用户名: 密码: 验证码:
膨胀石墨基复合材料的制备、改性及其对水中特定污染物去除的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
当前,重金属和印染废水污染的日益严重,对重金属和印染废水污染的控制与治理引起了人们广泛的关注。对重金属和印染废水污染的治理方法中,活性炭吸附法具有较好的去除效率,且活性炭的回收与再生拥有成熟的经验。在实际应用中,粉状或粒状活性炭材料的损耗高且重复利用效率不高等缺点,限制着其应用。作为一种新型功能性碳素材料,膨胀石墨(EG)具有疏松、多孔、比表面积大、活性高等特点。EG不仅对各种非极性的有机分子,如油类等具有着良好的吸附性能;在一定条件下,亦对极性分子有一定的吸附效果。为了拓宽EG的应用,如高效率去除极性的有机或无机物质,科学家对EG进行了改性,获得具备特定性能的新型膨胀石墨基复合材料。在前人研究基础上,本文提出利用松散态EG作为基体材料,通过浸渍、炭化、活化等一系列工艺,对其进行复合改性研究,制备几种新型膨胀石墨基复合材料(EG/AC),并将EG/AC作为水中特定污染物高效的吸附剂、净化剂。
     本文的研究内容主要包括:松散态EG的微波制备与表征;EG/AC的优化制备与表征;非均相催化剂复合材料——Co3O4/EG/AC的制备与表征;通过EG和EG/AC-1对Cr(Ⅵ)的吸附实验,研究材料吸附重金属离子的特性与机理;考察EG和EG/AC-2对阳离子染料(亚甲基蓝,MB)模拟废水的脱色能力,研究材料吸附阳离子染料的特性和机理;基于硫酸根自由基的高级氧化技术(AOPs)中,对Co304/EG/AC催化PMS氧化剂降解偶氮染料(酸性橙7,A07)进行了研究。本文得到的主要研究结果如下:
     (1)以商用可膨胀石墨作为原材料,运用微波辐射加热法(MW),快速地制备出松散态EG材料。利用SEM、EDX、XRD和FT-IR等测试手段测试说明,EG的外观如蠕虫状,许多的石墨鳞片互相粘连、叠合而构成EG的内部片层结构,片层间又有着许多蜂窝状的微细孔隙。且EG的孔形多为多边形或狭缝形及与之相对应的楔孔,孔径大小不均,以大孔和中孔为主。微波法制备的EG和常规高温加热法制备的EG外观形貌没有差别。
     (2)以松散态EG为基体材料,以新材料的产率及对特定污染物的去除率作响应值,采用中心组合设计(CCD)一响应曲面法(RSM)对新材料的制备工艺进行优化研究,建立模型,确定最优的制备新型膨胀石墨基复合材料(EG/AC-1、EG/AC-2)的工艺条件,可为材料的制备应用提供一定的参考依据。①运用CCD-RSM建立的EG/AC-1制备模型,得到最优制备工艺参数为:Xp(磷酸与蔗糖溶液的质量比)0.93、浸渍液(磷酸与蔗糖溶液)浓度40.53%、炭化温度413.8℃;最优工艺条件下,经过3次实验,建立的模型预测EG/AC-1的产率和对Cr(Ⅵ)的去除率分别为35.74%和83.66%,而实验结果材料的产率及对Cr(Ⅵ)的去除率分别为34.93%和83.07%;②运用RSM建立的EG/AC-2制备模型,最优工艺参数为:浸渍液(蔗糖溶液)浓度22.63%、化学浸渍比(涂覆有蔗糖的EG固化材料与ZnCl2的质量比)282.62%、炭化温度639.53℃,模型预测EG/AC-2的产率和对MB染料的去除率分别为40%和99.98%,而实验结果,材料产率和对MB染料的去除率的均值为37.5%和99.43%。EG/AC-1和EG/AC-2的实际制备产率及对特定污染物的去除率,与模型的预测值误差均在10%以内,说明该模型可以较好地预测EG/AC的实际产率和对特定污染物的去除率。
     (3)EG经复合改性后,EG/AC-1对Cr(Ⅵ)的吸附量显著提高,远大于EG(2.5652mg·g-1),达到75.7576mg·g-1,是一种高效的Cr(Ⅵ)吸附剂、净化剂。EG/AC-1对Cr(Ⅵ)的吸附量随着pH值的升高而降低,pH2.0时达到最大;EG则随pH值的升高而先增后降,pH3.0时其吸附量达到最大。利用5种吸附动力学模型分析表明EG和EG/AC-1吸附Cr(Ⅵ)的过程用符合伪二级动力学模型。EG和EG/AC-1对Cr(Ⅵ)的等温吸附过程,Langmuir模型呈现出最好的拟合度。通过热力学计算可知,EG对Cr(Ⅵ)的吸附过程是非自发进行的放热反应,而EG/AC-1吸附Cr(Ⅵ)的过程为自发进行的吸热反应。
     (4)研究了EG和EG/AC-2吸附阳离子染料(亚甲基蓝,MB)的特性及机理。结果发现,EG/AC-2是高效的MB染料吸附剂,其最大吸附量达到367.65mg·g-’,优于EG的吸附效果(67.8887mg·g-1)。EG和EG/AC-2对MB染料的吸附量与染料浓度、溶液pH值有关,且各因素间相互影响。多种动力学模型拟合研究表明,EG和EG/AC-2吸附MB染料的过程符合伪二级动力学模型。EG和EG/AC-2对MB染料的等温吸附过程,Langmuir模型的拟合度(R2>0.99)最好。经吸附热力学分析可知,EG和EG/AC-2对MB染料的吸附均是自发进行的吸热反应,且主要为物理吸附过程。
     (5)以制备的EG/AC作为纳米Co3O4的载体,应用溶剂热还原法,制得非均相催化剂复合材料——Co3O4/EG/AC。用Co3O4/EG/AC催化PMS对A07进行降解研究,结果表明:当PMS的用量均为2mM,Co3O4/EG/AC的投加量均为0.05g·L-’,在染料溶液的pH值调至中性时,常温下,Co3O4/EG/AC-PMS系统完全降解A07染料所需的时间为10min左右。同时,随着PMS投加量的增大,溶液的COD去除率均随之增加。并且,催化剂经过3次循环使用后,制得的Co3O4/EG/AC仍能保持较高的催化性能,说明Co3O4/EG/AC具有很好的稳定性。Co3O4/EG/AC-1催化PMS降解A07染料的速率较Co3O4/EG/AC-2(?)。
Nowadays, the face of increasing scarcity of fossil energy and the environment caused by pollution has become the two major crises of the current threat to human survival and sustainable social development. To develop environmentally friendly-, renewable-new energy and to seek development on the positive application of new processes and new materials has attracted so much attention as a promising solution for sustainable development. Carbon is one of the most abundant chemical elements in the universe. The element carbon is capable of forming long chains of carbon-carbon bonds which are strong and stable in nature. This property is known as catenation. Due to this property, compounds of carbon are found in infinite numbers. It is a fact that the numbers of compounds of carbon are much higher than the compounds of any other element, except hydrogen. Thus, expanded graphite (EG) is an excellent inorganic carbon material, which has many advantages such as low density, non-toxicity, non-pollution and easy disposal. Recently, EG was reported to exhibit excellent adsorption for spilled oil floating on water and gas adsorbent due to the worm-like pore structure, weak polarity, hydrophobic and lipophilic nature. So, from the late1980s, much research work of EG has been done as a new type of eco-friendly absorbent. Meanwhile, many scientists focus on the preparation of eco-friendly expanded graphite-based composite materials from modification or composite modification, and then their environmental applications. Based on the report of EG with good adsorption properties of the non-polar organic molecules (such as oils, etc.) and certain adsorption characteristics of the polar molecules under certain conditions, in this paper, new EG-based composite adsorbents was prepared from composite modified loose stated EG and their use in treatment of specified pollutants from aqueous solution.
     The present study dealt with the preparation of loose stated EG as matrix materials from the expandable graphite by microwave irradiation. Preparation conditions of EG/AC (EG/AC-1and EG/AC-2) were optimized using response surface methodology (RSM). Two quadratic models were developed for yield of EG/AC and adsorption of specified pollutants using Design-Expert software. Then, Co3O4/EG/AC (Co3O4/EG/AC-1and Co3O4/EG/AC-2) were fabricated in situ as heterogeneous catalysts by the decomposition of cobalt nitrate through heat and crystal growth of Co3O4on the surface of EG/AC in1-hexanol solvent. The characteristics of the as-prepared materials were analyzed. Adsorption capacities and mechanism of Cr(Ⅵ) by EG and EG/AC-1were investigated. Adsorption capacities and mechanism of dye MB by EG and EG/AC-2was investigated, too. The as-prepared Co3O4/EG/AC were used to activate peroxymonosulfate (PMS) for azo dye AO7removal from aqueous solution using advanced oxidation processes (AOPs) based on sulfate radicals. The main research results are as follows:
     (1) EG was prepared in our laboratory by microwave irradiation treatment of the expandable graphite in an EM-3011EB1microwave oven (Sanyo Inc., China). The characteristics of the as-prepared graphite materials were analyzed by SEM-EDX, FT-IR and XRD. The results show that microwave irradiation gives EG with the properties comparable with that prepared by rapid heating.
     (2) RSM was successfully applied to investigate the effects of preparation conditions, on the adsorption capacity of specified pollutants and yield of the developed EG/AC. The models were used to calculate the optimum operating conditions of preparation of adsorbent providing a compromise between yield and adsorption of the process.①After optimization studies, to preparation of EG/AC-1, the best production methodology involved a0.93of Xp, a40.53%of impregnation concentration and a heating rate of10℃·min-1to413.8℃of activation temperature, which resulted in83.66%of Cr(Ⅵ) removal and35.74%of EG/AC-1yield.②Thus, to preparation of EG/AC-2after optimization studies, the best production methodology involved a22.63%of impregnation concentration, a282.62%of chemical ratio and a heating rate of10℃·min-1to639.53℃of activation temperature, which resulted in99.40%of MB removal and36.11%of novel adsorbent yield. Based on the present work, the prepared EG/AC prove to be economical and cost effective adsorbents to remove specified pollutants from aqueous solution.
     (3) The adsorption of Cr(Ⅵ) from aqueous solution onto EG and EG/AC-1were investigated in the respective of initial pH value, adsorbent dosage, concentration of initial metal ions and contact time, etc. EG and EG/AC-1adsorbed with Cr(Ⅵ) were characterized by SEM, EDX and FT-1R analysis. The results indicated that EG/AC-1was an effective adsorbent for Cr(Ⅵ). The maximum adsorption amount of Cr(Ⅵ) reach to75.7576mg-g-1. The adsorption capacity of Cr(Ⅵ) onto EG/AC-1was higher than EG at the same pH value. Adsorption of Cr(Ⅵ) is highly pH dependent and the maximum uptake of Cr(Ⅵ) by EG/AC-1was obtained at pH2. Thus, the maximum uptake of Cr(Ⅵ) by EG was obtained at pH3. The adsorption isotherm was determined and fit to three models. But the adsorption of Cr(Ⅵ) by EG and EG/AC-1fit the Langmuir equilibrium isotherm best. The kinetic of the Cr(Ⅵ) ions adsorption onto EG and EG/AC-1were also found to follow pseudo-second-order model. The thermodynamic studies showed that the Cr(Ⅵ) ions adsorption onto EG/AC-1is a spontaneous, endothermic and physical reaction. Thus, the Cr(Ⅵ) ions adsorption onto EG is a non-spontaneous, exothermic reaction.
     (4) This study investigated the potential use of the as-prepared EG and EG/AC-2as effective adsorbent for the removal of cationic dyes, namely methylene blue (MB), from aqueous solution. The effect of dye concentration, contact time, temperature, adsorbent dosage and pH were experimentally studied to evaluate the adsorption capacity, kinetics and isotherm. Results showed that both EG and EG/AC-2could be employed to remove cationic dyes from aqueous solutions. The adsorbed amount of cationic dye on EG and EG/AC-2increased sharply with an increase of adsorbent dose up to2.0g·L-1and1.0g·L-1, respectively. The initial pH value in the range of10-12does not have any noticeable effect on dye removal by both EG and EG/AC-2. The kinetics of the cationic dye adsorption on the EG and EG/AC-2obey the pseudo-second-order model. Adsorptions of MB on the two adsorbents follow the Langmuir equilibrium isotherm perfectly.-The thermodynamic studies showed that the dye adsorption onto the two adsorbents were all a spontaneous, endothermic and physical reaction.
     (5) Co3O4/EG/AC (Co3O4/EG/AC-1and Co3O4/EG/AC-2) were synthesized in situ as heterogeneous catalysts by the decomposition of cobalt nitrate through heat and crystal growth of Co3O4on the surface of EG/AC in1-hexanol solvent. The Co3O4/EG/AC catalysts were characterized by SEM, XRD and FT-IR. Results show that Co3O4/EG/AC catalysts are large EG/AC decorated homogenously with dispersed Co3O4nanoparticles. The Co3O4/EG/AC catalysts exhibits an unexpectedly high catalytic activity in the degradation of AO7in aqueous solutions by AOPs based on sulfate radicals, and almost100%decomposition can be achieved in10min with0.2mM Orange Ⅱ,0.05g·L-1catalysts dosage, and2mM PMS dose at room temperature. Though, the degradation rate of AO7in Co3O4/EG/AC-1-PMS system is a little faster than Co3O4/EG/AC-2-PMS system. Meanwhile, in both the two systems the leach of cobalt ions was low. The catalysts exhibited stable performance after three rounds of regeneration.
引文
[1]岳学庆.新型膨胀石墨基功能材料的制备及结构与性能研究[D].燕山大学博士论文,2011.
    [2]方舟.新型改性膨胀石墨的制备及其催化性能的研究[D].南京林业大学硕士论文,2010.
    [3]陈小伟.低污染可膨胀石墨的制备及稳定性研究[D].青岛大学硕士论文,2009.
    [4]A. Celzard, J.F. Mareche, G. Furdin, Modelling of exfoliated graphite, Progress in Materials Science 50(2005) 93-179.
    [5]S. Biloe, S. Mauran, Gas flow through highly porous graphite matrices, Carbon 41(2003) 525-537.
    [6]A. Celzard, S. Schneider, J.F. Mareche, Densification of expanded graphite, Carbon 40(2002) 2185-2191.
    [7]岳俊杰,金朝晖,金星龙,石书玲,刘天明,膨胀石墨在废水处理中的应用研究进展[J],化工环保30(2010)219-221.
    [8]M. Toyoda, M. Inagaki, Heavy oil sorption using exfoliated graphite:New application of exfoliated graphite to protect heavy oil pollution, Carbon 38(2000) 199-210.
    [9]M. Toyoda, H. Umemura, M. Inagaki, Sorption and decomposition of heavy oil on exfoliated graphite loaded with TiO2, New Carbon Materials 17(2002) 1-3.
    [10]郝杨,滕厚开,顾锡慧,李立峰,膨胀石墨在低浓度含油废水处理中的应用[J],工业水处理30(2)(2010)89-92.
    [11]连锦明,陈前火,甘晖,陈古镛,膨胀石墨对甲醛废气吸附行为的研究[J],吉林化工学院学报22(2005)1-3.
    [12]卓仪若,邱滔,吕新宇,李彦,许波,膨胀石墨吸附环己胺废气的研究[J],安徽农业科学36(2008)304,343.
    [13]W. Li, C. Han, W. Liu, M.H. Zhang, K.Y. Tao, Expanded graphite applied in the process as a catalyst support, Catalysis Today 125(2007) 278-281.
    [14]许丽娟.膨胀石墨对环境污染物的吸附及竞争吸附性能[D].河北大学硕士论文,2011.
    [15]王楠.膨胀石墨对污染物的去除性能研究[D].哈尔滨工业大学硕士论文,2006.
    [16]许霞.膨胀石墨对油类的吸附及其再生性能的研究[D].哈尔滨工业大学硕士论文,2006.
    [17]初荣,任守政,李华民,利用膨胀石墨处理焦化废水的研究[J],煤炭加工与综合利用1999(5)19-20.
    [18]杨健松,李玉峰,赖奇,膨胀石墨的研究与开发利用[J],攀枝花学院学报23(6)(2006)99-102.
    [19]李玉峰.细鳞片石墨膨胀机理的研究[D].西南石油大学硕士论文,2006.
    [20]徐世江.核石墨的发展[J].新型碳材料3-4(1991)115-121.
    [21]段惠彬.对我国石墨资源开发与利用的探讨[J].中国矿业10(6)(2001)22-24.
    [22]张洪国.无硫无灰分可膨胀石墨的研究[D].青岛大学硕士论文,2007.
    [23]蒋丽娜.低温可膨胀石墨的制备研究[D].河北农业大学硕士论文,2008.
    [24]苏亚娟.多功能可膨胀石墨制备方法的实验研究[D].河北大学硕士论文,2011.
    [25]刘振宇,郑经堂,王茂章,张碧江.多孔碳的纳米结构及其解析[J].化学进展13(1)(2001)10-18.
    [26]金韶华,松全才.炸药理论[M].陕西:西北工业大学出版社,2010.
    [27]刘国钦,闫珉.利用细鳞片石墨制备膨胀石墨的研究[J].新型炭材料17(2)(2002)13-18.
    [28]C. Schafhaeutl, On the combinations of carbon with silicon and iron, and other metals, forming the different Speeies of Cast Iron, steel, and malleable iron, Philosophical Magazine 16(1840)570-590.
    [29]刘开平,周敬恩,膨胀石墨化学氧化法制备技术研究进展[J],地球科学与环境学报25(4)(2003)85-91.
    [30]王厚山,膨胀石墨的化学氧化法制备研究进展[J],中国非金属矿工业导刊 4(2008)18-20.
    [31]赵琪.碳/聚四氟乙烯复合导电材料的制备及性能研究[D].黑龙江大学硕士论文,2009.
    [32]张艳.石墨插层化合物的可控合成及表征[D].太原理工大学博士论文,2009.
    [33]朱继平,陈祖耀,韩德宏.KMnO4-H2O2联合氧化法制备可膨胀石墨[J].合肥工业大学学报(自然科学版)21(1)(1998)131-134.
    [34]宋克敏,刘金鹏,靳通收,李国山.制备无硫可膨胀石墨的研究[J].无机材料学报12(2)(1997)252-256.
    [35]D.D.L. Chung, Exfoliation of graphite, Journal of Materials Science 22(12)(1987) 4190-4198.
    [36]O.Y. Kwon, S.W. Choi, K.W. Park, Y.B. Kwon, The Preparation of Exfoliated Graphite by Using Microwave, Journal of Industrial and Engineering Chemistry 9(2003) 743-747
    [37]B. Tryba, A.W. Morawski, M. Inagaki, Preparation of Exfoliated Graphite by Microwave Irradiation. Carbon 43(2005) 2417-2419.
    [38]T. Wei, Z.J. Fan, G.L. Luo, C. Zheng, D.S. Xie, A rapid and efficient method to prepare exfoliated graphite by microwave irradiation, Carbon 47(2008) 313-347.
    [39]时虎,石墨的开发及其应用[J],华工科技市场12(2001)24-27.
    [40]孙力学,陈志刚,赵晓兵,陈杨,付猛,刘强.改性膨胀石墨对甲醛的吸附性能研究[J].炭素4(2007)36-39.
    [41]李忠水,罗志敏,连锦明,陈建新,苏亚明.膨胀石墨对苯酚的吸附研究[J].福建师范大学学报(自然科学版)25(2009)67-71.
    [42]W. C. Shen, N. Z. Cao, et al. The porous structure and surface chemical state of expanded graphite:Proc. of the European Carbon Conference, Newcastle, The Royal Society of Chemistry, 1996,348-349.
    [43]C. Vix-Guterl, S. Shah, J. Dentzer, P. Ehrburger, L.M. Manocha, M. Patel, S. Manocha, Carbon/carbon composites with heat-treated pitches II. Development of porosity in composites, Carbon 39(2001) 673-683.
    [44]周强,曹乃珍,刘英杰,温诗铸.膨化石墨吸附特性的研究及利用[J].新型炭材料11(1996)42-45.
    [45]M. Toyoda, K. Moriya, J.I. Aizawa, H. Konno, M. Inagaki, Sorption and recovery of heavy oils by using exfoliated graphite, Part Ⅰ:Maximum sorption capacity, Desalination 128(2000) 205-211.
    [46]M. Inagaki, H. Konno, M. Toyoda, K. Moriya, T. Kihara, Sorption and recovery of heavy oils by using exfoliated graphite Part Ⅱ:Recovery of heavy oil and recycling of exfoliated graphite, Desalination 128(2000) 213-218.
    [47]M. Inagaki, K. Shibata, S. Setou, M. Toyoda, J. Aizawad, Sorption and recovery of heavy oils by using exfoliated graphite Part Ⅲ:Trials for practical applications, Desalination 128(2000) 219-222.
    [48]M. Toyoda, Y. Nishi, N. Iwashita, M. Inagaki, Sorption and recovery of heavy oils using exfoliated graphite Part IV:Discussion of high oil sorption of exfoliated graphite, Desalination 151(2002) 139-244.
    [49]M. Inagaki, M. Toyoda, N. Iwashita, Y. Nishi, H. Konno, A. Fujita, T. Kihara, Sorption, recovery and recycle of spilled heavy oils by using carbon materials [in Japanese], Tanso 201(2002) 16-25.
    [50]J.T. Li, M. Li, J.H. Li, H.W. Sun, Removal of disperse blue 2BLN from aqueous solution by combination of ultrasound and exfoliated graphite, Ultrasonics Sonochemistry 14(l)(2007) 62-66.
    [51]李冀辉,米彩丽,李晶,贾志欣,刘淑芬,徐洋,纳米TiO2嵌入膨胀石墨处理甲基橙染料污水的研究[J].非金属矿31(2)(2008)21-26.
    [52]刘淑芬,李冀辉,杨丽娜,膨胀石墨对活性染料水溶液的吸附脱色作用[J].北师范大学学报(自然科学版)33(6)(2009)779-782.
    [53]W.C. Shen, S.Z. Wen, N.Z. Cao, L. Zheng, W. Zhou, Y.J. Liu, J.L. Gu, Expanded graphite:A new kind of biomedical material, Carbon 37(1999) 356-358.
    [54]吕建中,于爱香,史绯绯,王肖蓉,中焕霞,沈万慈,曹乃珍,吕洛,宫耀宇.膨胀石墨用于烧伤创面的研究[J].中华烧伤杂志18(2)(2002)119.
    [55]赵家伸.一种以多孔石墨为基德创面外用新药兼敷料及其制备方法.中国专利,01115700,2002-12-11.
    [56]董志建.新型医用敷料.中国专利,96227777,1998-05-06.
    [57]M. Seredych, A.V. Tamashausky, T.J. Bandosz, Surface features of exfoliated graphite/bentonite composites and their importance for ammonia adsorption, Carbon 46(2008)1241-1252.
    [58]A. Bhattacharya, A. Hazra, S. Chatterjee, P. Sen, S. Laha, I. Basumallick, Expanded graphite as an electrode material for an alcohol fuel cell, Journal of Power Sources 136(2)(2004) 208-210.
    [59]S.R. Dhakate, S. Sharma, M. Borah, R.B. Mathur, T.L. Dhami, Expanded graphite-based electrically conductive composites as bipolar plate for PEM fuel cell, International Journal of Hydrogen Energy 33(23)(2008) 7146-7152.
    [60]B. Saner, F. Okyay, Y. Yurum, Utilization of multiple graphene layers in fuel cells.1. An improved technique for the exfoliation of graphene-based nanosheets from graphite, Fuel 89(8)(2010)1903-1910.
    [61]P. Zhang, Y. Hu, L. Song, J.X. Ni, W.Y. Xing, J. Wang, Effect of expanded graphite on properties of high-density polyethylene/paraffin composite with intumescent flame retardant as a shape-stabilized phase change material, Solar Energy Materials & Solar Cells 94(2)(2010) 360-365.
    [62]C. Xiang, L.C. Li, S.Y. Jin, B.Q. Zhang, U.S. Qian, G.X. Tong, Expanded graphite/polyaniline electrical conducting composites:Synthesis, conductive and dielectric properties, Materials Letters 64(11)(2010) 1313-1315.
    [63]李雁涛.聚苯乙烯/膨化石墨纳米层状复合材料的高能电子束辐射制备及其性能研究[D].中国海洋大学硕士论文,2007.
    [64]O.N. Shomikova, N.E. Somkina, V.V. Avdeev, The effect of graphite nature on the properties of exfoliated graphite doped with nickel oxide, Journal of Physics and Chemistry of Solids 69(5-6)(2008) 1168-1170.
    [65JX.Q. Yue, R.J. Zhang, W.Y. Wang, L.Q. Wang, Y.L. Yang, Effect of TiO2 doping technique on decomposition of crude oil absorbed into expanded graphite, Materials Letters 62(12-13)(2008) 1919-1922.
    [66]S.H. Liu, Z. Ying, Z.M. Wang, F. Li, S. Bai, L. Wen, H.M. Cheng, Improving the electrochemical properties of natural graphite spheres by coating with a pyrolytic carbon shell, New Carbon Materials 23(1)(2008) 30-36.
    [67]N. Daneshvar, S. Aber, M.S.S. Dorraji, A.R. Khataee, M.H. Rasoulifard, Photocatalytic degradation of the insecticide diazinon in the presence of prepared nanocrystalline ZnO powders under irradiation of UV-C light, Separation and purification technology 58(1)(2007) 91-98.
    [68]关华,潘功配,姜力.膨胀石墨对3mm、8mm波衰减性能研究[J].红外与毫米波学报23(2004)72-76.
    [69]刘兰香,黄玉安,黄润生,唐涛,徐铮,葛欣,沈俭一,纳米镍-铁合金/膨胀石墨复合材料的制备、表征及其电磁屏蔽性能[J].无机化学学报23(9)(2007)1667-1670.
    [70]邢晓玲,黄玉安,黄润生,唐涛,徐铮,沈俭一.纳米金属钴/膨胀石墨复合材料的制备、表征及其电磁屏蔽性能[J].南京大学学报(自然科学版)45(5)(2009)570-574..
    [71]K. Konstantinou, T.A. Albanis, TiO2-assisted photocatalytic degradation of azo dyes in aqueous solution:kinetic and mechanistic investigation, Applied Catalysis B:Environmental 49(2004) 1-14.
    [72]A. Mills, S.L. Hunte, An overview of semiconductor photocatalysis, Journal of Photochemistry and Photobiology A:Chemistry 108(1997) 1-35.
    [73]M. Nikazar, K. Gholivand, K. Mahanpoor, Photocatalytic degradation of azo dye Acid Red 114 in water with TiO2 supported on clinoptilolite as a catalyst, Desalination 219(2008) 293-300.
    [74]G.A. Parks, The isoelectric points of solid oxides, solid hydroxides, and aqueous hydroxides complex systems, Chemical Reviews 65(1965) 177-198.
    [75]S. Sakthivel, B. Neppolian, M.V. Shankar, B. Arabindoo, M. Palanichamy, V. Murugesan, Solar photocatalytic degradation of azo dye:comparison of photocatalytic efficiency of ZnO and TiO2, Solar Energy Materials & Solar Cells 77(1)(2003) 65-82.
    [76]M. Hamerski, J. Grzechulska, A.W. Morawski, Photocatalytic purification of soil contaminated with oil using modified TiO2 powders, Solar Energy 66(1999) 395-399.
    [77]R.L. Ziolli, W.F. Jardim, Photocatalytic decomposition of seawater-soluble crude-oil fractions using high surface area colloid nanoparticles of TiO2, Journal of Photochemistry and Photobiology A:Chemistry 147(2002) 205-212.
    [78]赵文宽,方佑龄.光催化降解水面石油污染的研究[J].宁夏大学学报22(2)(2001)221-222.
    [79]赵文宽,谭榆森.水面石油污染物的光催化降解[J].催化学报20(3)(1999)368-370.
    [80]杨阳,陈爱平,古宏晨.以膨胀珍珠岩为载体的飘浮型TiO2光催化剂降解水面浮油[J].催化学报22(2)(2001)177-179.
    [81]J.H. Li, C.L. Mi, J. Li, Y. Xu, Z.X. Jia, M. Li, The removal of MO molecules from aqueous solution by the combination of ultrasound/adsorption/photocatalysis, Ultrasonics Sonochemistry 15(2008)949-954.
    [82]O.N. Shomikova, N.E. Somkina, V.V. Avdeev, The effect of graphite nature on the properties of exfoliated graphite doped with nickel oxide, Journal of Physics and Chemistry of Solids 69(5-6)(2008) 1168-1170.
    [83]张静,张生炎,肖筱瑜.膨胀石墨-金属纳米复合材料的制备及表面研究[J].矿产与地质17(6)(2003)713-715.
    [84]X. Chen, Y.P. Zheng, F. Kang, W.C. Shen, Preparation and structure analysis of carbon/carbon composite made from phenolic resin impregnation into exfoliated graphite, Journal of Physics and Chemistry of Solids 67(2006) 1141-1144.
    [85]X. Py, R. Olives, S. Mauran, Parafin/porous-graphite-matrix composite as a high and constant power thermal storage material, International Journal of Heat and Mass Transfer 44(2001) 2727-2737.
    [86]M. Xiao, B. Feng, K. Gong, Preparation and performance of shape stabilized phase change thermal storage materials with high thermal conductivity, Energy Conversion and Management 43(2002) 103-108.
    [87]M. Xiao, B. Feng, K. Gong, Thermal performance of a high conductive shape-stabilized thermal storage material, Solar Energy Materials & Solar Cells 69(2001) 293-296.
    [88]A. Mendez, R. Santamaria, M. Granda, R. Menendez, Preparation and characterisation of pitch-based granular composites to be used in tribological applications, Wear 258(2005) 1706-1716.
    [89]X.L. Zhang, L. Shen, X. Xia, H.T. Wang, Q.G. Du, Study on the interface of phenolic resin/expanded graphite composites prepared via in situ polymerization, Materials Chemistry and Physics 111(2008) 368-374.
    [90]D.J. Li, Y.X. Wang, L. Xu, J. Lu, Q. Wu, Surface modification of a natural graphite/phenol formaldehyde composite plate with expanded graphite, Journal of Power Sources 183(2008) 571-575.
    [91]G.H. Chen, D.J. Wu, W.G. Weng, Preparation of polymer/graphite conducting nano composite by Intercalation polymerization, Journal of Applied Polymer Science 82(2008) 250-253.
    [92]D. Sophie, L.B. Michel, B. Serge, D. Rene, C. Giovanni, E. Berend, L. Chris, R. Toon, Thermal degradation of polyurethane and polyurethane/expandable graphite coatings, Polymer Degradation and Stability 74(2001) 493-499.
    [93]B. Debelak, K. Lafdi, Use of exfoliated graphite filler to enhance polymer physical properties, Carbon 45(2007) 1727-1734.
    [94]左胜武,左敏,沈经纬.聚乙烯/膨胀石墨复合材料的结构和导电行为[J].塑料工业32(8)(2004)41-44.
    [95]W. Zheng, S.C. Wong, H.J. Sue, Transport behavior of PMMA/expanded graphite nanocomposites, Polymer 73(2002) 6767-6773.
    [96]G. Cheng, W. Weng, D. Wu, C. Wu, PMMA/graphite nanosheets composite and its conducting properties, European Polymer Journal 39(2003) 2329-2335.
    [97]J. Li, J. Kim, M. Sham, Conductive graphite nanoplatalet/epoxy nanocomposites:effects of exfoliation and UV/ozone treatment of graphite, Scripta Materialia 53(2005) 235-240.
    [98]G. Zheng, J. Wu, W. Wang, C. Pan, Characterizations of expanded graphite/polymer composites prepared by in situ polymerization, Carbon 42(2004) 2839-2847.
    [99]W. Wang, C.Y. Pan, J.S. Wu, Elecrical properties of expanded graphite/poly (styrene-co-acrilonitrile) composites, Journal of Physics and Chemistry of Solids 66(2005) 1695-1700.
    [100]X.S. Du, M. Xiao, Y.Z. Meng, Facile synthesis of highly conductive polyaniline/graphite nanocomposites, European Polymer Journal 40(2004) 1489-1493.
    [101]W. Zheng, S.C. Wong, Electrical conductivity and dielectric properties of PMMA/expanded graphite composites, Composites Science and Technology 63(2003) 225-235.
    [102]P. Xiao, M. Xiao, K. Gong, Preparation of exfoliated graphite/polysterene composite by polymerization filling technique, Polymer 42(2001) 4813-4816.
    [103]H. Yang, M. Tian, Improved mechanical and functional properties of elastomer/graphite nanocomposites prepared by latex compounding, Acta Materialia 55(2007) 6372-6382.
    [104]赵建国,郭全贵,刘朗,聚乙二醇/膨胀石墨相变储能复合材料[J].现代化工28(9)(2008)46-47.
    [105]赵建国,郭全贵,刘朗,石蜡/膨胀石墨相变储能复合材料的研制[J].新型炭材料24(2)(2009)1-5.
    [106]S. Kim, L.T. Drzal, High latent heat storage and high thermal conductive phase change materials using exfoliated graphite nanoplatelets, Solar Energy Materials and Solar Cells 93(2009) 136-142.
    [107]R.G. Oliveira, R.Z. Wang, A consolidated calcium chloride-expanded graphite compound for use in sorption refrigeration systems, Carbon 45(2007) 390-396.
    [108]K. Kyriaki, F. Hiroyuki, T. Lawrence, A new compounding method for exfoliated graphite-polypropylene nanocomposites with enhanced flexural properties and lower percolation threshold, Composites Science and Technology 67(2007) 2045-2051.
    [109]K. Wang, J.Y. Wu, R.Z. Wang, L.W. Wang, Effective thermal conductivity of expanded graphite-CaC12 composite adsorbent for chemical adsorption chillers, Energy Conversion and Management 47(2006) 1902-1912.
    [110]陈希,兆恒,郑永平,沈万慈,有机物浸渍/涂敷-固化-碳化法制备膨胀石墨基低密度炭/炭复合材料[J],炭素4(2004)10-14.
    [111]J. Pajak, M. Krzesinska, K. Swiderska, G. Furdin, J. F. Mareche, S. Puricelli, Some properties of resin impregnated compressed expanded graphites, Extended Abstracts 1 st World Carbon Conference on Carbon-Eurocarbon 2000, Berlin,12(2000) 531-532.
    [112]J.F. Mareche, D. Begin, G. Furdin, S. Puricelli, J. Pajak, A. Albiniak, M. Jasienko-Halat, T. Siemieniewska, Monolithic activated carbons from resin impregnated expanded graphite, Carbon 39(5)(2001)771-785.
    [113]陈希.膨胀石墨基多孔炭/炭复合材料的制备及吸附性能[D].清华大学硕士论文,2005.
    [114]S. Biloe, V. Goetz, S. Mauran, Characterization of adsorbent composite blocks for methane storage, Carbon 39(11)(2001) 1653-1662.
    [115]默克专利股份有限公司.用于蓄热或蓄冷的蓄能复合材料的制备方法.中国专利,01119014,2001-11-28.
    [116]P. Xiao, M. Xiao, K.C. Gong, Preparation of exfoliated graphite/polystyrene composite by polymerization-filling technique, Polymer 42(2001) 4813-4816.
    [117]兆恒.膨胀石墨基低密度炭/炭复合材料的制备及性能[D].清华大学硕士论文,2002.
    [118]C.H. Giles, T.H.M. Ewan, S.N. Nakhwa, D. Smith, Studies in Adsorption, Journal of the Chemical Society 10(1960) 3973-3993.
    [119]I. Langmuir, The constitution and fundamental properties of solids and liquids, Journal of the American Chemical Society 38(1916) 2221-2295.
    [120]I. Langmuir, The adsorption of gases on plane surfaces of glass, mica and platinum, Journal of the American Chemical Society 40(1918) 1361-1403.
    [121]Y. Zhai, X. Wei, G. Zeng, D. Zhang, K. Chu, Study of adsorbent derived from sewage sludge for the removal of Cd2+, Ni2+ in aqueous solutions, Separation and Purification Technology, 38(2004) 191-196.
    [122]赵振国.吸附作用应用原理[M].北京:化学工业出版社,2005.
    [123]王诗生.凹凸棒石吸附水溶性染料的性能及机理研究[D].合肥工业大学硕士论文,2005.
    [124]J. Wu, H. Q. Yu, Biosorption of 2,4-dichlorophenol from aqueous solution by Phanerochaete chrysosporium biomass:Isotherms, kinetics and thermodynamics, Journal of Hazardous Materials 137(2006) 498-508.
    [125]张利波.烟杆基活性炭的制备及吸附处理重金属废水的研究[D].云南理工大学博士论文,2007
    [126]Y.S. Ho, J.C.Y. Ng, G. McKay, Kinetics of Pollutant Sorption, Separation and Purification Methods 29(2000) 189-232.
    [127]C.Y. Chen, Y.Y. Zhuang, Adsorption equilibrium and kinetic of dyes on dried activated sludge, Journal of Safety and Environment 3(2003) 46-50.
    [128]Y.S. Ho, G. Mckav, The sorption of lead (Ⅱ) ions on peat, Water Research 33(1999) 578-584.
    [129]C.W. Cheung, J.F. Porter, G. Mckay, Sorption kinetics for the removal of copper and zinc from effluents using bone char, Separation and Purification Technology 19(2000) 55-64.
    [130]W.J. Weber, J.C. Morris, Kinetics of Adsorption on Carbon from Solution, Journal of Sanitary Engineering Division 89(1963) 31-59.
    [131]胡步千.包覆石墨与蔗糖基炭材料的大电流充放电性能研究[D].天津大学硕士论文,2001.
    [132]M.F. Zhao, P. Liu, Adsorption of methylene blue from aqueous solutions by modified expanded graphite powder, Desalination 249(2009) 331-336.
    [133]吴云海,李斌,冯仕训,米娴妙,活性炭对废水中Cr(Ⅵ)、As(Ⅲ)的吸附[J].化工环保30(2)(2010)108-111.
    [134]Y.S. Ho, G. Mckay, The sorption of lead(Ⅱ) ions on peat, Water Research 33(1999) 578-584.
    [135]宋明敏.功能型磁性复合颗粒的制备及其在蛋白质分离中的应用[D].东华大学硕士论文,2010.
    [136]M. Dundar, C. Nuhoglu, Y. Nuhoglu, Biosorption of Cu(Ⅱ) ions onto the litter of natural trembling poplar forest, Journal of Hazardous Materials 151(1)(2008) 86-95.
    [137]N.R. Bishnoi, M. Bajaj, N. Sharma, A. Gupta, Adsorption of Cr(Ⅵ) on activated rice husk carbon and activated alumina, Bioresource Technology 91 (2004) 305-307.
    [138]S. Venkata Mohan, J. Karthikeyan, Removal of lignin and tannin aqueous solution by adsorption onto activated charcoal, Environment Pollution 97(1997) 183-197.
    [139]C.P. Huang, M.H. Wu, The removal chromium(Ⅵ) from dilute aqueous solution by activated carbon, Water Research 11(1977) 673-679.
    [140]M. Arulkumar, K. Thirumalai, P. Sathishkumar, T. Palvannan, Rapid removal of chromium from aqueous solution using novel prawn shell activated carbon, Chemical Engineering Journal 185(2012)178-186.
    [141]S. Chhikara, A. Hooda, L. Rana, R. Dhankhar, Chromium(VI) biosorption by immobilized Aspergillus niger in continuous flow system with special reference to FTIR analysis, Journal of Environmental Biology 31 (5)(2010) 561-566.
    [142]R.P.H. Gasser著,赵璧英等译,金属的化学吸附和催化作用导论,北京,北京大学出版社,1991,115-167。
    [143]A.M.M. Vargas, A.L. Cazetta, M.H. Kunita, T.L. Silva, V.C. Almeida, Adsorption of methylene blue on activated carbon produced from flamboyant pods (Delonix regia):Study of adsorption isotherms and kinetic models, Chemical Engineering Journal 168(2)(2011) 722-730.
    [144]T.A. Khan, I. Ali, V.V. Singh, S. Sharma, Utilization of fly ash as low-cost adsorbent for the removal of methylene blue, malachite green and rhodamine b dyes from textile wastewater, JEPS 3(2009)11-22.
    [145]J. Wu, H.Q. Yu, Biosorption of 2,4-dichlorophenol from aqueous solution by Phanerochaete chrysosporium biomass:Isotherms, kinetics and thermodynamics, Journal of Hazardous Materials 137(2006)498-508.
    [146]M. Koh, T. Nakajima, Adsorption of aromatic compounds on CxN-coated activated carbon, Carbon 38(2000) 1947-1954.
    [147]H.L. Chiang, C.P. Huang, P.C. Chiang. The adsorption of benzene and methylethylketone onto activated carbon:thermodynamic aspects, Chemosphere 46(2002) 143-152.
    [148]S. Y. Qi, K.J. Hay, M.J. Rood, M.P. Cal, Carbon Fiber Adsorption Using Structure-Activity Relationship, Journal of Environmental Engineering 126(2000) 865-868.
    [149]罗刚,张全兴,李爱民,刘福强,邵莉,陈金龙.吸附树脂对山梨酸的吸附作用及其热力学性质[J].应用化学12(2003)1139-1142.
    [150]余颖,庄源益,漆新华.NKY树脂吸附水溶性染料的研究[J].上海环境科学9(2000)421-424.
    [151]余颖,庄源益,谷文新,漆新华.树脂NKY对染料活性艳蓝KN-R的吸附特性[J].离子交换和吸附16(5)(2000)432-440.
    [152]Y. Yu, Y.Y. Zhuang, Z.H. Wang, M.Q. Qiu, Adsorption of water-soluble dyes onto modified resin, Chemosphere 54(2004) 425-430.
    [153]Y. Yu, Y.Y. Zhuang, Z.H. Wang, Adsorption of water-soluble dyes onto functionalized resin, Journal of Colloid and Interface Science 242(2001) 288-293.
    [154]R.J. Hunter. Introduction to modern colloid science, Oxford Science Publications,1999, Oxford University Press, New York.
    [155]C. Namasivayam, R. Jeyakumar, R. T. Yamuna, Dye removal from wastewater by adsorption on waste Fe(III)/Cr(III) hydroxide, Waste Management 14(1994) 643-648.
    [156]M. Kara, H. Yuzer, E. Sabah, M.S. Celik, Adsorption of cobalt from aqueous solutions onto sepiolite, Water Research 37(2003) 224-232.
    [157]王重,史作清.酚醛型吸附树脂吸附VB12的热力学研究[J].功能高分子学报1(2003)1-5.
    [158]宋应华,朱家文,陈葵,武斌.大孔吸附树脂对红霉素的平衡吸附行为及其热力学性质[J].化工学报57(2006)715-718.
    [159]L.H. Ai, C.Y. Zhang, Z.L. Chen, Removal of methylene blue from aqueous solution by a solvothermal-synthesized graphene/magnetite composite, Journal of Hazardous Materials 192(2011) 1515-1524.
    [160]T.H. Liu, YH. Li, Q.J. Du, J.K. Sun, Y.Q. Jiao, G.M. Yang, Z.H. Wang, Y.Z. Xia, W. Zhang, K.L. Wang, H.W. Zhu, D.H. Wu, Adsorption of methylene blue from aqueous solution by graphene, Colloids and Surfaces B:Biointerfaces 90(2012) 197-203.
    [161]R.M. Silverstein, F.X. Webster, D.J. Kiemle, Spectrometric Identification of Organic Compounds,7th Edition, John Wiley & Sons, New York,2005.
    [162]R.H. Myers, D.C. Montgomery, Response Surface Methodology:Process and Product Optimization using Designed Experiments, second ed., John Wiley & Sons, USA,2002.
    [163]Design-Expert(?) Software, Trial Version 7.1.3 User's Guide,2007.
    [164]A.M. Joglekar, A.T. May, Product excellence through design of experiments, Cereal Foods World 32(1987) 857-868.
    [165]K. Ravikumar, S. Ramalingam, S. Krishnan, K. Balu, Application of response surface methodology to optimize the process variables for reactive red and acid brown dye removal using a novel adsorbent, Dyes and Pigments 70(2006) 18-26.
    [166]K. Ravikumar, K.S. Krishnan, S. Ramalingam, K. Balu, Optimization of process variables by the application of response surface methodology for dye removal using a novel adsorbent, Dyes and Pigments 72(2007) 66-74.
    [167]B.H. Hameed, I.A.W. Tan, A.L. Ahmed, Optimization of basic dye removal by oil palmfibre-based activated carbon using response surface methodology, Journal of Hazardous Materials 158(2008) 324-332.
    [168]F. Karacan, U. Ozden, S. Karacan, Optimization of manufacturing conditions for activated carbon from Turkish lignite by chemical activation using response surface methodology, Applied Thermal Engineering 27(2007) 1212-1218.
    [169]A. Bacaoui, A. Yaacoubi, A. Dahbi, C. Bennouna, R.P.T. Luu, F.J. Maldonado-Hodar, J. Rivera-Utrilla, C. Moreno-Castilla, Optimization of conditions for the preparation of activated carbons from olive-waste cakes, Carbon 39(2001) 425-432.
    [170]S.J. Kalil, F. Maugeri, M.I. Rodrigues, Response surface analysis and simulation as a tool for bioprocess design and optimization, Process Biochemistry 35(2000) 539-550.
    [171]K.M. Lee, D.F. Gilmore, Statistical experimental design for bioprocess modeling and optimization analysis, Applied Biochemistry and Biotechnology 135(2006) 101-115.
    [172]Ege Anil Diler, Rasim Ipek, An experimental and statistical study of interaction effects of matrix particle size, reinforcement particle size and volume fraction on the flexural strength of Al-SiCp composites by P/M using central composite design, Materials Science and Engineering: A 548(2012) 43-55.
    [173]H. Kalavathy, I. Regupathi, M.G. Pillai, L.R. Miranda, Modelling, analysis and optimization of adsorption parameters for H3PO4 activated rubber wood sawdust using response surface methodology (RSM), Colloids and Surfaces B:Biointerfaces 70(1)(2009) 35-45.
    [174]S. Sumathi, S. Bhatia, K.T. Lee, A.R. Mohamed, Optimization of microporous palm shell activated carbon production for flue gas desulphurization:Experimental and statistical studies, Bioresource Technology 100(4)(2009) 1614-1621.
    [175]A.M.M. Vargas, C.A. Garcia, E.M. Reis, E. Lenzi, W.F. Costa, V.C. Almeida, NaOH-activated carbon from flamboyant (Delonix regia) pods:Optimization of preparation conditions using central composite rotatable design, Chemical Engineering Journal 162(1)(2010) 43-50.
    [176]A.A. Ahmad, B.H. Hameed, Effect of preparation conditions of activated carbon from bamboo waste for real textile wastewater, Journal of Hazardous Materials 173(1-3)(2010) 487-493.
    [177]L. Jiang, F. Ma, L.J. Zhang, Y.Y. He, Production of activated carbon from ligin:Optimization using response surface methodology, Advanced Materials Research 213(2011) 427-431.
    [178]J.N. Sahu, J. Acharya, B.C. Meikap, Optimization of production conditions for activated carbons from Tamarind wood by zinc chloride using response surface methodology, Bioresource Technology 101(6)(2010) 1974-1982.
    [179]L. Jiang, F. Ma, G.B. Liang, T. Li, Preparation of activated carbons from lignin by NaOH activation and processing optimization, New Carbon Materials 26(5)(2011) 396-400.
    [180]M.G. Dalcin, M.M. Pirete, D.A. Lemos, E.J. Ribeiro, V.L. Cardoso, M.M. de Resende, Evaluation of hexavalent chromium removal in a continuous biological filter with the use of central composite design (CCD), Journal of Environmental Management 92(4)(2011) 1165-1173.
    [181]MS Shafeeyan, WMAW Daud, A Houshmand, A Arami-Niya, The application of response surface methodology to optimize the amination of activated carbon for the preparation of carbon dioxide adsorbents, Fuel 94(1)(2012) 465-472.
    [182]K.J. Cronje, K. Chetty, M. Carsky, J.N.Sahu, B.C. Meikap, Optimization of chromium(VI) sorption potential using developed activated carbon from sugarcane bagasse with chemical activation by zinc chloride, Desalination 275(1-3)(2011) 276-284.
    [183]J.N. Sahu, J. Acharya, B.B. Meikap, Response surface modeling and optimization of chromium(VI) removal from aqueous solution using Tamarind wood activated carbon in batch process, Journal of Hazardous Materials 172(2-3)(2009) 818-825.
    [184]K.P. Singh, A.K. Singh, S. Gupta, S. Sinha, Optimization of Cr(VI) reduction by zero-valent bimetallic nanoparticles using the response surface modeling approach, Desalination 270(1-3)(2011)275-278.
    [185]D. Ranjan, P. Srivastava, M. Talat, H. Hasan, Biosorption of Cr(VI) from Water Using Biomass of Aeromonas hydrophila:Central Composite Design for Optimization of Process Variables, Applied Biochemistry and Biotechnology 158(3)(2009) 524-539.
    [186]K. Anupam, S. Dutta, C. Bhattacharjee, S. Datta, Adsorptive removal of chromium (VI) from aqueous solution over powdered activated carbon:Optimisation through response surface methodology, Chemical Engineering Journal 173(1)(2011)135-143.
    [187]M.S. Tanyildizi, Modeling of adsorption isotherms and kinetics of reactive dye from aqueous solution by peanut hull, Chemical Engineering Journal 168(3)(2011)1234-1240.
    [188]M.B. Kasiri, A.R. Khataee, Photooxidative decolorization of two organic dyes with different chemical structures by UV/H2O2 process:Experimental design, Desalination 270(1-3)(2011) 151-159.
    [189]T. Olmez-Hanci, I. Arslan-Alaton, G. Basar, Multivariate analysis of anionic, cationic and nonionic textile surfactant degradation with the H2O2/UV-C process by using the capabilities of response surface methodology, Journal of Hazardous Materials 185(1)(2011) 193-203.
    [190]R.K. Agarwal, J.S. Noh, J.A. Schwarz, P. Davini, Effect of surface acidity of activated carbon on hydrogen storage, Carbon 25(2)(1987) 219-226.
    [191]J. Laine, A. Calafat, M. Labady, Preparation and characterization of activated carbons from coconut shell impregnated with phosphoric acid, Carbon 37(2)(1989) 191-195.
    [192]H.Teng, T.S. Yeh, L.Y. Hsu, Preparation of activated carbon from bituminous coal with phosphoric acid activation, Carbon 36(9)(1998) 1387-1395.
    [193]C. Moreno-Castilla, F. Carrasco-Marin, M.V. Lopez-Ramon, M.A. Alvarez-Merino, Chemical and physical activation of olive-mill waste water to produce activated carbons, Carbon 39(9)(2001) 1415-1420.
    [194]B.S. Grigis, S.S. Yunis, A.M. Soliman, Characteristics of activated carbon from peanut hulls in relation to conditions of preparation, Materials Letters 57(1)(2002) 164-172.
    [195]M. Jagtoyen, F. Derbyshire, Activated carbons from yellow poplar and white oak by H3PO4 activation, Carbon 36(1998) 1085-1097.
    [196]F. Suarez-Garcia, A. Martinez-Alonso, J.M.D. Tascon, Porous texture of activated carbons prepared by phosphoric acid activation of apple pulp, Carbon 39(2001)1103-1116.
    [197]M.A. Diaz-Dieza, V. Gomez-Serranob, C. Fernandez Gonzalezb, E.M. Cuerda-Correab, A. Macias-Garciaa, Porous texture of activated carbons prepared by phosphoric acid activation of woods, Applied Surface Science 238(1-4)(2004) 309-313.
    [198]M. Olivares-Marin, C. Fernandez-Gonzalez, A. Macias-Garcia, V. Gomez-Serrano, Thermal behaviour of lignocellulosic material in the presence of phosphoric acid, Carbon 44(2006) 2330-2356.
    [199]王振邦.膨胀石墨基炭/炭复合材料的制备及其表面改性[D].江苏大学硕士论文,2010.
    [200]W. Xing, J.S. Xue, J.R. Dahn, Optimizing pyrolysis of sugar carbons for use as anode materials in lithium-ion batteries, Journal of The Electrochemical Society 143(1996) 3046-3052.
    [201]王九州.石油焦系水性中间相沥青的研究[D].天津大学硕士论文,2009.
    [202]C.P. Huang, A.R. Bowers, Activated carbon process for the treatment of chromium(VI)-containing industrial wastewater, Water Science and Technology 13(1)(1980) 629-680.
    [203]H.L. Hong, W.T. Jiang, X.L. Zhang, L.Y. Tie, Z.H. Li, Adsorption of Cr(Ⅵ) on STAC-modified rectorite. Applied Clay Science 42(2008) 292-299.
    [204]H.D. Choi, W.S. Jung, J.M. Cho, B.G. Ryu, J.S. Yang, K. Baek, Adsorption of Cr(Ⅵ) onto cationic surfactant-modified activated carbon, Journal of Hazardous Materials 166(2009) 642-646.
    [205]E. Ozdemira, D. Duranoglub, U. Bekerb, A.O. Avcib, Process optimization for Cr(Ⅵ) adsorption onto activated carbons by experimental design, Chemical Engineering Journal 172(2011)207-218.
    [206]A. Ahmadpour, D.D. Do, The preparation of active carbons from coal by chemical and physical activation, Carbon 34(4)(1996) 471-479.
    [207]A. Ahmadpour, D.D. Do, The preparation of activated carbon from macadamia nutshell by chemical activation, Carbon 35(12)(1997) 1723-1732.
    [208]F. Caturla, M. Molina-Sabio, F. Rodriguez-Reinoso, Preparation of activated carbon by chemical activation with ZnCl2, Carbon 29(7)(1991) 999-1007.
    [209]K. Mohanty, D. Das, M.N. Biswas, Adsorption of Phenol from Aqueous Solutions Using Activated Carbons Prepared from Tectona grandis Sawdust by ZnCl2 Activation, Chemical Engineering Journal 115(2005) 121-131.
    [210]B. Koumanova, P. Peeva, S.J. Allen, Variation of intraparticle diffusion parameter during adsorption of P-chlorophenol onto activated carbon made from apricot stones, Journal of Chemical Technology and Biotechnology 8(2003) 582-587.
    [211]W.H. Cheung, Y.S. Szeto, G. McKay, Intraparticle diffusion processes during acid dye adsorption onto chitosan, Bioresource Technology 98(2007) 2897-2904
    [212]S. Kasaoka, Y. Sakata, E. Tanaka, R. Naitoh, Design of molecular-sieve carbon-Studies on the adsorption of various dyes in the liquid phase, International Chemical Engneering 29(1989) 734-742.
    [213]C. Pelekani, V.L. Snoeyink, Competitive adsorption between atrazine and methylene blue on activated carbon:the importance of pore size distribution. Carbon 38(2000) 1423-1436.
    [214]V.R.L. Constantino, T.J. Pinnavaia, Basic properties of Mg2+1-xAl3+ layered double hydroxides intercalated by carbonate, hydroxide, chloride, and sulfate anions. Inorganic Chemistry 34(1995)883-892.
    [215]S. Dutta, A. Bhattacharyya, A. Ganguly, S. Gupta, S. Basu, Application of response surface methodology for preparation of low-cost adsorbent from citrus fruit peel and for removal of methylene blue, Desalination 275(2011) 26-36.
    [216]张传君,李泽琴,程温莹,罗丽.Fenton试剂的发展及在废水处理中的应用[J].世界科技研究与发展27(6)(2005)64-68.
    [217]J. Weiss, Investigations on the radical HO2 in solution, Transactions of the Faraday Society 31(1935)668-681.
    [218]张文兵.均相和非均相高级氧化技术处理水中有机污染物的研究[D].中国科学院(广州地球化学研究所)博士论文,2003.
    [219]E. Hayon, A. Treinin, J. Wilf, Electronic spectra, photochemistry, and autoxidation mechanism of the sulfite-bisulfite-pyrosulfite systems. SO2-, SO3-, SO4-, and SO5- radicals, Journal of the American Chemical Society 94(1)(1972) 47-57.
    [220]F. Minisci, A. Citterio, C. Giordano, Electron-transfer processes:peroxydisulfate, a useful and versatile reagent in organic chemistry, Accounts of Chemical Research 16(1)(1983) 27-32.
    [221]G.R. Peyton, The free-radical chemistry of persulfate-based total organic carbon analyzers, Marine Chemistry 41(1-3)(1993) 91-103.
    [222]陈晓旸.基于硫酸自由基的高级氧化技术降解水中典型有机污染物研究[D].大连理工大学博士论文,2007.
    [223]G.P. Anipsitakis, E. Stathatos, D.D. Dionysiou, Heterogeneous Activation of Oxone Using Co3O4, Journal of Physical Chemistry B 109(27)(2005) 13052-13055.
    [224]李明.过碳酸钠的应用及生产技术[J].精细化工原料及中间体11(2005)22-25,33.
    [225]陈晓肠,王卫平,朱凤香,洪春来,薛智勇,UV/K2S2O8降解偶氮染料AO7的研究:动力学及反应途径[J].环境科学31(7)(2010)1533-1537.
    [226]J.Y. Feng, X.J. Hu, P.L. Yue, Discoloration and Mineralization of Orange Ⅱ Using Different Heterogeneous Catalysts Containing Fe:A Comparative Study, Environmental Science & Technology 38(21)(2004) 5773-5778.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700