用户名: 密码: 验证码:
水培植物净化城市黑臭河水的效果、机理分析及示范工程
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本论文以严重污染的城市黑臭河流作为研究对象,通过构建水培植物净化槽,开展利用水培植物(梭鱼草和香菇草)净化城市黑臭河水的试验研究,并且实施示范工程研究,旨在为城市黑臭河流原位治理与生态修复技术的工程设计、系统集成及运行调控提供理论依据和技术支撑。
     本论文依托于国家“十一五”科技重大专项《城市黑臭河道外源阻断、工程修复与原位多级生态净化关键技术研究与示范》(2009ZX07317-006),开展上海市工业河水培植物净化城市黑臭河水试验研究,并且,实施温州市九山外河水质净化与生态修复示范工程研究。论文的重点研究内容有以下几个方面:1)分析植物生理特性、形态特点以及净水效果的变化,探讨植物生理特性与净水效果之间的关联;2)以人工曝气作为外源调控因素,将不同曝气强度影响植物的生理特性、形态特点与净化效果进行关联,探讨三者之间的内在联系;3)采用16SrDNA克隆文库方法,对植物根系微生物群落的多样性变化进行研究;4)开展温州市九山外河水质净化与生态修复示范工程研究。主要得出以下结论:
     (1)在春、夏、秋三个季节中,随着光照强、弱日变化,梭鱼草和香菇草的生理特性呈现对应升、降变化;在12:00am-14:00pm时段,由于光照强度增加,两种植物的叶片Chla、Chlb、Soluble protein含量和根组织CAT、POD、SOD活性均高于其它时段,而夏季植物发生“光合午休”现象,导致两种植物的叶片Chla、 Chlb、Soluble protein含量在13:00pm降低;春季和夏季,两种植物的叶片Soluble protein含量和根组织CAT、POD活性均差异显著(T-Test,p<0.05);秋季,两种植物的叶片Chla、Chlb、Soluble protein含量和根组织POD、SOD活性均差异显著(T-Test,p<0.05)。在春、夏、秋三个季节中,梭鱼草的根长、茎长、叶面积、生物量均显著高于香菇草(T-Test,p<0.05),而香菇草的分蘖数显著大于梭鱼草(T-Test,p<0.05);在春季和夏季,梭鱼草的氮含量和磷含量均显著高于香菇草(T-Test,p<0.05),而秋季相反。
     (2)在春、夏、秋三个季节中,随着光照强、弱日变化,梭鱼草和香菇草的净水效果呈现对应升、降变化;在12:00am-14:00pm时段,两种植物净化槽对黑臭河水的净水效果好于其它时段。春季,两种植物净化槽的净水效果差异不显著;夏季,梭鱼草净化槽中CODCr、TN、NH3-N、TP、DTP去除率和DO浓度均显著高于香菇草(ANOVA,p<0.05);秋季,香菇草净化槽中CODCr、TN、NH3-N、TP、DTP去除率和DO浓度均显著高于梭鱼草净化槽(ANOVA,p<0.05)。
     (3)在春、夏、秋三个季节中,随着光照强、弱日变化,梭鱼草和香菇草的生理特性日变化与净水效果日变化之间均呈正相关。其中,以梭鱼草净化槽的夏季试验为例,植物的叶片Chla、Chlb、Soluble protein含量分别与植物净化槽中DO浓度呈显著正相关(r=0.962、0.826、0.953,p<0.05);植物的根组织CAT、POD、SOD活性分别与植物净化槽中NH3-N去除率呈极显著相关(0.953、0.945、0.866,p<0.05)、与植物净化槽中DTP去除率也呈极显著相关(r=0.954、0.961、0.942,p<0.05)。在春季和秋季试验中,对两种植物的相关分析结果类似。
     (4)不同曝气强度处理影响梭鱼草和香菇草生理特性、形态特点变化各不相同。在春、夏、秋三个季节中,两种植物在45L/min、60L/min处理下的生理特性、形态特点分别与对照处理均差异显著(ANOVA, p<0.05)。春季,梭鱼草在15L/min处理下的生理特性、形态特点分别与对照处理差异不显著,而其对照处理与30L/min处理的差异显著(ANOVA,p<0.05);香菇草在15L/min、30L/min处理下的生理特性、形态特点分别与对照处理差异不显著。夏季,两种植物在15L/min、30L/min处理下的生理特性与对照处理差异不显著;在15L/min处理下,梭鱼草的根长、茎长、叶面积、生物量、分蘖数以及氮、磷含量均较对照处理显著增加(ANOVA, p<0.05);香菇草在15L/min、30L/min处理下的根长、茎长、叶面积、生物量、分蘖数以及氮、磷含量均显著高于对照处理(ANOVA,p<0.05);秋季,梭鱼草在15L/min处理下的生理特性与对照处理差异不显著,而其根长、茎长、叶面积、生物量、分蘖数以及氮、磷含量均较对照处理显著增加(ANOVA, p<0.05);香菇草在15L/min、30L/min处理下的生理特性与对照处理差异不显著,香菇草的在30L/min处理下的形态特点与对照处理差异不显著,而在15L/min处理下,香菇草的根长、茎长、叶面积、生物量、分蘖数以及氮、磷含量均显著高于对照处理(ANOVA, p<0.05)。
     (5)不同曝气强度对梭鱼草和香菇草的净水效果影响明显。在春、夏、秋三个季节中,两种植物净化槽分别在15L/min处理下的净水效果最好;以夏季试验为例:梭鱼草净化槽对CODCr、TN、NH3-N、TP和DTP的去除率分别为62.27%、57.08%、66.80%、55.28%和63.70%,该工况净化槽中DO浓度为4.24mg/L;香菇草净化槽对CODCr、N、NH3-N、TP和DTP的去除率分别为58.56%、49.28%、57.89%、52.82%和63.51%,该工况净化槽中DO浓度为3.95mg/L。
     (6)在春、夏、秋三个季节的动态进水条件下,低强度曝气强化低浓度致臭物质去除效果的作用明显。以夏季试验为例,在15L/min处理下,梭鱼草净化槽对DMS和DMDS的去除率为76.58%和80.55%,香菇草净化槽对DMS和DMDS的去除率为84.92%和77.81%,在30L/min处理下,梭鱼草净化槽对DMS和DMDS的去除率为87.76%和86.02%;,香菇草净化槽对DMS和DMDS的去除率为91.35%和84.19%。
     (7)在春、夏、秋三个季节中,不同曝气强度和不同季节的变化对梭鱼草净化槽内植物根系微生物种群的多样性影响明显。植物在夏季处于生长旺盛期,植物根系泌氧作用增强,加上较高的水温,使得梭鱼草净化槽内植物根系微生物种群的多样性相比春、秋季节更丰富,此时梭鱼草净化槽净水效果更好;梭鱼草净化槽在30L/min曝气强度条件下,净化槽内植物根系微生物种群的多样性最丰富,硝化螺旋菌属(Nitrospira sp.)细菌是主要优势菌种;在30L/min处理下,梭鱼草净化槽的CODCr、TN和NH3-N去除率最高。
     (8)采用曝气增氧强化工程和原位生态净化工程对温州市九山外河水质净化与生态修复的示范工程效果显著。在示范工程运行期间,示范河段的水质改善明显,河水黑臭基本消除。在采样日:2012-06-10,九山外河水质净化与生态修复工程示范河段的6个监测采样点处,示范段河水的DO、CODCr、NH3-N和TP浓度的平均值分别为4.49mg/L、17.29mg/L、3.34mg/L和0.58mg/L;其中,少年宫桥、兽医桥、桑拿桥三个示范工程考核断面河水的DO、CODCr、NH3-N和TP浓度均已达到示范工程的目标要求。
     本论文通过水培植物净化城市黑臭河水的现场试验研究,实证了在不同植物种类、不同季节和不同曝气强度条件下,水培植物的生理特性、形态特点的动态变化规律及其对植物净水效果的影响水平和机制;同时,论文实施了温州市九山外河水质净化与生态修复示范工程研究。论文研究结果为城市污染河流的原位治理与生态修复技术实际运用提供了可靠依据,具有一定的理论意义和应用价值。
This dissertation took urban black-odorous river as research object, two typical hydroponic plant purifying tanks(Pontederia cordata, Hydrocotyle vulgaris) were constructed, which were used to carry out the experimental research of urban black-odorous river water purification. Additionally, demonstration project research was carries out. The purposes of this dissertation were to provide theoretical basis and technical support for the technology of the engineering design, system integration and manipulation of urban black-odorous river in situ treatment and ecological restoration.
     This dissertation was supported by National Science and Technology Major Project of the Ministry of Science and Technology of China during the11th Five-Year Plan (No.2009ZX07317-006). The experimental researches of urban black-odorous river water purification in Shanghai Gongye River were carried out. Additionally, the project of water purification and ecological restoration for Jiushanwai River was implemented. The main investigations of this dissertation were as follows:1) analysis of the physiological properties and morphological characteristics of plants, as well as the changes of water purification effect, to explore the association between the physiological characteristics of plants and water purification effects;2) set artificial aeration as the factor of exogenous regulation, associated the physiological properties and morphological characteristics of plants with the changes of water purification effect, the internal relevance was investigated;3) the method of16S rDNA clone library was used to analyze the diversity of microbial community on the roots of the plant;4) the demonstration project of water purification and ecological restoration for Jiushanwai River was implemented. The main results were as follows:
     (1) In spring, summer and autumn, as the intensity of the sunlight increased or decreased on diurnal variation, the physiological characteristics of P. cordata and H. vulgaris demonstrated a corresponding up and down. During12:00am to14:00pm, with the increasing on the intensity of sunlight, the contents of Chla, Chlb, and Soluble protein in the leaves of two plants, as well as the activities of CAT, POD and SOD in the roots tissue of two plants were higher than those in other time quantums, respectively. In summer, two plants were observed to display the phenomenon of photosynthesis midday depression which led to a decrease on the contents of Chla, Chlb and Soluble protein in the leaves of two plants at13:00pm. In spring and summer, the content of Soluble protein in the leaves, as well as the activities of CAT and POD in the roots tissue between two plants displayed significant difference (T-Test, p<0.05), respectively. In autumn, the contents of Chla, Chlb and Soluble protein in the leaves of two plants, as well as the activities of POD and SOD in the roots tissue between the two plants showed significant difference (T-Test, p<0.05), respectively. In spring, summer and autumn, the length of the root and stem, the area of the leaves and the biomass of P. cordata were higher than those of H. vulgaris (T-Test, p<0.05), while the number of tillers of the latter was higher than those of the former (T-Test, p<0.05), respectively. In spring and summer, the contents of nitrogen and phosphorous in P. cordata were higher than those of H. vulgaris (T-Test, p<0.05).
     (2) In spring, summer and autumn, as the intensity of the sunlight increased or decreased on diurnal variation, the effects of water purification of P. cordata and H. vulgaris varied accordingly. During12:00am to14:00pm, the effects of water purification were better than those in other time quantums. In spring, there was no significant difference between the two types of hydroponic plant purifying tanks, excluding the DTP removal efficiency. In summer, the removal efficiencies of CODCr, TN, NH3-N, TP and DTP, as well as the DO concentration in the P. cordata purifying tanks were higher than those of the H. vulgaris purifying tanks (ANOVA,p<0.05) respectively. In autumn, the removal efficiencies of CODcr, TN, NH3-N, TP and DTP, as well as the DO concentration in the P. cordata purifying tanks were higher than those of the H. vulgaris purifying tanks (ANOVA, p<0.05), respectively.
     (3) In spring, summer and autumn, as the intensity of the sunlight increased or decreased on diurnal variation, the correlations between the effects of water purification and the physiological characteristics of plants demonstrated positive correlation on diurnal variation. To take the experiment of P. cordata in summer as an example:the contents of Chla, Chlb, and Soluble protein in the leaves showed significant positive correlation with the DO concentration in the tanks (r=0.962,0.826,0.953,p<0.05), the activities of CAT, POD and SOD in roots tissue showed significant positive correlation with the removal efficiency of NH3-N (r=0.953,0.945,0.866, p<0.05), and they also demonstrated a close correlation with the removal efficiency of DTP (r=0.954,0.961,0.942, p<0.05). The similar analysis results were concluded in the experiment during spring and autumn.
     (4) Various treatments of aeration intensities affected the physiological properties and morphological characteristics of two plants differently. In spring, summer and autumn, the physiological properties and morphological characteristics of two plants among45L/min,60L/min and0L/min showed significant difference (ANOVA, p<0.05). In spring, the physiological properties and morphological characteristics of P. cordata were no significant difference between15L/min and0L/min, while the physiological properties and morphological characteristics of P. cordata between30L/min and0L/min showed significant difference (ANOVA,p<0.05), respectively. The physiological properties and morphological characteristics of H. vulgaris were no significant difference between15L/min,30L/min and0L/min. In summer, the physiological properties and morphological characteristics of two plants were no significant difference between15L/min,30L/min and0L/min, respectively. In autumn, the physiological properties of P. cordata were no significant difference between15L/min and0L/min, but the length of the root and stem, the area of the leaves, the biomass, the number of tillers and the content of nitrogen and phosphorous of P. cordata between30L/min and0L/min showed significant difference (ANOVA, p<0.05), respectively; the physiological properties of H. vulgaris were no significant difference between15L/min,30L/min and0L/min, the length of the root and stem, the area of the leaves, the biomass, the number of tillers and the content of nitrogen and phosphorous of H. vulgaris under15L/min were significant higher than those of H. vulgaris under0L/min (ANOVA, p<0.05), respectively.
     (5) In spring, summer and autumn, various aeration intensities affected the purification effect of two plants obviously. Two types of plant purifying tanks had best purification effect under15L/min. To take the experiment in summer as an example: the removal efficiencies of CODCr, TN, NH3-N, TP and DTP in the P. cordata purifying tank as well as the DO concentration were62.27%,57.08%,66.80%,55.28%and63.70%,4.24mg/L, respectively; while the removal efficiencies of CODcr, TN, NH3-N, TP and DTP in the H. vulgaris purifying tank as well as the DO concentration were58.56%,49.28%,57.89%,52.82%and63.51%,3.95mg/L, respectively.
     (6) In spring, summer and autumn, two types of plant purifying tank under continuous influent had remarkable effects on the removal efficiencies of DMS and DMDS. To take the experiment in summer as an example:the removal efficiencies of DMS and DMDS in the P. cordata purifying tank under15L/min were76.58%and80.55%, the removal efficiencies of DMS and DMDS in the H. vulgaris purifying tank under15L/min were84.92%and77.81%; the removal efficiencies of DMS and DMDS in the P. cordata purifying tank under30L/min were87.76%and86.02%, the removal efficiencies of DMS and DMDS in the H. vulgaris purifying tank under30L/min were91.35%and84.19%.
     (7) In spring, summer and autumn, the changes of aeration intensities and seasons had remarkable effects on the diversity of microbial community on the roots of the plant. In summer, the more oxygen was secreted from plant roots during the vigorously growing stage of plant and coupled with higher water temperatures, which led to the more microbial diversities and the better water purification effects in the P. cordata purifying tank. Under30L/min, the diversity of microbial community on the roots of the plant was most in the P. cordata purifying tank; in addition, Nitrospira sp. bacteria was the dominant strain in the P. cordata purifying tank. Additionally, the removal efficiencies of CODCr, TN and NH3-N were highest in the P. cordata purifying tank under30L/min.
     (8) The demonstration project of water purification and ecological restoration for Jiushanwai River had remarkable effects. During the operation period of the demonstration project, the water quality of demonstration river reach was improved effectively and the black-odorous of river water had been basically eliminated. On the sampling day:2012-06-10, the average concentrations of DO, CODCr,NH3-N and TP in demonstration river reach were4.49mg/L,17.29mg/L,3.34mg/L and0.58mg/L respectively. Additionally, the average concentrations of DO, CODCr, NH3-N and TP in three evaluation sections (Children's Palace Bridge, Veterinarian Bridge and Sauna Bridge) in demonstration river reach had achieved the objectives and requirements of the demonstration project, respectively.
     This dissertation was based on the experimental research of urban black-odorous river water purification, which finished an empirical analysis of the dynamic changes of the physiological properties and morphological characteristics of plants in different conditions, as well as the dynamic changes of water purification effect in different condition. Additionally, this dissertation implemented the demonstration project of water purification and ecological restoration for Jiushanwai River. The results of this dissertation provided a reliable basis for the practical engineering application of urban black-odorous river in situ treatment and ecological restoration, which had some theoretical significance and application value.
引文
[1]中华人民共和国环境保护部.2010年中国环境状况公报[R].北京:中华人民共和国环境保护部,2011.
    [2]Lazaro T. R. Urban hydrology [M]. Michigan:Ann Arbor Scimce Publishers, Inc.,1979.
    [3]胡洪营,何苗,朱铭捷,等.污染河流水质净化与生态修复技术及其集成化策略[J].给水排水,2005,(31)4:1-9.
    [4]田伟君.河流微污染水体的直接生物强化净化机理与试验研究[D].河海大学博士学位论文,2000.
    [5]陈伟,徐左正,叶舜涛,等.苏州河支流综合整治工程[J].给水排水,2002,28(2):31-34.
    [6]Pu P. M., Hu W. P., Yan J. S., et al. A physico-ecological engineering experiment for water treatment in a hypertrophic lake in China [J]. Ecological Engineering,1998,12(2):179-190.
    [7]Bradshaw A. Restoration of mined lands-using natural processes [J]. Ecological Engineering, 1997,8(4):255-269.
    [8]Hey R. D. Environmental river engineering [J]. Water and Environment Journal,1990,4(4): 335-340.
    [9]卢士强,林卫青,徐祖信,等.苏州河环境整治二期工程水质影响数值模拟[J].长江流域资源与环境,2006,15(2):228-231.
    [10]Ryding S. O. Lake Trehorningen restoration project. Changes in water quality after sediment dredging [J]. Hydrobiologia,1982,92(1):549-558.
    [11]Li E. H., Li W., Wang X. L., et al. Experiment of emergent macrophytes growing in contaminated sludge:Implication for sediment purification and lake restoration [J]. Pedosphere, 2008,18(1):34-44.
    [12]钟继承,范成新.底泥疏浚效果及环境效应研究进展[J].湖泊科学,2007,19(1):1-10.
    [13]邢雅囡,阮晓红,赵振华.城市河道底泥疏浚深度对氮磷释放的影响[J].河海大学学报(自然科学版),2006,34(4):376-382.
    [14]Zhong J. C., You B. S., Fan C. X., et al. Influences of sediment dredging on chemical forms of phosphorus and its release [J]. Pedosphere,2008,18(1):34-44.
    [15]梁斌,王超,王沛芳.“引江济太”工程背景下河网稀释净污需水计算及其应用[J].河海大学学(自然科学版),2004,32(1):32-37.
    [16]薛朝霞,汪翔,阮晓红,等.引水冲污治理苏州的水环境[J].中国给水排水,2002,18(10):33-35.
    [17]卢士强,徐祖信,罗海林,等.上海市主要河流调水方案的水质影响分析[J].河海大学学报(自然科学版),2006,34(1):32-36.
    [18]陈伟,叶舜涛,张明旭.苏州河河道曝气复氧探讨[J].给水排水,2001,27(4):7-9.
    [19]温东辉,李璐.以有机污染为主的河流治理技术研究进展[J].生态环境,2007,16(5):1539-1545.
    [20]焦卫东,刘瑜,陈强,等.城市景观水体混凝除藻过程对氮元素协同去除特性初探[J].环境科学研究,2012,25(8):897-903.
    [21]薛维纳,裴红艳,杨翠云,等.复合微生物菌剂处理城市污染河流的静态模拟[J].上海师范大学学报(自然科学版),2005,34(2):91-94.
    [22]焦燕.南方典型重污染城市内河河水联合生物处理技术研究[D].哈尔滨工业大学博士学位论文,2010.
    [23]Jin M., Wang X. W., Gong T. S., et al. A novel membrane bioreactor enhanced by effective microorganisms for the treatment of domestic wastewater [J]. Applied Microbiology and Biotechnology,2005,69(2):229-235.
    [24]倪永珍,李维炯.EM技术应川研究[M].中国农业大学出版社,1998
    [25]宋雅静,谢悦波,黄小丹.本源微生物菌剂修复城市污染河流[J].环境工程学报,2012,6(7):2173-2177.
    [26]瞿艳芝,刘操,廖日红,等.固定化微生物技术处理城市微污染河水研究[J].环境科学,2009,30(11):3306-3310.
    [27]李正魁,张晓姣,杨竹攸,等.基于固定化氮循环细菌技术的镇江金山湖生态工程效果研究[J].环境科学,2009,30(6):67-72.
    [28]黄民生,徐业同,戚仁海.苏州河污染支流-绥宁河生物修复试验研究[J].上海环境科学,2003,22(6):384-388.
    [29]Schnoor J. L., Light L. A., Mccutcheon S. C., et al. Phytomediation of organic and nutrient contaminants [J]. Environmental Science and Technology,1995,29(7):318-323.
    [30]Rai U. N., Sinha S., Tripathi R. D. Wastewater treatability potential of some aquatic macrophytes:Removal of heavy metals [J]. Ecological Engineering,1995,5 (1):1-12.
    [31]Qiu D. R., Wu Z. B., Liu B. Y. et al. The restoration of aquatic macrophytes for improving water quality in a hypertrophic shallow lake in Hubei Province, China [J]. Ecological Engineering, 2001,18(2):147-156.
    [32]Susarla S., Medinab V. F., Mccutcheonc S. C. Phytoremediation:An ecological solution to organic chemical contamination [J]. Ecological Engineering,2002,18(5):647-658.
    [33]Mars R., Taplin R., Ho G., Mathew K. Greywater treatment with the submergent Triglochin huegelii-a comparison between surface and subsurface systems [J]. Ecological Engineering,2003, 20(2):147-156.
    [34]贺锋,吴振斌.水生植物在污水处理和水质改善中的应用[J].植物学通报,2003,20(2):641-647.
    [35]王寿兵,阮晓峰,胡欢,等.不同观赏植物在城市河道污水中的生长试验[J].中国环境科学,2007,27(2):204-207.
    [36]黄民生,陈振楼.城市内河污染治理与生态修复——理论、方法与实践[M].科学出版社,2010.
    [37]Peterson S. B. and Teal J. M. The role of plants in ecologically engineered wastewater treatment systems [J]. Ecological Engineering,1996,6(1-3):137-148.
    [38]Zhu J. and Zhu X. Y. Treatment and utilization of wastewater in the Beijing Zoo by an aquatic macrophyte system [J]. Ecological Engineering,1998,11(1-4):101-110.
    [39]Moss B. Engineering and biological approach to the restoration from eutrophication of shallow lakes in which aquatic plant communities are important components [J]. Hydrobiologia, 1999,200-201(1):367-377.
    [40]张锡辉.水环境修复工程学原理与应用[M].北京:化学工业出版社,2001.
    [41]Coops H. and Doef R. W. Submerged vegetation development in two shallow, eutrophic lakes [J]. Hydrobiologia,1996,340(1-3):115-120.
    [42]胡长伟,孙占东,李建龙,等.凤眼莲在城市重污染河道修复中的应用[J].环境工程学报,2007,1(12):51-56.
    [43]Lu X. M., Lu P. Z., Chen J. J. Nitrogen and phosphorus removal and morphological and physiological response in Nymphaea tetragona under various planting densities [J]. Toxicological & Environmental Chemistry,2012,94(7):1319-1330.
    [44]周晓红,王国祥,风冰冰,等.3种景观植物对城市河道污染水体的净化效果[J].环境科学,2009,22(1):108-113.
    [45]许桂芳.4种观赏植物对富营养化景观水体的净化效果[J].中国农学通报,2010,26(7):229-302.
    [46]童昌华,杨肖娥,濮培民.3种景观植物对城市河道污染水体的净化效果[J].水土保持 学报,2003,17(2):159-162.
    [47]胡绵好,袁菊红,杨肖娥.水生蔬菜对富营养化水体净化及资源化利用[J].湖泊科学,2010,22(3):416-420.
    [48]李欲如,操家顺,徐峰,等.水蕹菜对苏州重污染水体净化功能的研究[J].环境污染与防治,2006,28(1):69-71.
    [49]Hu G. J., Zhou M., Hou H. B. et al. An ecological floating-bed made from dredged lake sludge for purification of eutrophic water [J]. Ecological Engineering,2010,36(4):1448-1458.
    [50]吴林林.黑臭河道净化试验研究及综合治理工程应用[D].华东师范大学硕士学位论文,2007.
    [51]Li X. N., Song H. L., Li W. et al. An integrated ecological floating-bed employing plant, freshwater clam and biofilm carrier for purification of eutrophic water [J]. Ecological Engineering, 2010,36(4):382-390.
    [52]Li M., Wu Y. J., Yu Z. L. et al. Nitrogen removal from eutrophic water by floating-bed-grown water spinach(Ipomoea aquatica Forsk.) with ion implantation [J]. Water Research,2010,41(14): 3152-3158.
    [53]Zhou X. H., Wang G X.. Nutrient concentration variations during Oenanthe javanica growth and decay in the ecological floating bed system [J]. Journal of Environmental Sciences,2010, 22(11):1710-1717.
    [54]张志勇,冯明雷,杨林章.浮床植物净化生活污水中N、P的效果及N2O的排放[J].生态学报,2007,27(10):4333-4341.
    [55]Mohan S. V., Mohanakrishna G, Chiranjeevi P., et al. Ecologically engineered system (EES) designed to integrate floating, emergent and submerged macrophytes for the treatment of domestic sewage and acid rich fermented-distillery wastewater:Evaluation of long tenn performance [J]. Bioresource Technology,2010,101(10):3363-3370.
    [56]罗固源,郑剑锋,许晓毅,等.4种浮.栽培植物生长特性及吸收氮磷能力的比较[J].环境科学学报,2009,(2):285-290.
    [57]李文祥,李为,林明利,等.浮床水蕹菜对养殖水体中营养物的去除效果研究[J].环境科学学报,2011,31(8):1670-1675.
    [58]吴建强,王敏,吴建,等.4种浮床植物吸收水体氮磷能力试验研究[J].环境科学,2007,27(10):4333-4341.
    [59]周元清,李秀珍,唐莹莹,等.不同处理水芹浮床对城市河道黑臭污水的脱氮效果及其 机理研究[J].环境科学学报,2011,31(10):2192-2198.
    [60]Hammer D.A. et al. Constructed wetlands for waste water treatment [M]. Michigan:Lew is Publishers, Inc.,1989.
    [61]Bulc T., Vrhovsek D., Kukanja V. The use of constructed wetland for landfill leachate treatment [J]. Water Science and Technology,1997,35(5):301-306.
    [62]Juwarkar A. S., Oke B., Juwarkar A., et al. Domestic wastewater treatment through constructed wetland in India [J]. Water Science and Technology,1995,32(3):291-294.
    [63]Tanner C.C. Plants for constructed wetland treatment systems-A comparison of the growth and nutrient uptake of eight emergent species [J]. Ecological Engineering,1996,7(1):59-83.
    [64]Olgui'n E. J., Sanchez-Galvan G, Gonzalez-Portela R. E., et al. Constructed wetland mesocosms for the treatment of diluted sugarcane molasses stillage from ethanol production using Pontederia sagittata [J]. Water Research,1996,30(10):2287-2292.
    [65]吴晓磊.人工湿地废水处理机理[J].环境科学,1995,16(3):83-86.
    [66]Neralla S., Weaver R. W., Lesikar B. J., et al. Improvement of domestic wastewater quality by subsurface flow constructed wetlands [J]. Bioresource Technology,2000,38(6):19-25.
    [67]Vymazal J. The use constructed wetlands with horizontal sub-surface flow for various types of wastewater [J]. Ecological Engineering,2009,35(1):1-17.
    [68]Vrhovsek D. Kukanja V. Bulc T. Constructed wetland (CW) for industrial waste water treatment [J]. Water Research,1996,30(10):2287-2292.
    [69]刘树元,阎百兴,王莉霞.潜流人工湿地中植物对氮磷净化的影响[J].生态学报,2011,31(6):1538-1546.
    [70]赵联芳,朱伟,赵建.人工湿地处理低碳氮比污染河水时的脱氮机理[J].环境科学学报,2006,26(11):1821-1827.
    [71]杨长明,马锐,山城幸,等.组合人工湿地对城镇污水处理厂尾水中有机物的去除特征研究[J].环境科学学报,2010,30(9):1804-1810.
    [72]Cheng B., Hu C. W., Zhao Y. J. Effects of plants development and pollutant loading on performance of vertical subsurface flow constructed wetlands [J]. International Journal of Environmental Science and Technology,2011,8(1):177-186.
    [73]刘雨,赵庆良,郑兴灿.生物膜法污水处理技术[M].北京:中国建筑工工业出版社,2000.
    [74]Wu Q. T., Gao T., Zeng S. C., et al. Plant-biofilm oxidation ditch for in situ treatment of polluted waters [J]. Ecological Engineering,2006,28(2):124-130.
    [75]马强,高明瑜,谭伟,等.新型生态浮岛在改善水质中的作用及生物膜载体微生物特征研究[J].环境科学,2011,32(6):1596-1601.
    [76]张永明,胡一珍,严荣,等.用生物膜缺氧修复受污染的城市河道水[J].环境科学,2009,30(7):1920-1924.
    [77]宋英伟,聂志丹,年跃刚,等.城市景观水体曝气与生物膜联合净化技术研究[J].环境科学,2008,29(1):58-62.
    [78]曹文平,谭水成.竹丝生物膜反应器修复校园景观水体的实验研究[J].环境工程学报,2010,4(7):1585-1590.
    [79]Hosetti B. B. and Frost S. A review of the sustainable value of effluents and sludges from wastewater stabilization ponds [J]. Ecological Engineering,1995,5(4):421-431.
    [80]张自杰,林荣忱,金儒霖.排水工程下册(第四版)[M].北京:中国建筑工业出版社,2000.
    [81]Mtethiwa A. H., Munyenyenbe A., Jere W., et al. Efficiency of oxidation ponds in wastewater treatment [J]. International Journal of Environmental Research,2008,2(2):149-152.
    [82]Green F.B., Bernstone L.S., Lundquist T.J., et al. Advanced integrated wastewater pond systems for nitrogen removal [J]. Water Science and Technology,1996,33(7):707-217.
    [83]李建华,王宝贞.氧化塘中氮磷的去除[J].中国环境科学,1992,12(4):241-244.
    [84]卢少勇,张彭义,余刚,等.农田排灌水的稳定塘—植物床复合系统处理[J].中国环境科学,2004,24(5):605-609.
    [85]吴振斌,詹发萃,邓家齐,等.综合生物塘处理城镇污水研究[J].环境科学学报,1994,14(2):223-228.
    [86]季永兴,黄民生,魏梓兴,等.上海多自然型河流整治实践与探索[J].长江流域资源与环境,2008,17(2):264-269.
    [87]Pinto U. and Maheshwari B. L. River health assessment in peri-urban landscapes:An application of multivariate analysis to identify the key variables [J]. Water Research,2011,45(13): 3915-3924.
    [88]陈振楼,许世远,徐启新,等.长江三角洲地表水环境污染规律及调控对策[J].长江流域资源与环境,2001,10(4):353-359.
    [89]柯孟岳,姚毅,陈雯,等.严重受污染城市河道水的处理—以深圳布吉河为例[J].复旦学报(自然科学版),2010,49(1):66-72.
    [90]lamchaturapatr J., Yi S. W., Rhee J. S. Nutrient removals by 21 aquatic plants for vertical free surface-flow (VFS) constructed wetland [J]. Ecological Engineering,2007,29(3):287-292.
    [91]Tian Z., Zheng B., Liu M., et al. Phragmites australis and Typha orientalis in removal of pollutant in Taihu Lake, China [J]. Journal of Environmental Sciences,2009,21(4):440-446.
    [92]靖元孝,杨丹菁,任延丽,等.水翁(Cleistocalyx operculatus)在人工湿地的生长特性及对污染物的去除效果[J].环境科学研究,2005,18(1):9-12.
    [93]徐德福,李映雪,方华,等.4种湿地植物的生理性状对人工湿地床设计的影响[J].农业环境科学学报,2009,28(3):587-591.
    [94]黄娟,王世和,钟秋爽,等.人工湿地处理污水时水生植物形态和生理特性对污水长期浸泡的响应[J].生态环境学报,2009,18(2):471-475.
    [95]国家环境保护总局.地表水环境质量标准GB3838-2002[S].北京:中国标准出版社,2002.
    [96]国家环境保护总局.水和废水监测分析方法(第四版)[M].北京:中国环境科学出版社,2002.
    [97]Arnon D. I. Copper enzymes in isolated chloroplasts. Polyphenoloxidase in Beta vulgaris [J]. Plant Physiology,1949,24(1):1-15.
    [98]汤章城.现代植物生理学实验指南[M].北京:科学出版社,1999.
    [99]张志良,瞿伟菁,李小方.植物生理学实验指导(第四版)[M].北京:高等教育出版社,2009.
    [100]李合生.植物生理生化实验原理和技术[M].北京:高等教育出版社,2000.
    [101]陈建勋,王晓峰.植物生理学实验指导(第二版)[M].广州:华南理工大学出版社,2006.
    [102]鲍士旦.土壤农化分析(第三版)[M].北京:中国农业出版社,2000.
    [103]李雁鸣,胡寅华,张建平,等.魔芋(Amorphophallus rivieri Durieu)叶面积测定方法的初步研究[J].河北农业大学学报,2000,23(4):23-25.
    [104]Lu X. M., Chen J. J. Effects of the diurnal variation of sunlight on water quality and the physiology of Nymphaea tetragona [J]. Toxicological & Environmental Chemistry,2012,94(2): 294-309.
    [105]Maxwell K. and Johnson G. N. Chlorophyll fluorescence-a practical guide [J]. Journal of Experimental Botany,2000,51(345):659-668.
    [106]Tegelberg R., Julkunen-Tiitto R., Vartiainen M., et al. Exposures to elevated CO2, elevated temperature and enhanced UV-B radiation modify activities of polyphenol oxidase and guaiacol peroxidase and concentrations of chlorophylls, polyamines and solubleproteins in the leaves of Betula pendula seedlings [J]. Environmental and Experimental Botany,2008,62(3):308-315.
    [107]Zhang F. Q., Wang Y. S., Lou Z. P., et al. Effect of heavy metal stress on antioxidative enzymes and lipid peroxidation in leaves and roots of two mangrove plant seedlings (Kandelia candel and Bruguiera gymnorrhiza) [J]. Chemosphere,2007,67(1):44-50.
    [108]Lu X. M. Huang M. S. Correlation between water quality and the diurnal variation of Pontederia cordata'physiology [J]. International Journal of Environmental Science and Technology,2012,9(2):311-318.
    [109]王传海,李宽意,文明章,等.苦草对水中环境因子影响的口变化特征[J].农业环境科学学报,2007,26(2):798-800.
    [110]雏维国,王世和,黄娟,等.植物光合及蒸腾特性对湿地脱氮效果的影响[J].中国环境科学,2006,26(1):30-33.
    [111]刘鹏,俞慧娜,张晓斌,等.几种水生观赏植物对城市污水的生理响应[J].水土保持学报,2008,22(4):163-167.
    [112]李宗辉,唐文浩,宋志文.人工湿地处理污水时水生植物形态和生理特性对污水长期浸泡的响应[J].环境科学学报,2007,27(1):75-79.
    [113]Ouellet-Plamondona C., Chazarenca F., Comeaub Y., et al. Artificial aeration to increase pollutant removal efficiency of constructed wetlands in cold climate [J]. Ecological Engineering, 2006,27(3):258-264.
    [114]Fast A. W., Moss B., Wetzel R. G. Effects of artificial aeration on the chemistry and algae of two Michigan Lakes[J]. Water Resources Research,1973,9(3):624-647.
    [115]肖羽堂,吴鸣,刘辉,等.弹性填料微孔曝气生物膜法修复污染水源除NH4+-N[J].环境科学,2001,22(3):40-43.
    [116]周杰,章永泰,杨贤智.人工曝气复氧治理黑臭河流[J].中国给水排水,2001,17(4):47-49.
    [117]李海英,冯慕华,李玲,等.微曝气生态浮床净化入湖河口污染河水原位模型实验[J].湖泊科学,2009,21(6):782-788.
    [118]潘继征,李文朝,李海英,等.人工增氧型复合湿地污染物净化效果[J].生态与农村环境学报,2010,26(5):482-486.
    [119]Maltais-Landry G., Chazarenc F., Comeau Y., et al. Effects of artificial aeration, macrophyte species, and loading rate on removal efficiency in constructed wetland mesocosms treating fish farm wastewater [J]. Journal of Environmental Engineering and Science,2007,6(4):409-414.
    [120]Lin S. H. Feedforward water quality control by artificial aeration of a thermally and organically polluted stream [J]. International Journal of Systems Science,1975,10(6):919-932.
    [121]李海英,李文朝,冯慕华.微曝气生态浮床水芹吸收N、P的特性及其对系统去除N、P贡献的研究[J].农业环境科学学报,2009,28(9):1908-1913.
    [122]Maltais-Landrya G, Marangera R., Brissona J. Effect of artificial aeration and macrophyte species on nitrogen cycling and gas flux in constructed wetlands [J]. Ecological Engineering,2009, 35(2):221-229.
    [123]王珺,顾宇飞,纪东成,等.富营养条件下不同形态氮对轮叶黑藻(Hydrilla verticillata)的生理影响[J].环境科学研究,2006,19(1):71-74.
    [124]Bennicelli R. P., Stepniewski W., Zakrzhevsky D. A., et al. The effect of soil aeration on superoxide dismutase activity, malondialdehyde level, pigment content and stomatal diffusive resistance in maize seedlings [J]. Environmental and Experimental Botany,1998,39(3):203-211.
    [125]Garnczarska M. Response of the ascorbate-glutathione cycle to re-aeration following hypoxia in lupine roots [J]. Plant Physiology and Biochemistry,2005,43(6):583-590.
    [126]Biemelt S., Keetman U., Albrecht G Re-aeration following hypoxia or anoxia leads to activation of the antioxidative defense system in roots of wheat seedlings [J]. Plant Physiology, 1998,116(2):651-658.
    [127]焦立新,王圣瑞,金相灿.穗花狐尾藻对铵态氮的生理响应[J].应用生态学报,2009,20(9):2283-2288.
    [128]Posmyk M. M., Kontek R., Janas K. M. Antioxidant enzymes activity and phenolic compounds content in red cabbage seedlings exposed to copper stress [J]. Ecotoxicology and Environmental Safety,2009,72 (2):596-602.
    [129]叶春,邹国燕,付子轼,等.总氮浓度对3种沉水植物生长的影响[J].环境科学学报.2007,27(5):739-746.
    [130]王珺,顾宇飞,朱增银,等.不同营养状态下金鱼藻的生理响应[J].应用生态学报,2005,16(2):337-340.
    [131]Tracy M., Montante J. M., Allenson T. E., et al. Long-term responses of aquatic macrophyte diversity and community structure to variation in nitrogen loading [J]. Plant Physiology and Biochemistry,2003,41(4):391-397.
    [132]Lu X. M. and Huang M. S. Nitrogen and phosphorus removal and physiological response in aquatic plants under aeration conditions [J]. International Journal of Environment Science and Technology,2010,7(4):665-674.
    [133]Garnczarska M. and Bednarski W. Effect of a short-term hypoxic treatment followed by re-aeration on free radicals level and antioxidative enzymes in lupine roots [J]. Plant Physiology and Biochemistry,2004,42(3):233-240.
    [134]Mascaro O., Valdemarsen T., Holmer M., et al. Experimental manipulation of sediment organic content and water column aeration reduces Zostera marina (eelgrass) growth and survival [J]. Journal of Experimental Marine Biology and Ecology,2009,373(1):26-34.
    [135]Sola I., Ausio X., Simo R. Quantitation of volatile sulphur compounds in polluted waters [J].Journal of Chromatography A,1997,778(1-2):329-335.
    [136]李勇,陈超,张晓健.等.饮用水中典型致嗅物质去除技术研究[J].环境科学,2008,29(11):3049-3053.
    [137]Susan S. S. and Williams C. M. Science of odor as a potential health issue [J]. Journal of Environmental Quality,2005,34(1):129-138.
    [138]Meunier L., Canonica S., von Gunten U. Implications of sequential use of UV and ozone for drinking water quality [J]. Water Research,2006,40(9),1864-1876.
    [139]李宁,刘杰民,温美娟,等.吹扫捕集-气相色谱联用测定城市河流中的挥发性硫化物[J].分析试验室,2004,23(6):16-18.
    [140]Ridgeway R. G., Bandy A. R., Thornton D. C. Determination of aqueous dimethyl sulfide using isotope dilution gas chromatography/mass spectrometry [J]. Marine Chemistry,1991,33(4): 321-334.
    [141]Juang D. F., Lee C. H., Chen W. C., et al. Do the VOCs that evaporate from a heavily polluted river threaten the health of riparian residents? [J]. Science of the Total Environment,2010, 408(20):4524-4531.
    [142]Richards S. R., Rudd J. W. M., Kelley C. A. Organic volatile sulfur in lakes ranging in sulfate and dissolved salt concentration over five orders of magnitude [J]. Limnology and Oceanography,1994,39(3):562-572.
    [143]Sharma S., Barrie L. A., Plummer D., et al. Flux estimation of oceanic dimethyl sulfide around North America [J]. Journal of Geophysical Research,1999,104(D17):21327-21342.
    [144]Centeno J. A., Tomillo F. J., Fernandez-Garcia E., et al. Effect of wild strains of lactococcus lactis on the volatile profile and the sensory characteristics of ewes'raw milk cheese [J]. Journal of Dairy Science,2002,85(12):3164-3172.
    [145]杜广玉,刘景泰,刘扬.吹扫捕集-GC/MS-SIM法测定海水中挥发性有机污染物[J].环境监测管理与技术,2000,12(4):31-32.
    [146]Pollard P. C. Bacterial activity in plant (Schoenoplectus validus) biofilms of constructed wetlands [J]. Water Research,2010,444(20):5939-5948.
    [147]Macek T., Mackova M., Kas J. Exploitation of plants for the removal of organics in environmental remediation [J]. Biotechnology Advances,2000,18(1):23-24.
    [148]Chaudhry Q., Blom-Zandstra M., Gupta S., et al. Utilising the synergy between plants and rhizosphere microorganisms to enhance breakdown of organic pollutants in the environment [J]. Environmental Science and Pollution Research,2005,12(1):34-48.
    [149]Lin Y. F., Jing S. R., Lee D. Y. The potential use of constructed wetlands in a recirculating aquaculture system for shrimp culture [J]. Environmental Pollution,2003,123(1):107-113.
    [150]Hadad H. R., Maine M. A., Bonetto C. A. Macrophyte growth in a pilot-scale constructed wetland for industrial wastewater treatment [J]. Chemosphere,2006,63(10):1744-1753.
    [151]Calheiros C. S. C., Range A. O. S. S., Castro P. M. L. Constructed wetland systems vegetated with different plants applied to the treatment of tannery wastewater [J]. Water Research, 2007,41(8):1790-1798.
    [152]Glick B. R., Karaturovic D. M., Newell P. C. A novel procedure for rapid isolation of plant growth promoting pseudomonads [J]. Canadian Journal of Microbiology,1995,41(6):533-536.
    [153]Darby A. C., Birkle L. M., Turner S. L, Douglas A. E. An aphid-borne bacterium allied to the secondary symbionts of whitefly [J]. FEMS Microbiology Ecology,2001,36(1):43-50.
    [154]王海燕,周岳溪,戴欣,等.16s rDNA克隆文库方法分析MDAT-IAT同步脱氮除磷系统细菌多样性研究[J].环境科学学报,2006,26(6):903-911.
    [155]马鸣超,姜昕,李俊,等.应用16S rDNA克隆文库解析人工快速渗滤系统细菌种群多样性[J].微生物学通报,2008,35(5):731-736.
    [156]徐成斌,孟雪莲,马溪平,等16S rDNA克隆文库方法对制药废水处理系统中微生物多样性的研究[J].生态环境学报,2009,18(4):1236-1240.
    [157]李建婷,纪树兰,刘志培,等16S rDNA克隆文库方法分析好氧颗粒污泥细菌组成[J].环境科学研究,2009,22(10):1218-1223.
    [158]窦娜莎,王琳.16S rDNA克隆文库法分析Biostyrl曝气生物滤池处理城市水的细菌多样性研究[J].环境科学学报,31(10):2117-2124.
    [159]陶芳.白腐真菌组合工艺系统处理实际染料废水过程中微生物群落结构动态变化分析研究[D].华东师范大学硕士学位论文.
    [160]董慧峪,强志民,李庭刚,等.污染河流原位生物修复技术进展[J].环境科学学报,2010,30(8):1577-1582.
    [161]Zhu L. D., Li Z. H., Ketola T. Biomass accumulations and nutrient uptake of plants cultivated on artificial floating beds in China's rural area [J]. Ecological Engineering,2011,37(10): 1460-1466.
    [162]李海英,杨海华,柯凡,等.微曝气生态浮床的净化效果与生物膜特性研究[J].中国给水排水,2009,25(7):35-40.
    [163]杨婷婷,操家顺,周勇,等.原位围隔耐寒高羊茅浮床对苏州重污染河道水体的净化[J].湖泊科学,2007,19(5):618-621.
    [164]吴芝瑛,陈鋆.小流域水污染治理示范工程—杭州长桥溪的生态修复[J].湖泊科学,2008,20(1):33-38.
    [165]李先宁,宋海亮,朱光灿,等.组合型生态浮床的动态水质净化特性[J].环境科学,2007,28(11):2448-2452.
    [166]谌伟,李小平,孙从军,等.低强度曝气技术修复河道黑臭水体的可行性研究[J].中国给水排水,2009,25(1):57-59.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700