,1998,19(1):28
    [22]Brown, P.R.,Grushka, E., Advances in Chromatography,1993,33:67
    [23]徐艳春,药物分析杂志,2002,22(1):11
    [24]陈建英,中国药学杂志,2001,36(1):16
    [25]唐刚,中国药学杂志,2001,36(1):45
    [26]方艳红,华侨大学学报,2000,21(3):252
    [27]陈培胜,分析测试学报,2001,20(4):50
    [28]李发美,熊志立,鹿秀梅,秦峰,色谱,2006,24:537537.
    [29]罗国安,王义明,陈令新,梁琼麟,毛细管电色谱及其在生命科学中的应用:
    [30]张秀玲,高效毛细管电泳法在药物分析中的应用,天津药学,2004,16(1):56
    [31]叶能胜,邹洪,王英锋,朱若华,谷学新,胶束电动毛细管色谱在天然药物分析中的应用,药学进展,2001,25(4):198
    [32]章飞芳,张峰,梁鑫淼,中药组分的系统化学表征,世界科学技术——中药现代化,2006,8(3):85
    [33]刘春丽,刘满仓,朱彭龄,高效液相色谱法分析中药及植物药的进展,分析化学,28(5):631
    [34]刘颖,周建良,李萍,快速高效液相色谱分离技术在中药分析中的应用,色谱,2009,27(5):682
    [35]汪秋兰,王文清,马永贵,高效液相色谱法在中药有效成分含量测定中的应用,医药导报,2011,30(11):1474
    [36]张祥民,现代色谱分析,2003:
    [37]杨叉芳,超高效/高分离度快速/超快速液相色谱在中药及其制剂研究中的应用中草药,Chinese Traditional and Herbal Drugs,2008,39(8):1259
    [38]汪海林,邹汉法,孔亮,分子生物色谱用于中药活性成分筛选及质量控制方法的研究,色谱,17(2):123
    [39]Wang, H.L., Kong, L., Zou, H.F., Ni, J.Y.,Zhang, Y.K., Chromatographia,1999, 50:439
    [40]Wang, H.L., Kong, L., Zou, H.F., Ni, J.Y.,Zhang, Y.K., Chin. J. Chromatogr, 1999,17:123
    [41]郭亚东,超临界流体色谱在药物分析中的应用,天然产物研究与开发,13(3):61
    [42]P, P., N, L.,E, M.K., Chiral separations in supercritical fluid chromatography, J. Chromatgr.A,1992,623:129
    [43]秦红霖,气相色谱一质谱联用技术在中药材和中成药农药残留分析中的应用,解放军医药杂志,2011,23(4):83
    [44]刘颖,贺玫明,陈艳华,无需母离子选择可获得二级质谱的RRLC——MS/MS方法研究,质谱学报,2007,28:6
    [45]AP, S., V, W.,RA, S., The separation of diastereoisomers of polystyrene oligomers in reversed phase HPLC Chromatography,2001,54:24
    [46]JC, G., Journal of High Resolution Chromatography,1987,10:319
    [47]ZY, L., G, P.D.,ML, L., Geometric Approach to Factor Analysis for the Estimation of orthogonality and Practical Peak Capacity in Comprehensive Two-Dimensional Separations, Anal. Chem.,1995,67:3840
    [48]PJ, S., X, L., TH, R.,JG, D., Informational Orthogonality of Two-Dimensional Chromatographic Separations, Anal. Chem.,1996,68:682
    [49]JC, G., Sample dimensionality-A predictor of order-disorder in component peak distribution in multidimensional separation, J. Chromatogr. A,1995,703:3
    [50]JC, G., Anal. Chem.,1984,56:1258
    [51]P., C., A rapid quality assurance spectrophotometer for the pharmaceutical industry., Am. Lab,1998,20:176
    [52]刘国林,蔡金娜,近红外光谱技术在元胡止痛散定量分析中的应用研究,傅立叶红外光谱仪技术及应用论文集,2000:
    [53]于宗渊,张玲,GC/FTIR联用技术及其在中药研究中的应用,山东医药工业,1991,10(4):21
    [54]蔡锡兰,药物红外谱库的建立与鉴定,南京师范专科学校学报,1998,14(4):98
    [55]芦锰,樊克峰,白雁,红外光谱技术在中药整体质量评价中的应用,河南中医,2004,24(11):78
    [56]吴忠义,张慧芳,红外光谱技术在中药质量控制中的应用,2006,15(11):60
    [57]梅德强,王建华,红外光谱法研究中药进展,重庆大学学报,2003,26(11):56
    [58]李燕,吴然然,于佰华,王俊德,红外光谱在中药定性定量分析中的应用,光谱学与光谱分析,2006:1846
    [59]白雁,山东中医杂志,1997,16(9):413
    [60]周勇,向红,基因工程技术在药物筛选中的应用简述,中国医药工业杂志:190
    [61]王宁宁,焉媛媛,李月,姜明艳,不同提取方式对天然麻复方中药的药效学影响,中药材,2007,4:452
    [62]许睿,20年来中药化学成分提取分离技术的进展,中成药,2006:1646
    [63]刘亚娟,王志祥,超临界CO2萃取技术在中药有效成分提取中的应用,化工时刊,20(7):
    [64]刘元,二氧化碳超临界流体萃取概述,化工之友,2006,12:56
    [65]赵肩铎,贡济字,高颖,刁习霞,李书丰,超临界流体苯取技术在中草药成分研究中的应用,中医药学刊,2003,21(5):821
    [66]李大鹏,超临界二氧化碳萃取中药有效成分应用进展:290
    [67]张忠义,超临界流体萃取技术及其在中药化学成分研究中的应用,中成药,1997,19(1):45
    [68]张印俊,超临界二氧化碳流体萃取技术提取中草药成分的进展,华西药学杂志,1998,13(4):242
    [69]葛发欢,李菁,王海波,超临界C02流体萃取技术在天然产物提取及药物分析中的最新研究进展和前景,中药材,1995,18(6):31 5
    [70]葛发欢,史庆龙,林香仙,超临界C02从黄山药中萃取薯蓣皂素的工艺研究,中草药,2000,31(3):181
    [71]葛发欢,李莹,谢健鸣,超临界CO2从柴胡中萃取挥发油及其皂甙的研究,中国中药杂志,2000,25(3):149
    [72]俞惟乐,欧庆瑜,毛细管气相色谱和分离分析新技术,1999:
    [73]张金艳,叶非,新型无溶剂样品制备方法一固相微萃取法,理化检测,2001,37(5):236
    [74]郭孝武,超声技术在中草药成分提取中的应用,中草药,1993,24(10):548
    [75]曾惠玲,中药化学成分提取新技术研究进展,海峡药学,2005,17(5):1
    [76]季大洪,苏瑞强,王颖,高新工程技术在中药提前取分离中应用,时珍国医国药,2000,11(4):369
    [77]蒲含林,郑元升,麻建军,超声法提取金鸡纳生物碱的工艺,南大学学报,2008,29(3):329
    [78]刘宁,李健,金龙哲,超声波法提取豆角总皂苷的工艺研究,食品科学,2008,29(10):327
    [79]郭留城,杜利月,女贞子超声波提取工艺研究明,中医药临床杂志,2009,21(3):262
    [80]傅荣杰,微波提取技术在中药及天然产物提取中的应用,中国中药杂志,2003,28(9):804
    [81]王成东,杨华登,季晓,先进萃取技术及装备在中药生产中的应用,中国制造装备,2008,11(2):27
    [82]安建忠,许志惠,新技术新方法在中草药提取方面的应用,时珍国医国药,2001,12(5):
    [83]沈岚,冯年平,韩朝阳,微波萃取对不同形态结构中药及不同极性成分中药的选择性研究,中草药,2002,33(7):604
    [84]Ltory, Principle and instrumentation of counter-current Chromatography in counter-current Chromatography theory and practice,1988:
    [85]孙健,中药有效成分提取新技术研究进展,京津冀畜牧兽医科技创新交流会暨新思想、新观点、新方法论坛:582
    [86]于友华,林谦,崔建潮,方剂配伍研究与中成药二次开发模式,中国中医基础医学杂志,2002,8(9):67
    [87]余成浩,彭成,余葱葱,制川乌与白芍不同配伍比例对总生物碱含量的影响,时珍国医国药,2008,19(1):l
    [88]李芳,李建北,张东明,柴胡的药理研究进展,时真国医国药,2004,(2):120
    [89]段富津,方剂学,1994:
    [90]陈廷卓,刘慧君,论中药配伍与疗效,陕硒中医:616
    [91]贺祝英,武孔云,梁光义,麻杏石甘汤的不同配伍对甘草酸含量的影响,中国药学杂志,2008,43(4):264
    [92]邓常清,黄小平,基于方剂配伍理论和药理机制的中药有效组(成)分配伍研究思路,湖南中医药太学学报,2011,3 1(11):3
    [93]Wang, L., Zhou, G.B., Liu, P., Song, J.H., Liang, Y, Yan, X.J., Xu, F., Wang, B.S., Mao, J.H., Shen, Z.X., Chen, S.J.,Chen, Z., Dissection of mechanisms of Chinese medicinal formula Realgar-Indigo naturalis as an effective treatment for promyelocytic leukemia, Proc. Natl. Acad. Sci. U. S. A.,2008,105(12):4826-4831.
    [94]张亚刚,吾满江·艾力,药物的能量理论和中药有效组份的能量协同作用机制,中草药,2003,34(10):865
    [95]吴茜,基于整体观的中药药效物质基础的生物活性筛选化学在线分析研究新进展,中国药科大学学报:289
    [96]胡娟娟,杜冠华,药物筛选模型研究进展,基础医学与临床,2001,21(4):302
    [97]B, C., JC, D.,A,1., Application of high throughput techniques to drug discovery, Prog Med Chem,2000,37:83
    [98]泰路平,生物活性成分的高通量筛选,2001:
    [99]刘立超,吕点点,李先磊,高通量筛选在中药研究中的应用,畜牧与饲料科学,2009,30(4):19
    [100]韩博,陈文,杨春梅,高通量筛选技术在中药研究的应用,江西中医学院学报,2005,17(5):36
    [101]吴慧,于建荣,高通量药物筛选技术进展及新药开发策略,生物产业技术,2010:89
    [102]王春梅,乔延江,细胞模型发展现状及应用于中药研究的探索,世界科学技术:29
    [103]Y, S., A convenient in vitro screening method for predicting in vivo drug metabolic clearance using isolated hepatocytes suspended in serum, Drug Metab Dispos,2000,28(12):1518
    [104]D, B.T., T, M.M.,M, M.J., Biology of Microorganisms,1994:
    [105]G, G., Sensitivity and significance of luminescent bacteria in chronic taxicity testing based on growth and bioluminescence, Ecotoxic. Environ. Saf,2000,45:87
    [106]E, F.M., H, S.S.,K, R.R., Development of a vital fluorescent staining method for monitoring bacterial transport in subsurface environments, AppL Environ. Microbi., 2000,66:4486
    [107]邵越,TTC一营养琼脂培养基在检测食品菌落总数中的应用,预防医学情报杂志,1996,12(2):121
    [108]吕嘉枥,韩迪,MTT和TTC在嗜酸乳杆菌菌落计数中的应用,中国乳品工业,2007,35(4):23
    [109]王占成,马晓莉,TTC在食品菌落总数测定中的应用,广西预防医学,2003,9(1):45
    [110]T, M., Colorimetric assay cellular growth and survival:Application to proliferation and cytotoxity assays, J Immunol Methods,1983,65(1):55
    [111]刑呜鸾,陈加平,王晓峰,大田软海绵酸对人胚胎羊膜细胞FL凋亡的影响,水生生物学报,2007,31(4):607
    [112]B, A., In vitro effects of staphylococcal leukocidin LukE/Luk-don the proliferative ability of lymphocytes isolated from common carp, Fish & Shellfish Immunology,2006,20:656
    [113]Mondel, Anal Chem,2010,82:8583
    [114]许国旺,石先哲,多维色谱研究的最新进展,色谱,2011:97
    [115]L, C.M., R,C.,P, D., Food Chem,2007,105:771
    [116]P, D., T, K.,L, C.M., J. Chromatogr. A,2006,112:269
    [117]J, S.W., WH,Z.,WE,M., Anal Chem,1982,54:723
    [118]田宏哲,徐静,关亚风,高等学校化学学报,2007,28(4):630
    [119]田宏哲,徐静,关亚风,全二维液相色谱(NPLCxRPLC)接口及其应用,高等学校化学学报,2007,28(4):630.
    [120]高辉,温学森,马小军,药物分析杂志,2007,27(4):616
    [121]陈学国,孔亮,盛亮洪,二维液相色谱串联质谱用于银杏叶提取物成分分析研究,色谱,2005,23(1):46
    [122]徐青,王金成,郭志谋,中药组分选择性分离材料研究,世界科学技术,2006,8(3):74.
    [123]郭菲,王彦,王刃峰,二维液相色谱一质谱联用分离中药复方葛根芩连汤中的有效成分,色谱,2008,26(1):15
    [124]肖远胜,徐青,金郁,中药标准组分系统分离制备研究,世界科学技术一中医药现代化,2006,8(3):79
    [125]J, A.A., J Chromatogr.,1990,499:177
    [126]G, H.Z., M, X.B.,D, W.N., J Sep Sci,2008,31(9):1449
    [127]M, G., P, O.,E, D.A., Anal Chem,2005,77(19):6426
    [128]H, Z., ZM, G.,W, L., J sep Sci,2009,32(4):526
    [129]Y, W., R, L.,X, L., J. Chromatogr. A,2008,204(1):28
    [130]Emmert-Buck, MR., Bonner, RF., Smith, P.D., Chuaqui, R.F., Zhuang, Z., Goldstein, S.R., Weiss, R.A.,Liotta, L.A., Laser capture microdissection, Science, 1996,274(5289):998-1001.
    [131]Kristensen, D.B., Imamura, K., Miyamoto, Y.,Yoshizato, K., Mass spectrometric approaches for the characterization of proteins on a hybrid quadrupole time-of-flight (Q-TOF) mass spectrometer, Electrophoresis,2000,21(2):430-439.
    [132]Ferguson, PI.,Smith, R.D., Proteome analysis by mass spectrometry, Annu Rev Biophys Biomol Struct,2003,32:399-424.
    [133]Lim, M.S.,Elenitoba-Johnson, K.S., Proteomics in pathology research, Lab Invest,2004,84(10):1227-1244.
    [134]Dong, X., Cheng, J., Li, J.,Wang, Y, Graphene as a novel matrix for the analysis of small molecules by MALDI-TOF MS, Anal Chem,2010,82(14):6208-6214.
    [135]Lu, M.H., Lai, Y.Q., Chen, G.N.,Cai, Z.W., Matrix Interference-Free Method for the Analysis of Small Molecules by Using Negative Ion Laser Desorption/Ionization on Graphene Flakes, Anal. Chem,2011,83(8):3161-3169.
    [1]Chan, K., Progress in traditional Chinese medicine, Trends in pharmacological sciences,1995,16(6):182-187.
    [2]Sharma, A., Verma, S.C., Saxena, N., Chadda, N., Singh, N.P.,Sinha, A.K., Microwave-and ultrasound-assisted extraction of vanillin and its quantification by high-performance liquid chromatography in Vanilla planifolia, J. Sep. Sci.,2006,29(5):613-619.
    [3]Li, N., Deng, C., Li, Y, Ye, H.,Zhang, X., Gas chromatography-mass spectrometry following microwave distillation and headspace solid-phase microextraction for fast analysis of essential oil in dry traditional Chinese medicine, Journal of chromatography. A,2006,1133(1-2):29-34.
    [4]Li, H., Chen, B., Nie, L.,Yao, S., Solvent effects on focused microwave assisted extraction of polyphenolic acids from Eucommia ulmodies, Phytochem Anal, 2004,15(5):306-312.
    [5]Deng, C., Ji, J., Li, N., Yu, Y., Duan, G.,Zhang, X., Fast determination of curcumol, curdione and germacrone in three species of Curcuma rhizomes by microwave-assisted extraction followed by headspace solid-phase microextraction and gas chromatography-mass spectrometry, Journal of chromatography. A,2006,1117(2):115-120.
    [6]Waksmundzka-Hajnos, M., Petruczynik, A., Dragan, A., Wianowska, D.,Dawidowicz, A.L., Effect of extraction method on the yield of furanocoumarins from fruits of Archangelica officinalis Hoffin, Phytochem Anal,2004,15(5):313-319.
    [7]Yang, Y., Chen, L., Zhang, X.X.,Guo, Z.K., J. Liq. Chromatogr. Rel. Technol., 2004,27:3203
    [8]Bourgaud, F., Poutaraud, A.,Guckert, A., Phytochem. Anal.,1994,5:127
    [9]Luque-Garcia, J.L.,Castro, M.D.L.d., Trac-Trend Anal.Chem.,2003,22:41
    [10]Bell, C.E., Jr., D.F.T.,Clark, A.K., Organic Chemistry Laboratory with Qualitative Analysis, Standard and Microscale Experiments,3rd ed., Brooks/Cole-Thomson Learning, Pacific Grove, CA,,2001:
    [11]Committee, C.P., Pharmacopoeia of the People's Republic of China, China Chemical Industry Press, Beijing, PR China,2004:77
    [12]Motohashi, N., Ashihara, Y, Yamagami, C.,Saito, Y, Structure-antimutagenic activity relationships of benzalacetone derivatives against UV-induced mutagenesis in E. coli WP2uvrA and gamma-induced mutagenesis in Salmonella typhimurium TA2638, Mutation research,2001,474(1-2): 113-120.
    [13]Yamagami, C.,Motohashi, N., Quantitative structure-activity relationships of antimutagenic benzalacetones and 1,1,1-trifluoro-4-phenyl-3-buten-2-ones, European journal of medicinal chemistry,2002,37(2):127-133.
    [14]Yamagami, C., Motohashi, N.,Akamatsu, M., Quantum chemical-and 3-D-QSAR (CoMFA) studies of benzalacetones and 1,1,1-trifluoro-4-phenyl-3-buten-2-ones, Bioorg. Med. Chem. Lett.,2002, 12(17):2281-2285.
    [15]Sato, Y, Suzaki, S., Nishikawa, T., Kihara, M., Shibata, H.,Higuti, T., Phytochemical flavones isolated from Scutellaria barbata and antibacterial activity against methicillin-resistant Staphylococcus aureus, Journal of ethnopharmacology,2000,72(3):483-488.
    [16]Dai, S.J., Tao, J.Y, Liu, K., Jiang, YT.,Shen, L., neo-Clerodane diterpenoids from Scutellaria barbata with cytotoxic activities, Phytochemistry,2006, 67(13):1326-1330.
    [17]College, J.N.M., Dictionary of Chinese Materia Medica, Science and Technology Press of Shanghai,1977:
    [18]Qiao, C.F., Han, Q.B., Song, J.Z., S.F. Mo, C.,Tai, H.X.H., Chin. Pharm. J,2006, 41:1342
    [19]Hu, L., Li, X., Feng, S., Kong, L., Su, X., Chen, X., Qin, F., Ye, M.,Zou, H., Comprehensive two-dimensional HPLC to study the interaction of multiple components in Rheum palmatum L. with HSA by coupling a silica-bonded HSA column to a silica monolithic ODS column, J. Sep. Sci.,2006,29(6): 881-888.
    [20]Wu, Y.J., Wang, Y.L., Huang, L.L., Tao, Y.F., Yuan, Z.H.,Chen, D.M., Anal. Chim. Acta,2006,569:97
    [21]Martino, E., Ramaiola, I., Urbano, M., Bracco, F.,Collina, S., Microwave-assisted extraction of coumarin and related compounds from Melilotus officinalis (L.) Pallas as an alternative to Soxhlet and ultrasound-assisted extraction, Journal of chromatography. A,2006,1125(2):147-151.
    [22]Chan, W., Hui, K.M., Poon, W.T., Lee, K.C.Cai, Z., Differentiation of herbs linked to "Chinese herb nephropathy" from the liquid chromatographic determination of aristolochic acids, Anal. Chim. Acta,2006,576(1):112-116.
    [23]Guan, J., Lai, C.M.,Li, S.P., A rapid method for the simultaneous determination of 11 saponins in Panax notoginseng using ultra performance liquid chromatography, Journal of pharmaceutical and biomedical analysis,2007, 44(4):996-1000.
    [24]Yang, F.Q., Wang, YT.,Li, S.P., Simultaneous determination of 11 characteristic components in three species of Curcuma rhizomes using pressurized liquid extraction and high-performance liquid chromatography, Journal of chromatography. A,2006,1134(1-2):226-231.
    [25]Wan, J.B., Lai, C.M., Li, S.P., Lee, M.Y, Kong, L.Y.Wang, Y.T., Simultaneous determination of nine saponins from Panax notoginseng using HPLC and pressurized liquid extraction, Journal of pharmaceutical and biomedical analysis,2006,41(1):274-279.
    [26]Chen, X., Kong, L., Su, X., Fu, H., Ni, J., Zhao, R.,Zou, H., Separation and identification of compounds in Rhizoma chuanxiong by comprehensive two-dimensional liquid chromatography coupled to mass spectrometry, Journal of chromatography. A,2004,1040(2):169-178.
    [27]Zhao, J., Li, S.P., Yang, F.Q., Li, P,Wang, Y.T., Simultaneous determination of saponins and fatty acids in Ziziphus jujuba (Suanzaoren) by high performance liquid chromatography-evaporative light scattering detection and pressurized liquid extraction, Journal of chromatography. A,2006,1108(2):188-194.
    [28]Hu, X., You, J., Bao, C., Zhang, H., Meng, X., Xiao, T., Zhang, K., Wang, Y, Wang, H.,Yu, A., Determination of total flavonoids in Scutellaria barbata D. Don by dynamic ultrasonic extraction coupled with on-line spectrophotometry, Anal. Chim. Acta,2008,610(2):217-223.
    [29]Polyzois, G.L., Hensten-Pettersen, A.,Kullmann, A., An assessment of the physical properties and biocompatibility of three silicone elastomers, J Prosthet Dent,1994,71(5):500-504.
    [30]Veres, E.M., Wolfaardt, J.F.,Becker, P.J., An evaluation of the surface characteristics of a facial prosthetic elastomer. Part I:Review of the literature on the surface characteristics of dental materials with maxillofacial prosthetic application, J Prosthet Dent,1990,63(2):193-197.
    [31]周志愉,王兆雷,不同乙醇浓度半枝莲提取物的相关性研究,实用中西医结合临床,2007,7(6):
    [1]Normile, D., Asian medicine. The new face of traditional Chinese medicine, Science,2003,299(5604):188-190.
    [2]Hensten-Pettersen, A., Comparison of the methods available for assessing cytotoxicity, Int Endod J,1988,21(2):89-99.
    [3]Polyzois, G.L., Hensten-Pettersen, A.,Kullman, A., Effects of RTC-silicone maxillofacial prosthetic elastomers on cell cultures, J Prosthet Dent,1994,71(5): 505-510.
    [4]Lefebvre, C. A.,Schuster, G.S., Biocompatibility of visible light-cured resin systems in prosthodontics, J Prosthet Dent,1994,71(2):178-185.
    [5]Hanks, C.T., Wataha, J.C.,Sun, Z., In vitro models of biocompatibility:a review, Dent Mater,1996,12(3):186-193.
    [6]Jorge, J.H., Giampaolo, E.T., Machado, A.L.,Vergani, C.E., Cytotoxicity of denture base acrylic resins:a literature review, J Prosthet Dent,2003,90(2):190-193.
    [7]Wataha, J.C., Principles of biocompatibility for dental practitioners, J Prosthet Dent,2001,86(2):203-209.
    [8]Veres, E.M., Wolfaardt, J.F.,Becker, P.J., An evaluation of the surface characteristics of a facial prosthetic elastomer. Part Ⅰ:Review of the literature on the surface characteristics of dental materials with maxillofacial prosthetic application, J Prosthet Dent,1990,63(2):193-197.
    [9]Tsai, T.H., Analytical approaches for traditional chinese medicines exhibiting antineoplastic activity, Journal of chromatography. B, Biomedical sciences and applications,2001,764(1-2):27-48.
    [10]Li, N., Deng, C., Li, Y, Ye, H.,Zhang, X., Gas chromatography-mass spectrometry following microwave distillation and headspace solid-phase microextraction for fast analysis of essential oil in dry traditional Chinese medicine, Journal of chromatography. A,2006,1133(1-2):29-34.
    [11]He, X.G., On-line identification of phytochemical constituents in botanical extracts by combined high-performance liquid chromatographic-diode array detection-mass spectrometric techniques, J Chromatogr A,2000,880(1-2):203-232.
    [12]Liu, Y, Yang, J.,Cai, Z., Chemical investigation on Sijunzi decoction and its two major herbs Panax ginseng and Glycyrrhiza uralensis by LC/MS/MS, J Pharm Biomed Anal,2006,41(5):1642-1647.
    [13]Jiang, Y, David, B., Tu, P.,Barbin, Y, Recent analytical approaches in quality control of traditional Chinese medicines--a review, Anal Chim Acta,2010,657(1): 9-18.
    [14]Han, J., Ye, M., Guo, H., Yang, M., Wang, B.R.,Guo, D.A., Analysis of multiple constituents in a Chinese herbal preparation Shuang-Huang-Lian oral liquid by HPLC-DAD-ESI-MSn, J Pharm Biomed Anal,2007,44(2):430-438.
    [15]He, Q., Hu, X.J.,Cheng, YY, Analysis of'SHUANGDAN'granules by high-performance liquid chromatography-diode array detection-electrospray ionization tandem mass spectrometry, J Pharm Biomed Anal,2006,41(2):485-492.
    [16]Zhang, H., Shen, P.,Cheng, Y, Identification and determination of the major constituents in traditional Chinese medicine Si-Wu-Tang by HPLC coupled with DAD and ESI-MS, J Pharm Biomed Anal,2004,34(3):705-713.
    [17]Razzazi-Fazeli, E., Bohm, J.,Luf, W., Determination of nivalenol and deoxynivalenol in wheat using liquid chromatography-mass spectrometry with negative ion atmospheric pressure chemical ionisation, J Chromatogr A,1999, 854(1-2):45-55.
    [18]Razzazi-Fazeli, E., Rabus, B., Cecon, B.,Bohm, J., Simultaneous quantification of A-trichothecene mycotoxins in grains using liquid chromatography-atmospheric pressure chemical ionisation mass spectrometry, J Chromatogr A,2002,968(1-2): 129-142.
    [19]Sagawa, N., Takino, T.,Kurogochi, S., A simple method with liquid chromatography/tandem mass spectrometry for the determination of the six trichothecene mycotoxins in rice medium, Biosci Biotechnol Biochem,2006,70(1): 230-236.
    [20]Spanjer, M.C., Rensen, P.M.,Scholten, J.M., LC-MS/MS multi-method for mycotoxins after single extraction, with validation data for peanut, pistachio, wheat, maize, cornflakes, raisins and figs, Food Addit Contam Part A Chem Anal Control Expo Risk Assess,2008,25(4):472-489.
    [21]Zollner, P.,Mayer-Helm, B., Trace mycotoxin analysis in complex biological and food matrices by liquid chromatography-atmospheric pressure ionisation mass spectrometry, J Chromatogr A,2006,1136(2):123-169.
    [22]Tang, A.T., Li, J., Ekstrand, J.,Liu, Y, Cytotoxicity tests of in situ polymerized resins:methodological comparisons and introduction of a tissue culture insert as a testing device, J Biomed Mater Res,1999,45(3):214-222.
    [23]Rose, E.C., Bumann, J., Jonas, I.E.,Kappert, H.F., Contribution to the biological assessment of orthodontic acrylic materials. Measurement of their residual monomer output and cytotoxicity, J Orofac Orthop,2000,61(4):246-257.
    [24]Upadhyay, P.,Bhaskar, S., Real time monitoring of lymphocyte proliferation by an impedance method, J Immunol Methods,2000,244(1-2):133-137.
    [25]Costa, C.A., Edwards, C.A.,Hanks, C.T., Cytotoxic effects of cleansing solutions recommended for chemical lavage of pulp exposures, Am J Dent,2001,14(1):25-30.
    [26]Niu, Q., Zhao, C.,Jing, Z., An evaluation of the colorimetric assays based on enzymatic reactions used in the measurement of human natural cytotoxicity, J Immunol Methods,2001,251(1-2):11-19.
    [27]谢明,周梁,高召兵,紫杉醇PLGA微球制备及体外性质评估,hinese journal of New Drugs,2006,15(13):
    [28]王青松,沙先谊,韩丽妹,郭洁,方晓玲,紫杉醇纳米脂质体的制备与大鼠体内药动学,中国新药杂志,2006,15(21):
    [29]陈立国,刘程惠,何克江,朱靖博,HPLC法对5种红豆杉属植物中紫杉烷类 化合物成分的分析,Chinese Journal of Analysis Laboratory,2007,26(12):
    [30]罗士德,宁冰梅,阮德春,王惠英,红豆杉及其近缘植物中紫杉醇与同系物的高效液相色谱分析,植物资源与环境,1994,3(2):31
    [31]常醉,郭娜,刘彤,周志强,王洋,天然东北红豆杉中紫杉醇和三尖杉宁碱含量的分布及变化规律,中国中药杂志,2011,36(3):
    [32]刘莉,罗佳波,云南红豆杉枝叶中紫杉醇和三尖杉宁碱含量的测定,时珍国医国药,2006,17(5):
    [33]Yimin, D.,Normile, D., Space science. Human flight is next step for China's space program, Science,2003,299(5604):180.
    [34]Bushey, M.M.,Jorgenson, J.W., Automated instrumentation for comprehensive two-dimensional high-performance liquid chromatography of proteins, Anal Chem, 1990,62(2):161-167.
    [35]Chong, B.E., Yan, F., Lubman, D.M.,Miller, F.R., Chromatofocusing nonporous reversed-phase high-performance liquid chromatography/el ectrospray ionization time-of-flight mass spectrometry of proteins from human breast cancer whole cell lysates:a novel two-dimensional liquid chromatography/mass spectrometry method, Rapid Commun Mass Spectrom,2001,15(4):291-296.
    [36]Guerrier, L., Lomas, L.,Boschetti, E., A simplified monobuffer multidimensional chromatography for high-throughput proteome fractionation, J Chromatogr A,2005, 1073(1-2):25-33.
    [37]Holland, L.A.Jorgenson, J.W., Separation of nanoliter samples of biological amines by a comprehensive two-dimensional microcolumn liquid chromatography system, Anal Chem,1995,67(18):3275-3283.
    [38]Wang, H.,Hanash, S., Multi-dimensional liquid phase based separations in proteomics, J Chromatogr B Analyt Technol Biomed Life Sci,2003,787(1):11-18.
    [39]Jiang, X., van der Horst, A., Lima, V,Schoenmakers, P.J., Comprehensive two-dimensional liquid chromatography for the characterization of functional acrylate polymers, J Chromatogr A,2005,1076(1-2):51-61.
    [40]van der Horst, A.,Schoenmakers, P.J., Comprehensive two-dimensional liquid chromatography of polymers, J Chromatogr A,2003,1000(1-2):693-709.
    [41]Chen, X., Kong, L., Su, X., Fu, H., Ni, J., Zhao, R.,Zou, H., Separation and identification of compounds in Rhizoma chuanxiong by comprehensive two-dimensional liquid chromatography coupled to mass spectrometry, J Chromatogr A,2004,1040(2):169-178.
    [42]Hu, L., Chen, X., Kong, L., Su, X., Ye, M.,Zou, H., Improved performance of comprehensive two-dimensional HPLC separation of traditional Chinese medicines by using a silica monolithic column and normalization of peak heights, J Chromatogr A,2005,1092(2):191-198.
    [43]Wang, Y, Kong, L., Hu, L., Lei, X., Yang, L., Chou, G., Zou, H., Wang, C., Annie Bligh, S.W,Wang, Z., Biological fingerprinting analysis of the traditional Chinese prescription Longdan Xiegan Decoction by on/off-line comprehensive two-dimensional biochromatography, J Chromatogr B Analyt Technol Biomed Life Sci,2007,860(2):185-194.
    [44]Zhou, D.Y, Xu, Q., Xue, X.Y., Zhang, F.F.,Liang, X.M., Characterization of polymethoxylated flavones in Fructus aurantii by off-line two-dimensional liquid chromatography/electrospray ionization-ion trap mass spectrometry, J Pharm Biomed Anal,2009,49(2):207-213.
    [45]Szuna, A.J.,Blain, R.W., Determination of a new antibacterial agent (Ro 23-9424) by multidimensional high-performance liquid chromatography with ultraviolet detection and direct plasma injection, J Chromatogr,1993,620(2):211-216.
    [46]Szuna, A.J., Mulligan, T.E., Mico, B.A.,Blain, R.W., Determination of Ro 23-7637 in dog plasma by multidimensional ion-exchange-reversed-phase high-performance liquid chromatography with ultraviolet detection, J Chromatogr, 1993,616(2):297-303.
    [47]Cacciola, F., Jandera, P., Hajdu, Z., Cesla, P.,Mondello, L., Comprehensive two-dimensional liquid chromatography with parallel gradients for separation of phenolic and flavone antioxidants, J Chromatogr A,2007,1149(1):73-87.
    [48]Gilar, M., Olivova, P., Daly, A.E.,Gebler, J.C., Orthogonality of separation in two-dimensional liquid chromatography, Anal Chem,2005,77(19):6426-6434.
    [49]Gilar, M., Olivova, P., Daly, A.E.,Gebler, J.C., Two-dimensional separation of peptides using RP-RP-HPLC system with different pH in first and second separation dimensions, J Sep Sci,2005,28(14):1694-1703.
    [50]Gray, M., Dennis, G.R., Wormell, P., Shalliker, R.A.,Slonecker, P., Two dimensional reversed-phase-reversed-phase separations isomeric separations incorporating C18 and carbon clad zirconia stationary phases, J Chromatogr A,2002, 975(2):285-297.
    [51]Stoll, D.R., Cohen, J.D.,Carr, P.W., Fast, comprehensive online two-dimensional high performance liquid chromatography through the use of high temperature ultra-fast gradient elution reversed-phase liquid chromatography, J Chromatogr A, 2006,1122(1-2):123-137.
    [52]Stoll, D.R., Li, X., Wang, X., Carr, P.W., Porter, S.E.,Rutan, S.C., Fast, comprehensive two-dimensional liquid chromatography, J Chromatogr A,2007, 1168(1-2):3-43; discussion 42.
    [53]Burinsky, D.J., Armstrong, B.L., Oyler, A.R.,Dunphy, R., Characterization of tepoxalin and its related compounds by high-performance liquid chromatography/mass spectrometry, J Pharm Sci,1996,85(2):159-164.
    [54]Yoshida, T., Peptide separation in normal phase liquid chromatography, Anal Chem,1997,69(15):3038-3043.
    [55]Yoshida, T., Calculation of peptide retention coefficients in normal-phase liquid chromatography, J Chromatogr A,1998,808(1-2):105-112.
    [56]Yoshida, T., Peptide separation by Hydrophilic-Interaction Chromatography:a review, J Biochem Biophys Methods,2004,60(3):265-280.
    [57]Yoshida,T.,Okada, T., Peptide separation in normal-phase liquid chromatography. Study of selectivity and mobile phase effects on various columns, J Chromatogr A, 1999,840(1):1-9.
    [58]Karlsson, G., Winge, S.,Sandberg, H., Separation of monosaccharides by hydrophilic interaction chromatography with evaporative light scattering detection, J Chromatogr A,2005,1092(2):246-249.
    [59]Kakita, H., Kamishima, H., Komiya, K.,Kato, Y, Simultaneous analysis of monosaccharides and oligosaccharides by high-performance liquid chromatography with postcolumn fluorescence derivatization, J Chromatogr A,2002,961(1):77-82.
    [60]Jin, G., Guo, Z., Zhang, F., Xue, X., Jin, Y.,Liang, X., Study on the retention equation in hydrophilic interaction liquid chromatography, Talanta,2008,76(3): 522-527.
    [61]Olsen, B.A., Hydrophilic interaction chromatography using amino and silica columns for the determination of polar pharmaceuticals and impurities, J Chromatogr A,2001,913(1-2):113-122.
    [62]Langrock, T., Czihal, P.,Hoffmann, R., Amino acid analysis by hydrophilic interaction chromatography coupled on-line to electrospray ionization mass spectrometry, Amino Acids,2006,30(3):291-297.
    [63]Schlichtherle-Cerny, H., Affolter, M.,Cerny, C., Hydrophilic interaction liquid chromatography coupled to electrospray mass spectrometry of small polar compounds in food analysis, Anal Chem,2003,75(10):2349-2354.
    [64]Ding, W., Hill, J.J.,Kelly, J., Selective enrichment of glycopeptides from glycoprotein digests using ion-pairing normal-phase liquid chromatography, Anal Chem,2007,79(23):8891-8899.
    [65]Hagglund, P., Bunkenborg, J., Elortza, F., Jensen, O.N.,Roepstorff, P., A new strategy for identification of N-glycosylated proteins and unambiguous assignment of their glycosylation sites using HILIC enrichment and partial deglycosylation, J Proteome Res,2004,3(3):556-566.
    [66]Hagglund, P., Matthiesen, R., Elortza, F., Hojrup, P., Roepstorff, P., Jensen, O.N.,Bunkenborg, J., An enzymatic deglycosylation scheme enabling identification of core fucosylated N-glycans and O-glycosylation site mapping of human plasma proteins, J Proteome Res,2007,6(8):3021-3031.
    [67]Omaetxebarria, M.J., Hagglund, P., Elortza, F., Hooper, N.M., Arizmendi, J.M.Jensen, O.N., Isolation and characterization of glycosylphosphatidylinositol-anchored peptides by hydrophilic interaction chromatography and MALDI tandem mass spectrometry, Anal Chem,2006,78(10): 3335-3341.
    [68]Tajiri, M., Yoshida, S.,Wada, Y, Differential analysis of site-specific glycans on plasma and cellular fibronectins:application of a hydrophilic affinity method for glycopeptide enrichment, Glycobiology,2005,15(12):1332-1340.
    [69]Takegawa, Y., Deguchi, K., Keira, T., Ito, H., Nakagawa, H.,Nishimura, S., Separation of isomeric 2-aminopyridine derivatized N-glycans and N-glycopeptides of human serum immunoglobulin G by using a zwitterionic type of hydrophilic-interaction chromatography, J Chromatogr A,2006,1113(1-2):177-181.
    [70]Wada, Y, Tajiri, M.,Yoshida, S., Hydrophilic affinity isolation and MALDI multiple-stage tandem mass spectrometry of glycopeptides for glycoproteomics, Anal Chem,2004,76(22):6560-6565.
    [71]Wuhrer, M, de Boer, A.R.,Deelder, A.M., Structural glycomics using hydrophilic interaction chromatography (HILIC) with mass spectrometry, Mass Spectrom Rev, 2009,28(2):192-206.
    [72]Wuhrer, M., Koeleman, C.A., Hokke, C.H.,Deelder, A.M., Protein glycosylation analyzed by normal-phase nano-liquid chromatography--mass spectrometry of glycopeptides, Anal Chem,2005,77(3):886-894.
    [73]Yu, Y.Q., Fournier, I, Gilar, M.,Gebler, J.C., Identification of N-linked glycosylation sites using glycoprotein digestion with pronase prior to MALDI tandem time-of-flight mass spectrometry, Anal Chem,2007,79(4):1731-1738.
    [74]Hemstrom, P.Jrgum, K., Hydrophilic interaction chromatography, J Sep Sci, 2006,29(12):1784-1821.
    [75]Alpert, A.J., Hydrophilic-interaction chromatography for the separation of peptides, nucleic acids and other polar compounds, J Chromatogr,1990,499: 177-196.
    [1]Tsai, T.H., Analytical approaches for traditional chinese medicines exhibiting antineoplastic activity, Journal of chromatography. B, Biomedical sciences and applications,2001,764(1-2):27-48.
    [2]Normile, D., Asian medicine. The new face of traditional Chinese medicine, Science,2003,299(5604):188-190.
    [3]Karas, M.,Hillenkamp, F., Laser desorption ionization of proteins with molecular masses exceeding 10,000 daltons, Anal. Chem.,1988,60(20):2299-2301.
    [4]Porta, T., Grivet, C, Knochenmuss, R, Varesio, E.,Hopfgartner, G., Alternative CHCA-based matrices for the analysis of low molecular weight compounds by UV-MALDI-tandem mass spectrometry, Journal of mass spectrometry:JMS,2011, 46(2):144-152.
    [5]Resemann, A., Wunderlich, D., Rothbauer, U., Warscheid, B., Leonhardt, H., Fuchser, J., Kuhlmann, K.,Suckau, D., Top-down de Novo protein sequencing of a 13.6 kDa camelid single heavy chain antibody by matrix-assisted laser desorption ionization-time-of-flight/time-of-flight mass spectrometry, Anal Chem,2010,82(8): 3283-3292.
    [6]LeRiche, T., Osterodt, J.,Volmer, D.A., An experimental comparison of electrospray ion-trap and matrix-assisted laser desorption/ionization post-source decay mass spectra for the characterization of small drug molecules, Rapid Commun Mass Spectrom,2001,15(8):608-614.
    [7]Fenselau, C.,Demirev, P. A., Characterization of intact microorganisms by MALDI mass spectrometry, Mass Spectrom Rev,2001,20(4):157-171.
    [8]Brubel, R., Reglodi, D., Jambor, E., Koppan, M., Varnagy, A., Biro, Z., Kiss, P., Gaal, V, Matkovits, A., Farkas, J., Lubics, A., Bodis, J., Bay, C., Veszpremi, B., Tamas, A., Nemethe, I,Mark, L., Investigation of pituitary adenylate cyclase activating polypeptide in human gynecological and other biological fluids by using MALDI TOF mass spectrometry, J. Mass Spectrom.,2011,46(2):189-194.
    [9]Tang, K., Opalsky, D., Abel, K., van den Boom, D., Yip, P., Del Mistro, G., Braun, A.,Cantor, C.R., Single nucleotide polymorphism analyses by MALDI-TOF MS, Int. J. Mass Spectrom.,2003,226(1):37-54.
    [10]Nordstrom, A., Want, E., Northen, X, Lehtio, J.,Siuzdak, G., Multiple ionization mass spectrometry strategy used to reveal the complexity of metabolomics, Anal Chem,2008,80(2):421-429.
    [11]Zhang, W., Zhou, G., Zhao, Y.,White, M.A., Affinity enrichment of plasma membrane for proteomics analysis, Electrophoresis,2003,24(16):2855-2863.
    [12]Wei, J., Buriak, J.M.,Siuzdak, G., Desorption-ionization mass spectrometry on porous silicon, Nature,1999,399(6733):243-246.
    [13]Zou, H.F., Zhang, Q.C., Guo, Z., Guo, B.C., Zhang, Q.,Chen, X.M., A mass spectrometry based direct-binding assay for screening binding partners of proteins, Angew. Chem.-Int. Edit.,2002,41(4):646-+.
    [14]Lewis, W.G., Shen, Z.X., Finn, M.G.,Siuzdak, G., Desorption/ionization on silicon (DIOS) mass spectrometry:background and applications, Int. J. Mass Spectrom.,2003,226(1):107-116.
    [15]Zhang, Q.C., Zou, H.F., Guo, Z., Zhang, Q., Chen, X.M.,Ni, J.Y., Matrix-assisted laser desorption/ionization mass spectrometry using porous silicon and silica gel as matrix, Rapid Commun. Mass Spectrom.,2001,15(3):217-223.
    [16]Sunner, J., Dratz, E.,Chen, Y.C., Graphite surface-assisted laser desorption/ionization time-of-flight mass spectrometry of peptides and proteins from liquid solutions, Anal Chem,1995,67(23):4335-4342.
    [17]Chen, Y.C., Shiea, J.,Sunner, J., Thin-layer chromatography-mass spectrometry using activated carbon, surface-assisted laser desorption/ionization, J Chromatogr A, 1998,826(1):77-86.
    [18]Hua, Y.M., Dagan, S., Wickramasekara, S., Boday, D.J.,Wysocki, V.H., Analysis of deprotonated acids with silicon nanoparticle-assisted laser desorption/ionization mass spectrometry, J. Mass Spectrom.,2010,45(12):1394-1401.
    [19]Shrivas, K.,Wu, H.F., Multifunctional nanoparticles composite for MALDI-MS: Cd2+-doped carbon nanotubes with CdS nanoparticles as the matrix, preconcentrating and accelerating probes of microwave enzymatic digestion of peptides and proteins for direct MALDI-MS analysis, J. Mass Spectrom.,2010,45(12):1452-1460.
    [20]Novoselov, K.S., Geim, A.K., Morozov, S.V., Jiang, D., Zhang, Y, Dubonos, S.V, Grigorieva, I.V,Firsov, A.A., Electric field effect in atomically thin carbon films, Science,2004,306(5696):666-669.
    [21]Hirata, M., Gotou, T., Horiuchi, S., Fujiwara, M.,Ohba, M., Thin-film particles of graphite oxide 1:High-yield synthesis and flexibility of the particles, Carbon,2004, 42(14):2929-2937.
    [22]Rao, C.N., Sood, A.K., Subrahmanyam, K.S.,Govindaraj, A., Graphene:the new two-dimensional nanomaterial, Angew Chem Int Ed Engl,2009,48(42):7752-7777.
    [23]Allen, M.J., Tung, V.C., Gomez, L., Xu, Z., Chen, L.M., Nelson, K.S., Zhou, C.W., Kaner, R.B.,Yang, Y, Soft Transfer Printing of Chemically Converted Graphene, Adv. Mater,2009,21(20):2098-2102.
    [24]Berger, C, Song, Z., Li, X., Wu, X., Brown, N., Naud, C., Mayou, D., Li, T., Hass, J., Marchenkov, A.N., Conrad, E.H., First, P.N.,de Heer, W.A., Electronic confinement and coherence in patterned epitaxial graphene, Science,2006,312(5777): 1191-1196.
    [25]Sutter, P.W., Flege, J.I.,Sutter, E.A., Epitaxial graphene on ruthenium, Nat Mater, 2008,7(5):406-411.
    [26]Li, D.S., Windl, W.,Padture, N.P., Toward Site-Specific Stamping of Graphene, Adv. Mater.,2009,21(12):1243-+.
    [27]He, H.Y., Klinowski, J., Forster, M.,Lerf, A., A new structural model for graphite oxide, Chem Phys Lett,1998,287(1-2):53-56.
    [28]Szabo, T, Szeri, A.,Dekany, I., Composite graphitic nanolayers prepared by self-assembly between finely dispersed graphite oxide and a cationic polymer, Carbon, 2005,43(1):87-94.
    [29]van der Vusse, G.J., Glatz, J.F., Stam, H.C.,Reneman, R.S., Fatty acid homeostasis in the normoxic and ischemic heart, Physiol Rev,1992,72(4):881-940.
    [30]Bing, R.J., Siegel, A., Ungar, I.,Gilbert, M., Metabolism of the human heart,Ⅱ. Studies on fat, ketone and amino acid metabolism, Am J Med,1954,16(4):504-515.
    [31]Galli, C.,Marangoni, F., Recent advances in the biology of n-6 fatty acids, Nutrition,1997,13(11-12):978-985.
    [32]Yamashita, A., Sugiura, T.,Waku, K., Acyltransferases and transacylases involved in fatty acid remodeling of phospholipids and metabolism of bioactive lipids in mammalian cells, J Biochem,1997,122(1):1-16.
    [33]Barzanti, V, Maranesi, M., Cornia, G.L., Malavolti, M., Mordenti, T.,Pregnolato, P., Effect of dietary oils containing different amounts of precursor and derivative fatty acids on prostaglandin E-2 synthesis in liver, kidney and lung of rats, Prostaglandins Leukot. Essent. Fatty Acids,1999,60(1).49-54.
    [34]Brondz, I., Development of fatty acid analysis by high-performance liquid chromatography, gas chromatography, and related techniques, Anal. Chim. Acta,2002, 465(1-2):1-37.
    [35]Moldovan, Z., Jover, E.,Bayona, J.M., Gas chromatographic and mass spectrometric methods for the characterisation of long-chain fatty acids-Application to wool wax extracts, Anal. Chim. Acta,2002,465(1-2):359-378.
    [36]Yu, H., Lopez, E., Young, S.W., Luo, J., Tian, H.,Cao, P., Quantitative analysis of free fatty acids in rat plasma using matrix-assisted laser desorption/ionization time-of-flight mass spectrometry with meso-tetrakis porphyrin as matrix, Anal Biochem,2006,354(2):182-191.
    [37]Budimir, N., Blais, J.C., Fournier, F.,Tabet, J.C., Desorption/ionization on porous silicon mass spectrometry (DIOS) of model cationized fatty acids, J Mass Spectrom, 2007,42(1):42-48.
    [38]Budimir, N., Blais, J.C., Fournier, F.,Tabet, J.C., The use of desorption/ionization on porous silicon mass spectrometry for the detection of negative ions for fatty acids, Rapid Commun Mass Spectrom,2006,20(4):680-684.
    [39]Xu, S., Li, Y, Zou, H., Qiu, J., Guo, Z.,Guo, B., Carbon nanotubes as assisted matrix for laser desorption/ionization time-of-flight mass spectrometry, Anal. Chem., 2003,75(22):6191-6195.
    [40]Pan, C, Xu, S., Hu, L., Su, X., Ou, J., Zou, H., Guo, Z., Zhang, Y.,Guo, B., Using oxidized carbon nanotubes as matrix for analysis of small molecules by MALDI-TOF MS, J. Am. Soc. Mass Spectrom,2005,16(6):883-892.
    [41]Pan, C., Xu, S., Zou, H., Guo, Z., Zhang, Y.,Guo, B., Carbon nanotubes as adsorbent of solid-phase extraction and matrix for laser desorption/ionization mass spectrometry, J. Am. Soc. Mass Spectrom.,2005,16(2):263-270.
    [42]Tang, L.A., Wang, J.,Loh, K.P., Graphene-based SELDI probe with ultrahigh extraction and sensitivity for DNA oligomer, J Am Chem Soc.,2010,132(32): 10976-10977.
    [43]Zhou, X., Wei, Y, He, Q., Boey, F., Zhang, Q.,Zhang, H., Reduced graphene oxide films used as matrix of MALDI-TOF-MS for detection of octachlorodibenzo-p-dioxin, Chemical communications,2010,46(37):6974-6976.
    [44]Zhang, J., Dong, X.L., Cheng, J.S., Li, J.H.,Wang, Y.S., Efficient Analysis of Non-Polar Environmental Contaminants by MALDI-TOF MS with Graphene as Matrix, J. Am. Soc. Mass Spectrom.,2011,22(7):1294-1298.
    [45]Park, K.H.,Kim, H.J., Analysis of fatty acids by graphite plate laser desorption/ionization time-of-flight mass spectrometry, Rapid communications in mass spectrometry:RCM,2001,15(16):1494-1499.
    [46]Lu, M.H., Lai, Y.Q., Chen, G.N.,Cai, Z.W., Matrix Interference-Free Method for the Analysis of Small Molecules by Using Negative Ion Laser Desorption/Ionization on Graphene Flakes, Anal. Chem.,2011,83(8):3161-3169.
    [47]Dong, X.L., Cheng, J.S., Li, J.H.,Wang, Y.S., Graphene as a Novel Matrix for the Analysis of Small Molecules by MALDI-TOF MS, Anal. Chem.,2010,82(14): 6208-6214.
    [48]Liu, Q., Shi, I, Zeng, L., Wang, T., Cai, Y.Jiang, G., Evaluation of graphene as an advantageous adsorbent for solid-phase extraction with chlorophenols as model analytes, J Chromatogr A,2011,1218(2):197-204.
    [49]Gulbakan, B., Yasun, E., Shukoor, M.I., Zhu, Z., You, MX., Tan, X.H., Sanchez, H., Powell, D.H., Dai, H.J.Jan, W.H., A Dual Platform for Selective Analyte Enrichment and Ionization in Mass Spectrometry Using Aptamer-Conjugated Graphene Oxide, J. Am. Chem. Soc.,2010,132(49):17408-17410.
    [50]Wang, Z.J., Zhou, X.Z., Zhang, J., Boey, F.,Zhang, H., Direct Electrochemical Reduction of Single-Layer Graphene Oxide and Subsequent Functionalization with Glucose Oxidase, J. Phys. Chem. C,2009,113(32):14071-14075.
    [51]Lowe, R.D., Szili, E.J., Kirkbride, P., Thissen, H., Siuzdak, G.,Voelcker, N.H., Combined immunocapture and laser desorption/ionization mass spectrometry on porous silicon, Anal Chem,2010,82(10):4201-4208.
    [52]Huang, Y.F.,Chang, H.T., Analysis of adenosine triphosphate and glutathione through gold nanoparticles assisted laser desorption/ionization mass spectrometry, Anal Chem,2007,79(13):4852-4859.
    [1]Wessler, I., Kirkpatrick, C.J.,Racke, K., Non-neuronal acetylcholine, a locally acting molecule, widely distributed in biological systems:expression and function in humans, Pharmacol Ther,1998,77(1):59-79
    [2]Felician, O.,Sandson, T.A., The neurobiology and pharmacotherapy of Alzheimer's disease, J Neuropsychiatry Clin Neurosci,1999,11(1):19-31.
    [3]Greenblatt, H.M., Dvir, H., Silman, I.,Sussman, J.L., Acetylcholinesterase:a multifaceted target for structure-based drug design of anticholinesterase agents for the treatment of Alzheimer's disease, J Mol Neurosci,2003,20(3):369-383.
    [4]Zangara, A., The psychopharmacology of huperzine A:an alkaloid with cognitive enhancing and neuroprotective properties of interest in the treatment of Alzheimer's disease, Pharmacol Biochem Behav,2003,75(3):675-686.
    [5]Winkler, J., Thal, L.J., Gage, F.H.,Fisher, L.J., Cholinergic strategies for Alzheimer's disease, J Mol Med,1998,76(8):555-567.
    [6]Funeriu, D.P., Eppinger, J., Denizot, L., Miyake, M.,Miyake, J., Enzyme family-specific and activity-based screening of chemical libraries using enzyme microarrays, Nat. Biotechnol.,2005,23(5):622-627.
    [7]Grepin, C.,Pernelle, C., High-throughput screening-Evolution of Homogeneous Time Resolved Fluorescence (HTRF) technology for HTS, Drug Discov. Today,2000, 5(5):212-214.
    [8]Hu, F., Zhang, H., Lin, H., Deng, C.,Zhang, X., Enzyme inhibitor screening by electrospray mass spectrometry with immobilized enzyme on magnetic silica microspheres, J. Am. Soc. Mass Spectrom.,2008,19(6):865-873.
    [9]Hu, L., Jiang, G., Xu, S., Pan, C.,Zou, H., Monitoring enzyme reaction and screening enzyme inhibitor based on MALDI-TOF-MS platform with a matrix of oxidized carbon nanotubes, J. Am. Soc. Mass Spectrom.,2006,17(11):1616-1619.
    [10]Karas, M.,Hillenkamp, F., Laser desorption ionization of proteins with molecular masses exceeding 10,000 daltons, Anal. Chem.,1988,60(20):2299-2301.
    [11]Porta, T., Grivet, C., Knochenmuss, R., Varesio, E.,Hopfgartner, G., Alternative CHCA-based matrices for the analysis of low molecular weight compounds by UV-MALDI-tandem mass spectrometry, Journal of mass spectrometry:JMS,2011, 46(2):144-152.
    [12]Persike, M., Zimmermann, M., Klein, J.,Karas, M., Quantitative Determination of Acetylcholine and Choline in Microdialysis Samples by MALDI-TOF MS, Anal. Chem.,2010,82(3):922-929.
    [13]Cohen, L.H.,Gusev, A.I., Small molecule analysis by MALDI mass spectrometry, Anal. Bioanal. Chem.,2002,373(7):571-586.
    [14]Dong, X., Cheng, J., Li, J.,Wang, Y, Graphene as a novel matrix for the analysis of small molecules by MALDI-TOF MS, Anal Chem,2010,82(14):6208-6214.
    [15]Luo, Y.B., Shi, Z.G., Gao, Q.A.,Feng, Y.Q., Magnetic retrieval of graphene: Extraction of sulfonamide antibiotics from environmental water samples, J. Chromatogr. A,2011,1218(10):1353-1358.
    [16]Liu, Q., Shi, J.B., Sun, J.T., Wang, T., Zeng, L.X.Jiang, G.B., Graphene and Graphene Oxide Sheets Supported on Silica as Versatile and High-Performance Adsorbents for Solid-Phase Extraction, Angew. Chem.-Int. Edit.,2011,50(26): 5913-5917.
    [17]Lu, M.H., Lai, Y.Q., Chen, G.N.,Cai, Z.W., Matrix Interference-Free Method for the Analysis of Small Molecules by Using Negative Ion Laser Desorption/Ionization on Graphene Flakes, Anal. Chem.,2011,83(8):3161-3169.
    [18]Gulbakan, B., Yasun, E., Shukoor, M.I., Zhu, Z., You, M.X., Tan, X.H., Sanchez, H., Powell, D.H., Dai, H.J.,Tan, W.H., A Dual Platform for Selective Analyte Enrichment and Ionization in Mass Spectrometry Using Aptamer-Conj ugated Graphene Oxide, J. Am. Chem. Soc.,2010,132(49):17408-17410.
    [19]Wang, Z.J., Zhou, X.Z., Zhang, J., Boey, F.,Zhang, H., Direct Electrochemical Reduction of Single-Layer Graphene Oxide and Subsequent Functionalization with Glucose Oxidase, J. Phys. Chem. C,2009,113(32):14071-14075.
    [20]He, H.Y., Klinowski, J., Forster, M.,Lerf, A., A new structural model for graphite oxide, Chem Phys Lett,1998,287(1-2):53-56.
    [21]Szabo, T., Szeri, A.,Dekany, I., Composite graphitic nanolayers prepared by self-assembly between finely dispersed graphite oxide and a cationic polymer, Carbon, 2005,43(1):87-94.
    [22]Liu, Y., Liu, J.Y., Yin, P., Gao, M.X., Deng, C.H.,Zhang, X.M., High throughput identification of components from traditional Chinese medicine herbs by utilizing graphene or graphene oxide as MALDI-TOF-MS matrix, J. Mass Spectrom.,2011, 46(8):804-815.
    [23]Zhou, X., Wei, Y, He, Q., Boey, F., Zhang, Q.,Zhang, H., Reduced graphene oxide films used as matrix of MALDI-TOF-MS for detection of octachlorodibenzo-p-dioxin, Chemical communications,2010,46(37):6974-6976.
    [24]Kim, Y.K., Na, H.K., Kwack, S.J., Ryoo, S.R., Lee, Y, Hong, S., Jeong, Y,Min, D.H., Synergistic Effect of Graphene Oxide/MWCNT Films in Laser Desorption/Ionization Mass Spectrometry of Small Molecules and Tissue Imaging, ACS Nano,2011,5(6):4550-4561.
    [25]Babiak, P.,Reymond, J.L., A high-throughput, low-volume enzyme assay on solid support, Anal. Chem.,2005,77(2):373-377.
    [26]Gao, J., Xu, J., Locascio, L.E.,Lee, C.S., Integrated microfluidic system enabling protein digestion, peptide separation, and protein identification, Anal. Chem.,2001, 73(11):2648-2655.
    [27]Li, Y, Leng, T., Lin, H., Deng, C, Xu, X., Yao, N., Yang, P.,Zhang, X., Preparation of Fe3O4@ZrO2 core-shell microspheres as affinity probes for selective enrichment and direct determination of phosphopeptides using matrix-assisted laser desorption ionization mass spectrometry, J. Proteome Res.,2007,6(11):4498-4510.
    [28]Li, Y, Wu, J., Qi, D., Xu, X., Deng, C., Yang, P.,Zhang, X., Novel approach for the synthesis of Fe3O4@TiO2 core-shell microspheres and their application to the highly specific capture of phosphopeptides for MALDI-TOF MS analysis, Chemical communications,2008, (5):564-566.
    [29]Li, Y, Qi, D., Deng, C., Yang, P.,Zhang, X., Cerium ion-chelated magnetic silica microspheres for enrichment and direct determination of phosphopeptides by matrix-assisted laser desorption ionization mass spectrometry, J. Proteome Res.,2008, 7(4):1767-1777.
    [30]Li, Y, Liu, Y, Tang, J., Lin, H., Yao, N., Shen, X., Deng, C., Yang, P.,Zhang, X., Fe3O4@A12O3 magnetic core-shell microspheres for rapid and highly specific capture of phosphopeptides with mass spectrometry analysis, Journal of chromatography. A,2007,1172(1):57-71.
    [31]Li, Y, Lin, H., Deng, C., Yang, P.,Zhang, X., Highly selective and rapid enrichment of phosphorylated peptides using gallium oxide-coated magnetic microspheres for MALDI-TOF-MS and nano-LC-ESI-MS/MS/MS analysis, Proteomics,2008,8(2):238-249.
    [32]Sanjay, G.,Sugunan, S., Glucoamylase immobilized on montmorillonite: Synthesis, characterization and starch hydrolysis activity in a fixed bed reactor, Catal. Commun,2005,6(8):525-530.
    [33]Yao, G., Qi, D., Deng, C.,Zhang, X., Functionalized magnetic carbonaceous microspheres for trypsin immobilization and the application to fast proteolysis, Journal of chromatography. A,2008,1215(1-2):82-91.
    [34]Mank, M., Stahl, B.,Boehm, G.,2,5-Dihydroxybenzoic acid butylamine and other ionic liquid matrixes for enhanced MALDI-MS analysis of biomolecules, Anal. Chem.,2004,76(10):2938-2950.
    [35]Sleno, L.,Volmer, D.A., Some fundamental and technical aspects of the quantitative analysis of pharmaceutical drugs by matrix-assisted laser desorption/ionization mass spectrometry, Rapid Commun. Mass Spectrom.,2005, 19(14):1928-1936.
    [36]Huang, T., Yang, L., Gitzen, I, Kissinger, P.T., Vreeke, M.,Heller, A., Detection of basal acetylcholine in rat brain microdialysate, J Chromatogr B Biomed Appl,1995, 670(2):323-327.
    [37]de Boer, P., Westerink, B.H.,Horn, A.S., The effect of acetylcholinesterase inhibition on the release of acetylcholine from the striatum in vivo:interaction with autoreceptor responses, Neurosci Lett,1990,116(3):357-360.
    [38]Tsai, T.R., Cham, T.M., Chen, K.C., Chen, C.F.,Tsai, T.H., Determination of acetylcholine by on-line microdialysis coupled with pre-and post-microbore column enzyme reactors with electrochemical detection, J Chromatogr B Biomed Appl,1996, 678(2):151-155.
    [39]Zhu, Y, Wong, P.S., Cregor, M., Gitzen, J.F., Coury, L.A.,Kissinger, P.T., In vivo microdialysis and reverse phase ion pair liquid chromatography/tandem mass spectrometry for the determination and identification of acetylcholine and related compounds in rat brain, Rapid communications in mass spectrometry:RCM,2000, 14(18):1695-1700.
    [40]Hows, M.E., Organ, A. J., Murray, S., Dawson, L.A., Foxton, R., Heidbreder, C., Hughes, Z.A., Lacroix, L.,Shah, A.J., High-performance liquid chromatography/tandem mass spectrometry assay for the rapid high sensitivity measurement of basal acetylcholine from microdialy sates, J Neurosci Methods,2002, 121(1):33-39.
    [41]Uutela, P., Reinila, R., Piepponen, P., Ketola, R. A.,Kostiainen, R., Analysis of acetylcholine and choline in microdialysis samples by liquid chromatography/tandem mass spectrometry, Rapid communications in mass spectrometry:RCM,2005,19(20): 2950-2956.
    [42]Lacroix, L.P., Ceolin, L., Zocchi, A., Varnier, G., Garzotti, M., Curcuruto, O.,Heidbreder, C.A., Selective dopamine D3 receptor antagonists enhance cortical acetylcholine levels measured with high-performance liquid chromatography/tandem mass spectrometry without anti-cholinesterases, J Neurosci Methods,2006,157(1): 25-31.
    [43]Keski-Rahkonen, P., Lehtonen, M., Ihalainen, J., Sarajarvi, T.,Auriola, S., Quantitative determination of acetylcholine in microdialysis samples using liquid chromatography/atmospheric pressure spray ionization mass spectrometry, Rapid communications in mass spectrometry:RCM,2007,21(18):2933-2943.
    [44]Xu, X.Q., Deng, C.H., Gao, M.X., Yu, W.J., Yang, P.Y.,Zhang, X.M., Synthesis of magnetic microspheres with immobilized metal ions for enrichment and direct determination of phosphopeptides by matrix-assisted laser desorption ionization mass spectrometry, Adv. Mater,2006,18(24):3289-+.
    [45]Li, Y, Yan, B., Deng, C., Yu, W, Xu, X., Yang, P.,Zhang, X., Efficient on-chip proteolysis system based on functionalized magnetic silica microspheres, Proteomics, 2007,7(14):2330-2339.
    [46]Shinkai, M.,Ito, A., Functional magnetic particles for medical application, Advances in biochemical engineering/biotechnology,2004,91:191-220.
    [47]Marle, I., Karlsson, A.,Pettersson, C., SEPARATION OF ENANTIOMERS USING ALPHA-CHYMOTRYPSIN-SILICA AS A CHIRAL STATIONARY PHASE, Journal of Chromatography,1992,604(2):185-196.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700