用户名: 密码: 验证码:
生态水信息指标参数遥感反演模型研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
水文循环系统(SPAC,Soil-Plant-Atmosphere Continuum)耦合了大气、土壤、植被等诸多的因素,作为水文循环的一个重要实体-生态水层,涵盖了与地表植被层息息相关的水体,是水循环和水资源监测的重要内容。生态水的富水性分区直接作用于生态环境,合理地评价和计量生态水资源,对水资源的综合管理及区域的可持续发展有很现实的指导意义。
     目前国内外的研究大都围绕对农田水分,植被物种含水量,各种生化参数,干旱洪水各种灾害信息等方面的水分含量量化研究,对于区域尺度的森林涵养水源还仅限于各站点与样本监测相结合的综合统计,而这并不能适应动态变化的地理条件。地球信息科学的前沿技术-遥感技术,能够动态监测植被、土壤等的时空变化情况,短期内获取大尺度的地面信息,客观地反映其水分涵养情况。然而地表环境复杂多变,遥感的任何一种波段,不论是在可见光、近红外波段,还是热红外波段,甚至微波波段都无法全面准确地定量监测生态水资源。采用定量遥感技术,应用定量算法处理和分析海量的光学遥感监测数据、估测地表参数、反演可靠的依赖于地表过程的动态监测模型,将此类技术应用于植被生态水信息的量化提取将是水资源和遥感应用领域重要的学术问题。
     本文选取岷江上游植被和土壤类型典型地区-毛儿盖实验区,完善生态水模型的指标体系,明确各地表参数与模型变量间的关系,利用遥感影像和实测光谱信息等数据定量反演植被含水量(EWT和FMC)、土壤湿度、地表耗水等物理遥感模型,构建生态水富水系数模数,分析毛儿盖实验区近10年生态水富水性变化情况,预测岷江上游生态水富水性变化趋势。
     论文的主要研究内容和创新成果有以下方面:
     (1)结合项目组前期研究成果,进一步完善了生态水信息指标参数体系,进一步明确了研究区各影响因子生态水量化参数的意义,开展了对多种植被指数、植被生化指数、地表反照率、地表温度和土壤湿度指数等生态水指标参数遥感反演方法研究。
     (2)基于光谱学和遥感基本原理,可见光波段能够反映植被的覆盖程度,近红外波段能够分析植被的垂直结构特征,论文分析植被对水的敏感波段,对比各种光谱指数和模型与植被含水量的关系,利用野外实测数据及项目组前期利用SR光谱指数建立的植被相对含水量(FMC)模型,建立了研究区植被含水量(EWT)经验模型,并结合叶面积指数计算研究区植被水分含量,通过残差分析,结果合理,精度符合要求,模型具备一定实用性。
     (3)岷江上游地区地质地貌情况复杂,论文分别从三种不同角度建立了三个土壤含水量模型:分析近红外光谱反射率与土壤含水量表示方法的关系,建立基于近红外土壤水分敏感波段的高光谱土壤水分模型;利用土壤敏感波段选取土壤线,结合TM遥感影像特点建立了土壤水分光谱的土壤含水量模型;利用不同的植被指数与温度构造特征空间,比较分析后选用TS-EVI空间建立的水分指数,反演适用于岷江上游典型地表的土壤含水量模型和地下土壤分层含水量模型。对比三者反演结果,分析了模型适用性。
     (4)耗水量是地表水循环中最难以估算的分量,论文利用ETM+遥感影像的近红外红外波段构建NIR-RED光谱特征空间,依据遥感技术与能量平衡原理相结合的方法,选用SEBAL模型,并针对区域特点和数据特征,改进潜热通量的算法,反演计量土壤蒸发和植被蒸腾量的耗水模型,其结果与气象台站监测数据和相关文献资料相符。
     (5)论文结合本底调查中关于生态水定性分级的类型,创新性地利用本文建立的植被含水量模型、土壤含水量模型和耗水模型构造生态水富水系数模数模型,计算生态水富水系数模数,提取研究区域生态水富水性量化标准,结果与本底调查定性分类结果和水文资料相符。在此基础上,分析近10年来研究区域生态水的变化特点并进行评价和预测,并论证该模型对高原地区和岷江上游地区的适用性。
Soil-Plant-Atmosphere Continuum(SPAC) contains atmosphere, soil, vegetation,water and many other factors, ecological water as an important part of SPAC, itcontains water related to vegetation layer, is an important part of water cycle andwater resources monitoring. Reasonable evaluation and measurement of ecologicalwater resources is very practical to water resources integrated management and regionsustainable development.
     Most of the researches at home and abroad pay attention to water quantitativeresearch of farmland water, vegetation water, a variety of biochemical parameters,drought and flood hazard, for the regional-scale forest water is limited tocomprehensive statistic of site and sample monitoring. It can not adapt to dynamicchanges in overall geographical conditions. Remote sensing technology candynamically monitor vegetation, soil, etc. access large-scale ground information inshort term, objectively reflect its water conservation. Because ground surface iscomplex and changing, any kind of remote sensing band, both in the visible, nearinfrared, or thermal infrared band, and even microwave band can not fully andaccurately monitor the ecology of water resources. Quantitative remote sensingtechnology can quickly collect data and do quantitative analysis, use of this techniqueto extract water information will be an important area of academic problems.
     In this paper, Maoergai area in the upper minjiang which contain typicalvegetation and soil is chosen as study area, its ecological water model index system isstudied, the uncertain parameters`relations are cleared. Vegetation water content (EWT and FMC), soil moisture, soil evaporation and vegetation transpiration iscalculated by using remote sensing images and measured spectrum information,ecological water coefficient module is established. It is simple and convenient inactual ecological monitoring and correct evaluation of water conservation.
     The mainly content and innovation of this paperis as follows:
     Combined with the previous research results of the project, improve theecological water information index parameters system further, discussed indexparameters inversion method of variety of vegetation index, vegetation biochemicalindex, surface albedo, the surface temperature, soil humidity index. The meaning ofthe parameters and its weight is determined and ecological water information index iscalculated.
     Based on spectroscopy and the basic principle of remote sensing, the visiblespectrum can reflect the vegetation coverage, and the near-infrared spectrum can beused to analyze the vertical structure of vegetation. Vegetation sensitive band to wateris analysed using spectroscopy and RS. Various spectrum index and model relation tovegetation water content is analysed, moisture content (EWT) and vegetation relativewater content (FMC) model is established using SR vegetation index, through theresidual analysis, precision is accords with requirement, and the model has certainpractical value.
     Considering the complexity of geology and geomorphology in the upperminjiang, three soil water content model was set up from different anglerespectively: analyze the relstionship between near infrared spectral reflectance andsoil water content, established hyperspectralsoil moisture content model combinedwith near infrared sensitive bands; select soil line using soil sensitive band,established soil moisture content model combined with TM remote sensing imagefeatures; inversed soil moisture content model which is suitable for high forestvegetation coverage using TS-NDVI space established moisture index. The threeresultsis contrasted and the applicability of the model is analyzed.
     It is difficult to compute the latent heat flux in surface water cycle.BuildNIR-RED spectrum characteristic space using ETM+remote sensing image of thenear infrared infrared bands, accord to the energy balance principle, choose SEBALmodel and the improved algorithm of latent heat flux, inverse soil evaporation and vegetation transpiration water model, and the results is accord with meteorologicalstations monitoring data and related literature material.
     This paper established ecological water-rich index model firstly, and dividedwater-rich district of the study area, the result is consistent with the results ofbackground investigation. On this base, analyzed changing characteristics of studyregional ecological water in recent10years and predicted its future, and proved themodel applicability for forest area and in the upper minjiang.
引文
Amiri R, Weng Q, Alimohammadi A. Spetial-temporal dynamics of land surfacetemperature in relation to fractional vegetation cover and land use/cover in the Tabriz urban area,Iran[J]. Remote Sensing of Environment,2009,113(12):2606-2617.
    Anadranistakis M, Liakatas A, Kerkides P, etal,. Crop water requirements model tested forcrops grown in Greece[J]. Agricultural Water Management,2000,45:297-316.
    Bastiaanssen WGM, Menenti M, Feddes RA, etal..A remote sensing surface energy balancealgorithm for land (SEBAL)1. Formulation[J]. Journal of Hydrology,1998,212-213:198-212.
    Bastiaanssen WGM, Pelgrum H, Wang J, etal,. A remote sensing surface energy balancealgorithm for land (SEBAL)2. Validation[J]. Journal of Hydrology,1998,212-213:213-229.
    Moran MS, Rahman AF, Washburne JC, etal,. Combining the Penman-Monteith equationwith measurements of surface temperature and reflectance to estimate evaporation rates ofsemiarid grassland[J]. Agriculturaland Forest Meteorology,1996,80:87-109.
    BAHC NEWS. Biospheric Aspects of the Hydrological Cycle, a core project of theInterna-tional Geosphere-Biosphere Programme (IGBP)[C],1998.6:2-3.
    Baret F, Guyot G,Major D. Crop Biomss Evaluation Using Radiometric Measurements.Photogrammetria(PRS),1989,43:241-256
    Bosch J M,Hewlett J D. A review of catchment experiments to determine the effect ofvegetation changes on water yieldand evaportranspiration[J]. J. Hydrol.,1982(55):3-23.
    Boulain N, Cappelaere B, Seguis L, etal,. WaterBalance and Vegetation Change in the Sahel:A CaseStudy at the Watershed Scale with an Eco-hydrolog-ical Model [J].Journal of AridEnviroments,2009,73:1125-1135.
    Bowers S A, Hanks R J. Reflection of radiant energy fromsoils[J]. Soil Science.1965,100(2):130-138.
    Brenner AJ, Incoll LD. The effect of clumping and stomatal response on evaporation fromsparsely vegetation shrublands[J].Agricultural and Forest Meteorology,1997,84:187-205.
    Brisson N, Itier B, L’Hotel JC, etal,. Parameterisation of the Shuttleworth-Wallace model toestimate daily maximum transpiration for use in cropmodels[J]. Ecological Modeling,1998,107:159-169.
    Burt T P, Swank W T.Flow frequency reponses to grass conversion and subsequentsuccession[J]. Hydrol.Proccess,1992,6(2):179-188.
    Bastiaanssen W G M, Menenti M, Feddes R A, etal,.A remotesensing surface energy balancealgorithm forland (SEBAL)1.Formulation [J]..Journalof Hydrology,1998,212-213:198-212.
    Bastiaanssen W G M, Pelgrum H, WangJ, etal,. A remote sensing surface energy balancealgorithm forland (SEBAL)2.Validation[J]. Jour-nalof Hydrology,1998,212-213:213-229.
    Camillo PJ, Gurney RJ. A resistance parameter for bare soil evaporation models[J]. SoilScience,1986,141:95-106.
    Carlson TN, Capehart WJ, Gillies R. A new look at the simplified method for remote sensingof dailyevaptranspiration[J]. Remote Sensing Environment,1995,54:161-167.
    Chen JM, Leblanc S (1997).A4-scale bi-directional reflection model based on canopyarchitecture. IEEE TransGeosci Remote Sens35,1316–1337.
    Choudhury B J. Relationships between Vegetation IndicesRadiation Absorption and NetPhotosynthesis Evaluated by a Sensitivity Analysis. Remote Sens Environ,1989,22:209-233.
    Domingo F, Villagarcía L, Brennerb AJ, etal,. Evapotranspiration model for semi-aridshrub-lands tested against data from SE Spain[J]. Agricultural and Forest Meteorology,1999,95:67-84.
    Liang S,AlanH,etal,. RetrievalofLand SurfaceAlbedo from SatelliteObservation[J]. JournalofAppliedMeteorology,1999,38:712-725.
    LIANG Shunlin.Quantitative Remote Sensing of Land Surfaces〔M〕. New Jersey: JohnWiley&Sons, Inc.,2004.
    Fang HL, Liang SL (2005). A hybrid inversion method formapping leaf area index fromMODIS data: experiments and application to broadleaf and needleleaf canopies.Remote SensEnviron94,405–424.
    Farahani HJ, Bausch WC. Performance of evapotranspiration models for maize-bare soil toclosed canopy[J]. Transactions of the American Society of Agricultural Engineers,1995,38:1049-1059.
    Granier A, Loustau D. Measuring and modeling the transpiration of a maritime pine canopyfrom sap-flow data[J]. Agricultural and Forest Meteorology.1994,71:61-81.
    Gutman G,Ignatov A. The derivationofthe green vegetationfraction from NOAA/AVHRRdata for usein numerical weather prediction models[J]. International Journal of RemoteSensing,1998,19(8):1533-1543.
    Ham JM, Heilman JL. Aerodynamic and surface resistances affecting energy transport in asparse crop[J]. Agricultural and Forest Meteorology,1991,53:267-284.
    Heilman JL, McInnes KJ, Savage MJ, etal,. Soil and canopy energy balance in a west Texasvineyard[J]. Agricultural and ForestMeteorology,1994,71:99-114.
    Huang Shaochun,Cornelia Hesse,Valentina Krysanova,etal,.From Meso-to Macro-scaleDynamic Water QualityModeling for the Assessment of Land Use Change Sce-narios[J].Ecological Modelling,2009,220:2543-2558.
    Jarvis PG. The interpretation of the variation in leaf water potential and stomatal conductancefound in canopies in the field[J]. Philosophical Transaction of the Royal Society of London, SeriesB: Biological Sciences,1976,273:593-610.
    Jian, Ji; Yang, Wunian; Li, Yuxia; Wan, Xinnan; Peng, Li; Zeng, Tao; Jiang, HongRetrieving Vegetation Moisture Content with Remotely Sensed Data Retrieving VegetationMoisture Content with Remotely Sensed Data2008International Workshop on EducationTechnology and Training and2008International Workshop on Geoscience and Remote Sensing,ETT and GRS2008Article number:5070137, pp218-221EI收录:20094612444707)
    Kamel S, Christophe F, Guerric M (2006). Comparativeanalysis of IKONOS, SPOT, andETM+data for leaf areaindex estimation in temperate coniferous and deciduousforest stands.Remote Sens Environ102,161–175.
    Katerji N, Rana G. Modelling evapotranspiration of six irrigated crops under Mediterraneanclimate conditions[J]. Agricultural and Forest Meteorology,2006,138:142-155.
    Kato T, Kimura R, Kamichika M. Estimation of evapotranspiration, transpiration ratio andwater-use efficiency from a sparse canopy using a compartment model[J]. Agricultural WaterManagement,2004,65:173-191.
    Kaufman Y J. and Tanré D.1992.Atmospherically resistantvegetation index (ARVI) forEOS-MODIS[J]. IEEE Trans.on Geosci.and Remote Sensin,30(2):261-270.
    Li XW, Strahler AH, Woodcock CE (1995).A hybrid geometric opticalradiative transferapproach from modelingalbedo and directional reflectance of discontinuous canopies. IEEE TransGeosci Remote Sens33,466–480.
    Li XW, Zhang SF, Chen SF. The research results of chilling resistance in plant and itsapplication[J]. Journal of Biology,2003,20(3):32-33.
    Lv sy (吕斯骅)(1981).Physical Foundation of Remote Sensing(遥感的物理基础).Commercial Press,Beijing,206-234.(in Chinese)
    Mark D Tomer,Keith E Schilling.A Simple Approachto Distinguish Land-use andClimate-change Effects onWatershed Hydrology[J].Journal of Hydrology,2009,376:24-33.
    Markham BL,Barker JL (1987).emade Mapper bandpass solar exoalm osphericirradianees.Internat/ona/Journa/of Remote Sensing,8,513-523.
    McCulloch J G, Robinson M.History of forest hydrology[J]. Journal of Hydrology,1993(150):189-216.
    Mclnnes KJ, Heilman JL, Lascano RJ. Aerodynamic conductances at the soil surface in avineyard[J]. Agricultural and Forest Meteorology,1996,79:29-37.
    Michael A Rawlins.Characterization of the Spatial andTemporal Variability in Pan-Arctic,Terrestrial Hydrology[D]. Canada: University of New Hampshire,2006.
    Monteith JL, Unsworth M. Principles of Environmental Physics[M]. Second EditionButterworth-Heinemann, London,1990:286.
    Monteith JL.Evaporation and environment[J]. Symposia of the Society for ExperimentalBiology,1965,19:205-234.
    Moran MS, Clarke TR, Inoue Y, etal,. Estimating crop water deficit using the relationbetween surface-air temperature and spectral vegetation index[J]. Remote Sensing of Environment,1994,49:246-263.
    Nichols WD. Energy budgets and resistances to energy transport in sparsely vegetatedrangeland[J]. Agricultural and ForestMeteorology,1992,60:221-247.
    Ortega-Farias S, Carrasco M, Olioso A, etal,. Latent heat flux over Cabernet Sauvignonvineyard using the Shuttleworth and Wallace model[J]. Irrigation Science,2007,25:161-170.
    Ortega-Farias S, Olioso A, Fuentes S, etal,. Latent heat flux over a furrow-irrigated tomatocrop using Penman-Monteith equation with a variable surface canopy resistance[J]. AgriculturalWater Management,2006,82:421-432.
    Perrier A. Etude physique del’évapotranspiration dans les conditions naturelles. I.Evaporation et bilan d’énergie des surfaces naturelles[J]. Annales Agronomiques,1975a,26:1-18.
    Rana G, Katerji N, Mastrorilli M, etal,. A model for predicting actual evapotranspirationunder soil water stress in a Mediterranean region[J]. Theoretical and Applied Climatology,1997,56:45-55.
    Sene KJ. Parameterisations for energy transfers from a sparse vine crop[J]. Agricultural andForest Meteorology,1994,71:1-18.
    Shuttleworth WJ, Gurney RJ. The theoretical relationship between foliage temperature andcanopy resistance in sparse crops[J]. Quarterly Journal of the Royal Meteorological Society,1990,116:497-519.
    Shuttleworth WJ, Wallace JS. Evaporation from sparse crops-an energy combinationtheory[J]. Quarterly Journal of the Royal Meteorological Society,1985,111:839-855.
    StannardDI. Comparison of Penman-Monteith, Shuttleworth-Wallacc and modificdPriestley-Taylor evapotranspiration models for wildland vegetation in semiarid rangeland[J].Water Resources Research,1993,29:1379-1392.
    Su Z. The surface energy balance system(SEBS)for estimation of turbulence heat fluxes.Hydrology and Earth System Sciences,2002,6:85-99
    Thompson N,Barrie IA,Ayles M,The meteorological office rainfall and evaporationcalculation system: MORECS. Hydrological Memorandum No.45[M]. Meteorological Office,Bracknell, United Kingdom,.1981.
    Trambouze W, Bertuzzi P, Voltza M. Comparison of methods for estimating actualevapotranspiration in a row-cropped vineyard[J]. Agricultural and Forest Meteorology,1998,91:193-208.
    Van Bavel CHM, Hillel DI. Calculating potential and actual evaporation from a bare soilsurface by simulation of concurrent flow of water and heat[J]. Agricultural Meteorology,1976,17:453-476.
    van de Griend A A,Owe M.On the relationship between thermal emissivity and thenormalized difference vegetation index for natural surfaces[J].International Journal of RemoteSensing,1992,14(6):1119-1131.
    Verhoef W (1984). Light scattering by leaf layers with ap-plication to canopy reflectancemodeling: the SAIL model.Remote Sens Environ16,125–141.
    Wicks TE, Curran PJ (2003). Flipping forests: estimatingfuture carbon sequestration of theboreal forestusingremotely sensed data. Int J Remote Sens24,835–842.
    Wim J T,William P K,Martha C A,etal,. An intercomparison of the surface temperatureenergy balance algorithm for land (SEBAL) and thetwo-source energy balance (TSEB)modeling schemes[J]. Remote Sensing of Environment,2007(108):369-384.
    Yang, Wu-Nian; Jian, Ji; Li, Yu-Xia; Wan, Xin-Nan; Peng, Li; Liu, Han-Hu; Shao,Huai-Yong; Dai, Xiao-Ai; Zeng, Tao; Wu, Xue-Ming:Remote sensing inversion of eco-waterresource quantity(生态水遥感定量研究).Proc. of2008Inter.W.S.on Earth Obs.and RSAppli.,2008.EORSA IEEE INSPEC Nu.:10207264: pp1-6)p4620340(ISTP和EI收录085211817378)
    Zheng Jie,Li Guangyong,Han Zhenzhong.HydrologicalCycle Simulation of an IrrigationDistrict Based on aSWAT Model[J].Mathematical and Computer Modelling,2010,51(11):1312-1318.
    Zweifel R, Hasler R. Dynamics of water storage in nature subalpine piceabies: temporal andspatial patterns of change in stem radius[J]. Tree Physiology,2001,21:561-569.
    阿布都瓦斯提·吾拉木,李召良,秦其明,童庆禧,王纪华,阿里木江·卡斯木,朱琳.全覆盖植被冠层水分遥感监测的一种方法:短波红外垂直失水指数[J].中国科学(D辑:地球科学),2007,(7):957-965.
    陈吉虎.关于森林对降水截留过程的研究[J].河南水利与南水北调,2008,(12):23-29.
    陈际龙,黄荣辉.亚洲夏季风水汽输送的年际年代际变化与中国旱涝的关系[J].地球物理学报,2008,(2)352-359.
    陈引珍,程金花,张洪江,李猛.缙云山几种林分水源涵养和保土功能评价[J].水土保持学报,2009,(2):66-70.
    程驰,牟瑞芳.九寨沟森林生态系统水源涵养量计算分析[J].河南科技大学学报(自然科学版),2007,(3):69-72.
    程街亮.土壤高光谱遥感信息提取与二向反射模型研究[D].导师:吴嘉平;史舟.:浙江大学,2008.
    程彦培,李波,叶浩,侯宏冰.黄河中游基岩区土壤水的生态效应研究[J].南水北调与水利科技,2007,(3):89-90.
    陈云浩,李晓兵,李霞,高清竹,谢锋.不同地表覆盖条件下区域水分盈亏的遥感分析--以中国北方为例[J].地球科学进展,2002,(2):283-288.
    池宏康,周广胜,许振柱,肖春旺,袁文平.表观反射率及其在植被遥感中的应用[J].植物生态学报,2005,(1)74-80.
    邓坤枚,石培礼,谢高地.长江上游森林生态系统水源涵养量与价值的研究[J].资源科学,2002,(6):68-73.
    邓孺孺,田国良,柳钦火.基于多次散射的植被-土壤二向反射模型[J].遥感学报,2004,(3):193-200.
    董仁,隋福祥,张树辉.应用彭曼公式计算作物需水量[J].黑龙江水专学报,2006,(2):100-101.
    方秀琴,张万昌.叶面积指数(LAI)的遥感定量方法综述[J].国土资源遥感,2003,(3):58-62.
    高成德,余新晓.水源涵养林研究综述[J].北京林业大学学报,2000,22(5):78-82.
    谷培生.松散耦合分布式水文模型原理与结构[J].河南水利与南水北调,2009,(9):48-50.
    韩惠.基于遥感技术的祖厉河流域土地利用/土地覆盖变化与蒸散发研究[D].导师:冯兆东.:兰州大学,2006.
    何挺,程烨,王静.野外地物光谱测量技术及方法[J].中国土地科学,2002,(5):30-36.
    胡国红,彭培好,王玉宽,廖清泉.基于GIS的长江上游森林生态系统水源涵养功能[J].安徽农业科学,2008,(21):8919-8921.
    胡天钧,周义贵,冯毅,宋鹏.岷江上游山地森林/干旱河谷交错带几种植被类型土壤含水量研究[J].四川林业科技,2011,(5):29-34.
    简季.生态水遥感定量研究[D].导师:杨武年;万新南.:成都理工大学,2006.
    江东,付晶莹,黄耀欢,庄大方.地表环境参数时间序列重构的方法与应用分析[J].地球信息科学学报,2011,(4):439-446.
    江东,王乃斌,杨小唤,刘红辉.地面温度的遥感反演:理论、推导及应用[J].甘肃科学学报,2001,(4):36-40.
    金亚秋.加强定量遥感几个方面的综合研究[J].遥感信息,1997,(1):12-14.
    康文星,邓湘雯,赵仲辉.林冠截留在杉木林生态系统能量转换过程中的作用[J].林业科学,2007,(2):15-20.
    李崇巍,刘世荣,孙鹏森,张远东,葛剑平.岷江上游植被冠层降水截留的空间模拟[J].植物生态学报,2005,(1):60-67.
    李海防,刘兴伟,王金叶,唐东明,李光平,王绍能.广西猫儿山毛竹林水源涵养功能研究[J].贵州林业科技,2011,(2):22-25.
    李海萍,庄大方,熊利亚.沙化土地野外光谱数据采集的技术方法探讨[J].武汉大学学报(信息科学版),2003,(4):484:487.
    李会昌.作物蒸腾与棵间蒸发计算原理与应用研究[J].河北水利科技,2000,21(1):25-32.
    李建龙,蒋平,刘培君,赵德华,朱明,徐胜.利用遥感光谱法进行农田土壤水分遥感动态监测[J].生态学报,2003,(8):1498-1504.
    李林,王振宇,王青春.黑河上游地区气候变化对径流量的影响研究[J].地理科学,2006,26(1):40-46.
    李苗苗.植被覆盖度的遥感估算方法研究[D].导师:吴炳方.:中国科学院研究生院(遥感应用研究所),2003.
    李双权,苏德毕力格,哈斯,马广文.长江上游森林水源涵养功能及空间分布特征[J].水土保持通报,2011,(4):62-67.
    李小文,汪骏发,王锦地,等.多角度与热红外对地遥感[M].北京:科学出版社,2001.
    李小文.定量遥感的发展与创新[J].河南大学学报(自然科学版),2005,(4):49-56.
    李义昌,郑伦素.水文地质及工程地质学[M].徐州:中国矿业大学出版社,1988.
    李玉霞.岷江上游毛儿盖地区生态水信息指标参数遥感量化研究[D].导师:杨武年;万新南.:成都理工大学,2007.
    李振新,欧阳志云,郑华,刘兴良,宿以明.岷江上游两种生态系统降雨分配的比较[J].植物生态学报,2006,(5):723-731.
    李正国,王仰麟,吴健生,张小飞.基于TVDI的黄土高原地表干燥度与土地利用的关系研究[J].地理研究,2006,(5):913-920.
    刘昌明.基于RS/GIS技术的黄河流域水循环要素研究[M].黄河水利出版社,2006..
    刘昌明.水循环研究是水资源综合管理的理论依据[J].中国水利,2009,(19):27-28.
    刘国纬.水文循环的大气过程[M].北京:科学出版社,1997.66-240.
    刘焕军,张柏,宋开山等.黑土土壤水分光谱响应特征与模型[J].中国科学院研究生院学报,2008,25(4):503-509.
    刘良云,王纪华,张永江,黄文江.叶片辐射等效水厚度计算与叶片水分定量反演研究[J].遥感学报,2007,(3):289-295.
    刘良云,张兵,郑兰芬,童庆禧,刘银年,薛永祺,杨敏华,赵春江.利用温度和植被指数进行地物分类和土壤水分反演[J].红外与毫米波学报,2002,(4):269-273.
    刘庆生,刘高焕,姚玲,宋创业.现代黄河三角洲植被主要建群种野外光谱特征及TM分类试验[J].遥感信息,2009,(5):82-86.
    刘三超,张万昌,蒋建军,赵登忠.用TM影像和DEM获取黑河流域地表反射率和反照率[J].地理科学,2003,(5):585-591.
    刘世荣,常建国,孙鹏森.森林水文学:全球变化背景下的森林与水的关系[J].植物生态学报,2007,(5).
    刘伟东, FrédéricBaret,张兵,郑兰芬,童庆禧.高光谱遥感土壤湿度信息提取研究[J].土壤学报,2004,41(5):700-706.
    刘晓臣,范闻捷,田庆久,徐希孺.不同叶面积指数反演方法比较研究[J].北京大学学报(自然科学版),2008,(5):827-834.
    刘永敏,王彦辉.毛竹林林内雨、冠层截留与降水的关系研究[J].竹子研究汇刊,1993,(2):55-62.
    刘占宇,黄敬峰,吴新宏,董永平,王福民,刘朋涛.天然草地植被覆盖度的高光谱遥感估算模型[J].应用生态学报.2006(06):997-1002.
    陆家驹,张和平.应用遥感技术连续监测地表土壤含水量[J],水科学进展,1997,8(3):281-286.
    吕瑜良,刘世荣,孙鹏森,刘兴良,张瑞蒲.川西亚高山不同暗针叶林群落类型的冠层降水截留特征[J].应用生态学报,2007,(11):2398-2405.
    马雪华.森林水文学[M].北京:中国林业出版社,1993.
    马耀明,王介民,MassimoMenenti,WimBastiaanssen.HEIFE非均匀陆面上区域能量平衡研究[J].气候与环境研究,1997,(3):96-104.
    马耀明,王介民.黑河实验区地表净辐射区域分布及季节变化[J].大气科学,1997,(6):104-110.
    马耀明,姚檀栋,胡泽勇,王介民.青藏高原能量与水循环国际合作研究的进展与展望[J].地球科学进展,2009,(11):1280-1284.
    毛克彪,覃志豪.大气辐射传输模型及MODTRAN中透过率计算[J].测绘与空间地理信息,2004,(4):1-3.
    莫兴国.土壤-植被-大气系统水分能量传输模拟和验证[J],气象学报,1998,56(3):323-332.
    聂忆黄,龚斌,李忠.青藏高原水源涵养能力时空变化规律[J].地学前缘,2010,(1):373-377.
    潘卫华,张春桂,李文,蔡文华.基于TM数据的地表土壤湿度反演试验研究[A].中国气象学会.中国气象学会2006年年会“卫星遥感技术进展及应用”分会场论文集[C].中国气象学会:,2006:269-275.
    秦嘉励,杨万勤,张健.岷江上游典型生态系统水源涵养量及价值评估[J].应用与环境生物学报,2009,(4):453-458.
    覃志豪,LI Wenjuan,ZHANG Minghua,Arnon Karnieli,Pedro Berliner.单窗算法的大气参数估计方法[J].国土资源遥感,2003,(2)):37-43.
    覃志豪.用Landsat TM6反演地表温度所需地表辐射率参数的估计方法[A]..[C].:,2003:113-114.
    邱金桓,王普才,夏祥鳌,段民征,宗雪梅.近年来大气遥感研究进展[J].大气科学,2008,(4):841-853.
    屈艳萍,康绍忠,夏桂敏,李王成.甘肃石羊河流域人工种植长穗柽柳树干液流量变化规律研究[J].西北植物学报,2005,(11):121-127.
    仕玉治.气候变化及人类活动对流域水资源的影响及实例研究[D].导师:周惠成.大连理工大学,2011.1.
    隋洪智,田国良,李付琴.农田蒸散双层模型及其在干旱遥感监测中的应用[J].遥感学报,1997,1(3):220-224.
    孙向阳,王根绪,李伟,刘光生,林云.贡嘎山亚高山演替林林冠截留特征与模拟[J].水科学进展,2011,(01):23-29.
    田国良,郑柯等.用NOAAAVHRR数字图像和地面气象站资料估算作物蒸散和土壤水[C].黄河流域典型地区遥感动态研究.北京:科学出版社,1990.161-176.
    田庆久,宫鹏,赵春江,郭晓维.用光谱反射率诊断小麦水分状况的可行性分析[J].科学通报,2000,(24):2645-2650.
    田庆久,闵祥军.1998.植被指数研究进展[J].地球科学进展,13(4):327-333.
    万新南,杨武年,吴炳方,孙卫东,黄签.“生态水层与生态水”概念及研究意义[J].地球科学进展,2004,(S1):117-121.
    王昌佐,王纪华,王锦地等.裸土表层含水量高光谱遥感的最佳波段选择[J].遥感信息,2003(4):33-36.
    王迪,李久生,饶敏杰.基于能量平衡的喷灌作物冠层净截留损失估算[J].农业工程学报,2007,(08):27-33.
    王国庆,贺瑞敏,李亚曼,等.基于流域水文模拟的径流变化原因研究[J].水电能源科学,2008,26(3):11-13.
    王浩,王建华.现代水文学发展趋势及其基本方法的思考[J].中国科技论文在线,2007,(09):617-620.
    王建华,江东,王浩,秦大庸.年尺度下的黄河流域降水遥感反演[J].资源科学,2003,(06):8-13.
    王鹏新,孙威.基于植被指数和地表温度的干旱监测方法的对比分析[J].北京师范大学学报(自然科学版),2007,(03):319-323.
    王树东,刘素红,李向,唐义闵,于凯.野外波谱测量应注意的几个问题[J].遥感信息,2006,(01):29-33.
    王雪梅.水资源研究发展态势[J].地球科学进展,2011,(10):1108.
    卫伟,陈利顶.全球变化下的国际水文学研究进展:特点与启示——2011年欧洲地球科学联合会会员大会述评[J].生态学报,2011,(10):2953-2955.
    魏珍.基于LandsatETM遥感数据的大柳塔煤炭开发区土壤水分信息提取[D].导师:孔金玲.:长安大学,2010.
    吴英,兰伟,于海波,吴红燕,丁国梁.多开采水平矿井涌水量预测方法及精度级别分析-以中煤能源新疆分公司106团淮南煤矿改扩建工程项目水资源论证为例[J].中国农村水利水电,2010,(12).
    吴朝阳,牛铮.基于辐射传输模型的高光谱植被指数与叶绿素浓度及叶面积指数的线性关系改进.植物学通报,2008,(25),714–721.
    夏军,水文尺度问题[J].水利学报,1993,(5):32-37.
    夏军,翟金良,占车生.我国水资源研究与发展的若干思考[J].地球科学进展,2011,(9).
    夏军.华北地区水循环与水资源安全:问题与挑战[J].地理科学进展,2002,21(6):517-526.
    夏涛.生态水遥感定量研究中野外地物光谱数据采集及处理[D].导师:杨武年.:成都理工大学,2007.
    丽宏,时忠杰,王彦辉,熊伟,于澎涛.六盘山主要植被类型冠层截留特征[J].应用生态学报,2010,(10):2487-2493.
    徐佩,彭培好,王玉宽,刘延国.九寨沟自然保护区生态水的计量与评价研究[J].地球与环境,2007,(01):61-64.
    徐元进,胡光道,张振飞.包络线消除法及其在野外光谱分类中的应用[J].地理与地理信息科学,2005,(06):11-14.
    杨成田.《专门水文地质学》.北京:地质出版社.1981.309-311
    阳坤,王介民.一种基于土壤温湿资料计算地表土壤热通量的温度预报校正法[J].中国科学(D辑:地球科学),2008,(02):243-250.
    杨贵军,黄文江,王纪华,邢著荣.多源多角度遥感数据反演森林叶面积指数方法[J].植物学报,2010,(05):566-578.
    杨虎.植被覆盖地表土壤水分变化雷达探测模型和应用研究[D].导师:郭华东;施建成.:中国科学院研究生院(遥感应用研究所),2003.
    杨建军.基于遥感的新疆潜在蒸散模式研究[D].导师:塔西甫拉提·特依拜.:新疆大学,2009.
    杨武年,简季,李玉霞,万新南,刘汉湖,邵怀勇,戴晓爱,彭立,曾涛.生态水遥感定量研究[J].成都理工大学学报(自然科学版),2008,(02):219.
    杨武年,袁佩新,万新南等.《四川省岷江中上游生态环境遥感综合调查与评价》研究报告(863-308-21(6)).成都理工大学档案馆,2000.
    尹业彪,李霞,赵钊,董道瑞.沙质土壤含水率高光谱预测模型建立及分析[J].遥感技术与应用,2011,(03):355-359.
    于辉.森林水文学研究发展历程与思考[J].林业勘查设计,2010,(04):109-110.
    于澎涛.分布式水文模型的理论、方法与应用[D].导师:徐德应.:中国林业科学研究院,2001.
    余涛,田国良.热惯量法在监测土壤表层水分变化中的研究[J].遥感学报,1997,1(1):24-31.
    于志民,王礼先.水源涵养林效益研究[M].北京:中国林业出版社,1999.1-34
    余开亮,陈宁,余四胜,王刚.物种组成对高寒草甸植被冠层降雨截留容量的影响[J].生态学报,2011,(19):5771-5779.
    云南水资源研究[J].云南科技管理,2010,(04):97.
    张红卫,陈怀亮,申双和,周官辉,余卫东.基于表层水分含量指数(SWCI)的土壤干旱遥感监测[J].遥感技术与应用,2008,(06):624-628+600.
    张红卫,陈怀亮,申双和.基于EOS/MODIS数据的土壤水分遥感监测方法[J].科技导报,2009,(12):85-92.
    张佳华,李莉,姚凤梅.遥感光谱信息提取不同覆盖下植被水分信号的研究进展[J].光谱学与光谱分析,2010,(06):1638-1642.
    张晓涛.区域蒸发蒸腾量的遥感估算[D].导师:康绍忠;王鹏新.:西北农林科技大学,2006.
    赵英时.遥感应用分析原理与方法[M].科学出版社,2011.
    张建平,叶延琼,樊宏.岷江上游草地资源及合理利用[J].山地学报,2002,(3):343-347.
    祝善友,张桂欣,尹球,匡定波.地表温度热红外遥感反演的研究现状及其发展趋势[J].遥感技术与应用,2006,(05):420-425.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700