用户名: 密码: 验证码:
海洋表层沉积物元素地球化学数据处理分析及综合信息评价技术
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
海洋表层沉积物元素地球化学是资源环境研究的主要内容,是探索海底资源环境的重要科学手段。本文基于数学地质方法和信息处理分析原理,从方法论角度,结合渤海表层沉积物元素地球化学环境评价工作,对元素地球化学数据处理分析的相关技术环节进行探讨,提出一套适合海洋表层沉积物元素地球化学环境评价工作的数据信息处理分析的系统方法。
     提出数据平差方法,分析多种方法的优劣,并结合渤海实验区,给出实际应用。标准化方法能够消除“多源数据系统误差”差异,能将存在差异的数据统一到一个图幅,但该方法仅能够反映样品变量的分布变化情况,忽略了元素含量的真实水平;邻近点对法在缩小系统误差间距的同时将数据校正到更加合理的评定范围,保留了元素的实际含量水平。本文利用邻近点对法对渤海多来源表层沉积物地球化学常量元素以及微量元素进行平差处理。
     引入Kriging、CoKriging方法模型,对该方法模型的构建、变差函数模拟及使用方法进行了系统解析。计算了Ni和Co及Fe和粒度参数的实验变差函数,并进行理论拟合,提取变差函数参数和交叉变差函数参数;利用变差函数所反映的元素空间自相关性和协相关性,判断出Ni、Co和Fe、粒度不但拥有显著统计相关性,而且也具有明显的空间相关性,变差函数模拟结果显示这些参数均受北北东向构造格架控制。利用CoKriging对边界效应数据和稀疏数据的插值效果进行实验,结果表明,该方法在边界缺失数据信息的情况下,利用次变量协同插值能够减小估计误差,提高插值效果;在数据信息点稀疏的情况下,同样能够减小估计误差,提高插值效果。另外,本文还给出基于ArcGIS平台的Kriging和CoKriging应用方法。
     系统介绍分形、突变边界、汇流累积、移动平均等异常划分方法,并对渤海地球化学元素进行异常划分。应用结果表明,分形方法从地球化学场的空间自相似性出发,划定异常下限的同时,可以将研究区域划分出不同异常区域和异常等级;汇流累积法在圈定异常面积较小的同时保证异常区域罗列的全面,可以突出弱异常,且在高值聚集区域突出了较高值区域和线性特征;突变边界法划分的异常与移动平均法划分的异常区域较相似,移动平均法使用时人为因素较多,突变边界法比移动平均法更客观,划分的异常界限也较细致些。
     引入多元信息综合分析方法,将地球化学元素信息图层以及异常分布图层与构造、地形、地貌、重力异常、磁力异常等信息图层进行叠加和相关分析,分析及解算结果表明:(1)空间异常的不同提取方法可以互相弥补,不同的异常提取方法,可能会指示不同的地质环境背景;(2)异常场的空间展布与其他综合信息的关联,可以提供更多的环境信息;(3)由Zn为代表的地球化学元素异常分布,表层沉积物粒度线性异常分布,水深线性异常分布以及渤海构造环境特征等之间存在着或强或弱的相关关系;(4)Zn异常主要受控因素为表层沉积物粒度,其次为重力异常信息,呈弱贡献关系。在不同的目标域,粒度与Zn的相关程度,以及线性模型模拟的精度不同,在渤海中部的石油盆地内,粒度明显为主控变量,与Zn含量强相关,且线性模型模拟结果与实际分布高度相近,模拟精度较高,相似系数达0.79;从全区模拟来看,由于模拟单元最多,相对其它目标域,粒度贡献及线性模拟精度相对仍然较高,由此可见靠近岸边的区域,Zn含量受粒度控制较强;与之相对,在渤海构造盆地以及构造带的的模拟结果相比之下,模型模拟精度较低,粒度与Zn的相关性也相对变弱,而重力异常信息控制变强;在Zn线性异常区域,模型模拟精度最低,粒度贡献相对较弱,可见在Zn线性异常区域内,Zn含量除受到粒度控制外,可能还与其它来源因素有关。
Geochemistry of surface sediments at seabed is the main content of resources and environment research, and is an important scientific means to explore the resources and environment of the seabed. Based on mathematics geology methods and information processing principle, the article investigates relative technical links of elements geochemistry datum from Bohai surface sediments element geochemical environment evaluation project, and proposes a system approach of data processing fitting marine surface sediments geochemical environment evaluation.
     After the methods are analyzed, adjustment is proposed, and combining the datum of Bohai experimental area practical application based on adjustment is shown. Standardized method can eliminate difference of “Multi‐source data system error” and integrate the data that have difference into a map. But this method could only reflect distribution changes of samples and ignores the real level of element content; Adjacent points method regulates the data in a more reasonable range of assessment while narrows system error spacing. The article, on the basis of adjacent points method, applies adjustment processing to analyze the major elements and trace elements of Bohai multiple sources surface sediments geochemistry.
     Kriging and CoKriging method model are introduced. The building of these models, simulating of variogram and the usage of them is systematically analyzed. The experimental variogram of Fe, Ni, Co, and grain size parameters are calculated, and the theoretical fit is made to extract the parameters of the variogram function and of cross‐variogram function; The variogram function reflecting self‐correlation and co‐correlation of elements space, which prove that the Fe, Ni, Co and particle size not only has a significant statistical correlation, but also has a significant spatial correlation. The variogram Simulation results show that these parameters are subject to north‐north‐east‐trending tectonic framework. Using CoKriging on interpolation effect on boundary effect data and sparse data, the results show that the method reduce the estimation error and improve the interpolation results by synergistic interpolation of secondary variables in the cases of missing data information at boundary and data point sparse. In addition, the article describes the application of Kriging and CoKriging on the ARCGIS platform.
     Abnormal division method such as fractal, mutations boundary, flow accumulation and moving average is introduced, and with this method the Bohai geochemical elements abnormal division is worked out. The application results show that fractal, from the spatial self‐similarity of the geochemical field, divide the study area into different abnormal regions and abnormal levels, while delimite abnormal lower limit; Flow accumulation method guarantees comprehensively setting out abnormal regions, highlights weak anomaly and also the higher value area and linear features in high value clustered regions, when the abnormal regions in smaller area is delineated; Mutations boundary method delineate the similar abnormal regions as he moving average method, but the former identify more micromesh and objective abnormal areas than the latter method which has more human factors in application.
     Finally, comprehensive analysis method of multi‐information is introduced to superimpose information layers of geo‐chemical elements, abnormal distribution, structure, topography, geomorphology, gravity anomalies and magnetic anomalies, and to analyse correspondingly. The results of analysis and solving indicates that (1) different methods of extracting space abnormalities compensate for each other. Different methods of extraction, the geological environment indicated;(2) combination of spatial anomalous field distribution and other comprehensive information provide more environmental information.(3) there is strong or weak correlation among Zn(representing geochemical elements) abnormal distribution, surface sediment grain size abnormal distribution, bathymetry anomalies lies and Bohai tectonic environment characteristics.(4)the mainly controlled factor of Zn anomalies is grain size of surface sediments, and the secondary factor is gravity anamalies which contribute less for Zn abnomalies. In different target domain, relevance of grain size and Zn is different, the accuracy of the linear model simulation different also. In oil basins in the centrol Bohai, the grain size is obviously the main control variable, strong correlation with Zn content, and the simulation results of the linear model being of highly similar with its actual distribution, the similarity coefficient0.79; for region simulation, grain size contribution and linear simulation accuracy are higher compare with other target region because of containing most simulation units, which incicates that Zn content is strongly controlled by granularity in area near the shore; by contrast, the simulation result of Bohai tectonic basin and the tectonic zone has low accuracy comparatively, the correlation between granularity and Zn turned weak relatively, while gravity anomaly affect becoming stronger; in Zn linear anomaly region, model simulation accuracy being the lowest, and granularity contributing less, which indicate that Zn content relates to other factors in addition to granularity in Zn linear abnomaly region.
引文
[1] H.D. Holland, K.K. Turekian.Foreword in Treatise on Geochemistry[M].Oxford,UK and SanDiego,USA:Elsevier Pergamon Ltd.,2004
    [2] Wilde S A,Valley J W,Peck W H,et al.Evidence from detrital zircons for the existence ofcontinental crust and ocean on the earth4.4Gyr ago[J].Nature,2001(409):175~178
    [3] Mojzsis S T,Harrison T M,Pidgen R T,Oxygen isotope evidence from ancient zircons for liquidwater at the earth's surface4300Myr ago[J].Nature,2001(409):178~181
    [4]谢学锦.勘查地球化学:发展史·现状·展望.地质与勘探.2011年,38(6):1~9
    [5]谢学锦,任天祥,严光生,奚小环,刘大文,王学求,程志中,成杭新,周国华,迟清华,孙忠军.进入21世纪中国化探发展路线图.中国地质,2010,37(2):245~267
    [6]陈道公,支霞臣,杨海涛.地球化学[M].安徽:中国科学技术大学出版社,2009.1~10.
    [7] Xie X J, Mu X, Ren T.Geochemical mapping in China[J].Journal of Geochemical Exploration,1997,60:99~113
    [8] A. K. Ghosh.Trace element geochemistry and genesis of the copper ore deposits of theSinghbhum shear zone, Eastern India. Mineralium Deposita. Vol.7, No.3(1972):292~313
    [9] P. Di Girolamo.Geotectonic settings of miocene~quaternary volcanism in and around theeastern Tyrrhenian sea border (Italy) as deduced from major element geochemistry. Bulletin ofVolcanology. Vol.41, No.3(1978),229~250
    [10] M.Gregoire,D.Bell,A.Le Roex.Trace element geochemistry of phlogopite~rich mafic mantlexenoliths: their classification and their relationship to phlogopite~bearing peridotites andkimberlites revisited. Contributions to Mineralogy and Petrology. Vol.142, No.5(2002):603~625
    [11] Hawkes H E,Webb J S.Geochemistry in Mineral Exploration[J].Harper and Row,1962,415
    [12] Beus A A,Grigorian S V.Geochemical exploration methods for mineral deposits[M].AppliedPublishing Lid.1977
    [13]黎彤,袁怀雨.大洋岩石圈和大陆岩石圈的元素丰度.地球化学.2011,40(1):1~5
    [14] GuoLiang Zhang,ZhiGang Zeng.Genesis of230Th excess in basalts from mid~ocean ridgesand ocean islands: Constraints from the global U~series isotope database and major and rare earthelement geochemistry.Science China Earth Sciences.Vol.53, No.10(2010):1486~1494
    [15] Vallius, H.&Lehto, O. The distribution of some heavy metals and arsenic in recentsediments from the eastern Gulf of Finland. Applied Geochemistry.1998,Vol.13:369–377
    [16] Vallius, H.. Anthropogenically derived heavy metals and arsenic in recent sediments of theGulf of Finland, Baltic Sea. Chemosphere.1999a,38:5,945–962
    [17] Leivuori, M. Distribution and accumulation of metals in sediments of the northern BalticSea.Finnish Institute of Marine Research, Contributions2,2000.P159
    [18] A.V. Dubinin,M. N. Rimskaya~Korsakova.Geochemistry of rare earth elements in bottomsediments of the Brazil Basin, Atlantic Ocean. Lithology and Mineral Resources. Vol.46, No.1(2011):1~16
    [19] Vallius, H.&Leivuori, M. Classification of heavy metal contaminated sediments of the Gulfof Finland. Baltica.2003.16,3~12
    [20] Vallius, H.2007. Background concentrations of trace metals in modern muddy clays of theeastern Gulf of Finland, Baltic Sea. In: Vallius, H.(ed.) Holocene sedimentary environment andsediment geochemistry of the eastern Gulf of Finland, Baltic Sea. Geological Survey of Finland,Special Paper45,63~70
    [21] Rasilainen, K., Lahtinen, R.&Bornhorst, T.2008. Chemical characteristics of Finnishbedrock–1:1000000Scale. Bedrock Map Units. Geological Survey of Finland, Report ofInvestigation.171.94p
    [22] Joseph H. Rule.Assessment of trace element geochemistry of Hampton Roads harbor andlower Chesapeake Bay area sediments. Environmental Geology.Vol.8, No.4(1986):209~219
    [22] Zhao Yiyang.Geochemistry of some elements in sediments of the East China Sea.ChineseJournal of Oceanology and Limnology.Volume1, Number2(1983):210~222
    [23] WANG JINTU.REE Geochemistry of Surficial Sediments from the Yelow Sea0fChina.CHINESE JOURNAL OF GEOCHEMISTRY.1991,Vo1.10(N o.4):88~98
    [24]刘季花,梁宏锋,姚德等.东太平洋沉积物u的地球化学.海洋地质与第四纪地质.1996,16(1)59~67
    [25]周蒂,陈绍谋,陈汉宗.珠江口外陆架表层沉积物的地球化学分区.热带海洋学.1991,10(3)2~28
    [26]张富元.南海中部表层沉积物的元素地球化学.海洋与湖沼.1991,22(3):253~263
    [27]刘季花.太平洋东部深海沉积物稀土元素地球化学.海洋地质与第四纪地质.1992,12(2):33~42
    [28]陈汉宗,周蒂,王平.盆地某凹陷油气地球化学异常特征与评价.热带海洋学.1995,14(4)12~17.
    [29]熊应乾,刘振夏,杜德文等.东海陆架EA01孔沉积物常微量元素变化及其意义.沉积学报.2006,24(3)256~264
    [30]王国庆,石学法,刘焱光等.长江口南支沉积物元素地球化学分区与环境指示意义.海洋科学进展.2007,25(4)408~418
    [31]孟宪伟,吴世迎,韩贻兵.空间因子分析与沉积地球化学旋元素组合的确定.海洋与湖沼.1998,29(1):73~78
    [32]杜德文,孟宪伟,王永吉等.基于地球化学参数的海底沉积物端元定量判识方法研究.海洋学报.1999,21(4):71~77
    [33]杨守业,李从先.元素地球化学特征的多元统计方法研究.矿物岩石.1999,19(1):63~67
    [34]赵一阳,鄢明才,李安春,高抒等.中国近海沿岸泥的地球化学特征及其指示意义.中国地质.2002,29(2),181~185
    [35]李双林,李绍全,孟祥君.东海陆架晚第四纪沉积物化学成分及物源示踪.海洋地质与第四纪地质.2002,22(4):21~28
    [36]杜德文,石学法,孟宪伟等.黄海沉积物地球化学的粒度效应.海洋科学进展.2003,21(1):78~82
    [37]赵广涛,Wei Zhou等.傅里叶形状分析方法及其在地质学中的应用.中国海洋大学学报.2004,34(3),429~436
    [38]韩宗珠,吕海燕,庄振业,刘东生.山东莱州仓上泻湖沉积物地球化学特征与沉积相判别,海洋湖沼,2005,(1),11~19
    [39]方习生,石学法,王昆山等.琉球群岛以东海域表层沉积物元素地球化学特征.海洋科学进展.2006,24(1):10~16
    [40]朱赖民,高志友,尹观等.南海表层沉积物的稀土和微量元素的丰度及其空间变化.岩石学报.2007,23(11):2963~2980
    [41]孔祥淮,刘健,李巍然等.山东半岛东北部滨浅海区表层沉积物的稀土元素及其物源判别.海洋地质与第四纪地质.2007,27(3):51~59
    [42]李军.冲绳海槽中部A7孔沉积物地球化学记录及其对古环境变化的响应.海洋地质与第四纪地质.2007,27(1)
    [43]刘升发,石学法,刘焱光等.东海内陆架泥质区表层沉积物常量元素地球化学及其地质意义.海洋科学进展.2010,28(1):80~86
    [44]韩宗珠,邹昊,李安龙等.大沽河潮坪沉积的金属元素地球化学特征及环境意义.海洋湖沼通报,2010(4):117~123
    [45]胡宁静,刘季花,黄朋,石学法等.辽东半岛西部海域沉积物中多环芳烃的分布特征及潜在风险.中国石油大学学报.2010
    [46] Wu Yanhong, Li Shijie, Xia Weilan.Weathering and climate change since1820AD in HohXil, Qinghai~Zizang Plateau, China—Evidence from element geochemistry of lake sediments ofGulug Co Lake. Chinese Journal of Geochemistry. Vol.25, No.1(2006):56~61
    [47] Seunggu Lee, Jinkwan Kim, Dongyoon Yang,Juyong Kim.Rare~earth element geochemistryas a tracer for clarifying the provenance of the stream sediments in Namhan River, Korea. ChineseJournal of Geochemistry. Vol.25, Supplement1(2006),270
    [48] Xie XueJin.some problems,strategical and tactical,in international geochemical mapping[J].J.Geochem.Explor.1990,39:15~33
    [49]谢学锦.区域化探.北京:地质出版社.1984
    [50]谢学锦,成杭新,谢渊如.川滇黔桂76种元素地球化学图编制中分析方法与分析质量研究(一)不同实验室产生地球化学图的相似性——以Ag、Cs、Ga、Ge为例.地质通报.21(6):277~284
    [51]纪宏金,连长云,杜庆丰.地球化学数据的标准化与衬度变换.物探化探计算技术.1993,Vol.15,No.1:19~25
    [52]陈永清,纪宏金.标准化区域地球化学图的编制方法及应用效果.长春地质学院报.1995~4,Vol.25, No2:216~221
    [53]陈建国,郭晓兰,刘春华.区域地球化学图件拼接中的图幅平差法.地球科学~中国地质大学学报.1997~11,Vol.22(No.6):620~622
    [54]黎彤,袁怀雨,吴胜昔等.中国大陆壳体的区域元素丰度.大地构造与成矿学.1999,23(2):101~107
    [55]罗先熔.勘查地球化学.2007:1~2.(克拉克值据泰勒(1964),各类岩石中元素均值据涂里千和费得波(1961)).
    [56]黎彤,倪守斌.中国大陆岩石圈的化学元素丰度.地质与勘探.1997,33(1):31~3.
    [57] Andre G,Journel G.Geostatistical software library.New York:Oxford University Press,1992
    [58]侯景儒,郭光裕.矿床统计预测与地质统计学.北京.冶金工业出版社,1993
    [59]侯景儒,黄竞先.地质统计学的理论与方法.北京.地质出版社,1990
    [60]侯景儒,尹镇南,李维明等.实用地质统计学[M].北京:地质出版社.1998
    [61]王仁铎,胡光道.线性地质统计学[M].地质出版社,1988:l~167
    [62]徐建华.现代地理学中的数学方法[M].北京:高等教育出版社,2002
    [63] Pan Guocheng,李钟山(译),夏立显(校).地质统计学中的区域化变量理论.世界地质.1997,16(2):85~93
    [64]王志民侯景儒.协同克立格法及其在矿产储量计算中的应用.地质与勘探.1994, Vol.30(No.3):39~48
    [65]余先川,王世称,王桂安.稳健协同克里格因子分析及其在化探中的应用[J].地球科学—中国地质大学学报,1998,23(2):1
    [66]徐银河,孙春岩,竺玮煌,赵志涛,杨奎,刘钧.协同克立格法在广西林旺金矿化探数据处理中的应用.2011.Vol.33(No.2)
    [67]侯景儒,张树泉,潘汉军,黄竞先.协同区域化与协同克立格法.北京科技大学学报,1991,Vol.13,No.2:95~103
    [68] Hoek sema R J. Cokriging model for estimation of watertable elevation. Water ResourcesResearch.1989,25(3):429~438
    [69] Solow A R and Gorelick SM. Estimating monthly stream flow values by cokriging [J].Mathematical Geology.1986,18(8):785~809
    [70] Rouhani S and hall T J. Space~time kriging of groundwater data,in Geostatistics [J].edited byArm strongM, Kluwer Academic Dordrecht,1989,(2):639~650
    [71]刘瑞民,王学军.地统计学在太湖水质研究中的应用[J].环境科学学报,2002,3(2):1~3
    [72]孟健,马小明.Kriging空间分析法及其在城市大气污染中的应用[J].数学的实践与认识,2002,3(32):1~3
    [73]梁天刚,王兮之,戴若兰.多年平均降水资源空间变化模拟方法的研究[J].西北植物学报,2000,20(5):1~7
    [74]李丽娟,王娟.运用地统计力法分析降雨量的空间变异性[J].地理研究,2002,21(4):117~119
    [75]杜德文,孟宪伟等.太平洋CC区多金属结合评价的区域化变量,海洋学报,2005
    [76]张富元,沈华梯.太平洋多金属结核富集区结核丰度和品位的地质统计学分析,沉积学报,1997,15(3):126~132
    [77]宋庆磊,杜德文,丁明、闫仕娟,协同克立格方法在东海表面温度场数据插值中的应用,海岸工程,2011,30(3):49~55
    [78]杜德文,马素珍,陈永良.地质统计学方法综述.世界地质.1995,14(4),79~84
    [79]李章林,王平,李冬梅.实验变差函数计算方法的研究与运用[J].信息技术,2008,2:l0~14
    [80]汤国安,杨昕. ArcGIS地理信息系统空间分析实验教程[M].科学出版社,2006,363~364
    [81]杜德文,石学法,孟宪伟,程振波,陈志华,熊应乾.黄海沉积物地球化学的粒度效应.海洋科学进展.2003年1月, Vo1.21(No.1)
    [82] Cicchella D, De Vivo B, Lima A. Background and baseline concentration values of elementsharmful to human health in the volcanic soils of the metropolitan and provincial areas ofNapoli(Italy)[J].Geochemistry: Explorat ion, Environ2ment, An alys is,2005,5:29240
    [83]李宝强,张晶,孟广路,王斌,曹积飞.西北地区矿产资源潜力地球化学评价中成矿元素异常的圈定方法.地质通报.2010年11月.Vo1.29.NO.1:26~35
    [84]李随民,姚书振,韩玉丑.2007.Surfer软件中利用趋势面方法圈定化探异常[J].地质与勘探,43(2):72~75
    [85]王小敏,张晓军,华杉,张翰夫,罗华.小波勒山地区1:5万地球化学数据处理与异常评价.地质与勘探.2010年7月.Vo1.46No.4:681~686
    [86]蒋敬业,程建萍,祁土华,向武.2006应用地球化学[M].武汉:中国地质大学出版社.24~2
    [87] Carranza E J M. Geochemical anomaly and mineral prospectivity mapping in GIS[M]Handbook of Exploration and Environmental Geochemistry. Amsterdam: Elsevier,2008,11:347
    [88]韩东昱,龚庆杰,向运川.区域化探数据处理的几种分形方法[J].地质通报,2004,23(7):714~719
    [89]孟宪伟,余先川.地球化学场分形景观与地球化学分级观测.物探与化探.1993年.VOL.5(No.18):393~397
    [90]成秋明,张生元,左仁广,等.多重分形滤波方法和地球化学信息提取技术研究与进展[J].地学前缘,2009,16(2):185~l98
    [91]成秋明.多重分形与地质统计学方法用于勘查地球化学异常空间结构和奇异性分析EJ].地球科学,2001,26(2):161~168
    [92] Cheng Q, Agterberg F P, Ballantyne S B. The separation of geochemical anomalies frombackground by fractal methods[J]. J ournal of geochemical Exploration,1994,51:109~130.1994
    [93] Cheng Q. Fractal and multifractal modeling of hydrothermal mineral deposit spectrum:Application t o gold deposits in Abitibi Area, Ontario, Canada[J]. Journal of Chin a University ofGeosciences,2003,14(3):199~206
    [94]孙运生.重磁异常垂向二阶导数的计算.china academic journal electronic publishinghouse.http://www.cnki.net
    [95]杨刚,杜德文,吕海龙.数字海底地形分割算法.海洋科学进展.22(2):204~209
    [96]任重,周云波.环渤海地区的经济增长与工业废气污染问题研究.中国人口·资源与环境.2009年,19(2):63~68
    [97]徐亚岩,宋金明,李学刚,袁华茂,李宁,柏育材.渤海湾各形态重金属的地球化学特征及其环境意义.农业环境科学学报.2011年,第12期:2560~2570
    [98]张明强,陈水蓉,吴光红.渤海湾海河大沽口表层沉积物中重金属的污染特点.环境科学与管理.2011年,第12期:42~47
    [99]毛天宇,戴明新,彭士涛,李广楼.近10年渤海湾重金属(Cu,Zn,Pb,Cd,Hg)污染时空变化趋势分析.天津大学学报.2009年9月,第42卷,第9期:817~825
    [100]于淑芳,申小冉,吕家珑.渤海天津近海海域重金属年际变化分析.西北农业学报.2009,18(6):352~355
    [101]李淑媛,刘国贤,杜瑞芝,郝静.渤海湾及其邻近河口区重金属环境背景值和污染历史.环境科学学报.1992年12月,第12卷,第4期:427~438
    [102]王继纲,马启敏,刘茜,武倩倩.渤海湾北部海域沉积物重金属Cu、Zn释放及动力学研究.海洋湖沼通报.2007年,第1期:69~73
    [103] HAKANSON L.An ecological risk index for aquatic pollution control:a sedimentologicalapproach[J].Water Res.,1980.14(8):975~1001
    [104]叶红梅,李兆千,易伟,张玲.渤海湾天津近岸海区重金属生态评价.河北渔业.2011,12:29~54
    [105] HAKANSON L.An ecological risk index for aquatic pollutioncontrol:a sedimentologicalapproach[J].Water Res.,1980,14(8):975~100
    [106] Bewers J.M,P.A. YEATS.Trace metals in the waters of a partially mixed estuary.EstuarineCoastal Mar.Sci.,1978,(7):147~162
    [107] Sholkovitz E.R.The flocculation of dissoved Fe,Mn,Al,Cu,Ni,Co,and Cd during estuarinemixing.Earth Planet.Sci.Lett.,1978,41:77~86
    [108] Groot S.J.de.An assessment of the potential enviromental impact of large~scalesand~dredging for the building of artificial islands in the North Sea.OceanManagement,1979,5(3):211~232
    [109] Zwolsman J.J.G.,G.W.Berger and G.T.M Van Eck.Sediment accumulation rates,historicalinput,postdepositional mobility,and retention of major elements and trace metals in salt marshsediments of the Scheldt estuary,S.W. Netherlands.Mar.Chem.,1993,44:73~94
    [110] Osher L.J.,L. Leclerc, G.B. Wiersma,C.T. Hess and V.E. Guiseppe.Heavy metalcontamination from historic mining in upland soil and estuarine sediments of EgyptBay,Maine,USA Estuarine,Coastal and Shelf Science,2006,70(1~2):169~179
    [111]徐杰,周本刚,计凤桔,高祥林,吕悦军,王明明,陈国光.渤海地区新构造格局.石油学报.2011,32(3):442~449
    [112]陈石,王谦身,徐伟民,蒋长胜,卢红艳.华北地区热均衡、重力均衡与深部构造,地球物理学报,2011年第8期:2864~2875
    [113]张春灌.渤海海域重力异常特征及油气分布规律探讨.断块油气田.2010年3月,第17卷第2期:169~172
    [114]周斌,邓志辉,徐杰,杨竹转,王蕊.渤海新构造运动及其对晚期油气成藏的影响.地球物理学进展.2009年12月,Vo1.24,NO.6:2135~2144
    [115]汤良杰,陈绪云,周心怀,万桂梅,金文正.渤海海域郯庐断裂带构造解析.西南石油大学学报.2011年2月,第33卷第1期:170~176
    [116]漆家福,周心怀,王谦身.渤海海域中郯庐深断裂带的结构模型及新生代运动学.中国地质.2010年10月,第37卷第5期:1231~1241
    [117]李文勇,周坚鑫,熊盛青,郭志宏,徐剑春,周锡华,安战锋,李冰,罗锋.从航空重力看郯庐断裂系(渤海)及其围区构造几何学特征.地球学报.2010年8月,第31卷第4期:549~556
    [118]宋国奇.郯庐断裂带渤海段的深部构造与动力学意义.合肥工业大学学报.2007,6:663~667
    [119]戴勤奋.中国海区及邻域的地磁场分析.海洋地质与第四季地质.1997,2:62~72
    [120]姜丽娜,邹华耀.郯庐断裂带渤中一渤南段新构造运动期断层活动与油气运聚.石油与天然气地质.2008,30(4):462~482
    [121]王小凤,李中坚,陈柏林,陈宣华,董树文,张青等.郯庐断裂带.北京:地质出版社.200.1~2
    [122]刘春成,戴福贵,杨津,杨克绳.渤海湾盆地海域古近系一新近系地质结构和构造样式地震解释.中国地质.2010,37(6):1545~1558
    [123]张富元等.大洋多金属结核资源评价原理和矿区圈定方法.北京:海洋出版社,2001,1~150
    [124]王世称,陈永良.夏立显.综合信息矿产预测理论与方法.北京:科学出版社,2000,1~335
    [125]杨恒鹏,杨桂山.基于GIS的淤泥质潮滩侵蚀堆积空间分析.地理学报,2001,56(3):278~286.
    [126]徐双全.3S技术在上海滩涂管理中的应用.海洋测绘,2005,25(5):61~64
    [127]许世远,陈振楼.中国东部潮滩沉积特征与环境功能.云南地理环境研究.1997,9(2):7~10

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700