用户名: 密码: 验证码:
嗜热脂肪酶NC-loop对催化活性、稳定性和趋异进化的作用
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
Loop作为蛋白质二级结构的重要组成元件,其柔性和运动性对于蛋白质功能,尤其是酶催化作用具有重要作用,如定位重要的催化残基、参与底物结合以及调控底物的进入和产物的释放。三级结构分析揭示α/β水解酶超家族成员(脂肪酶第五家族、环氧化物水解酶、卤代烷脱卤酶和过水解酶等家族)存在一段loop区(NC-loop)负责连接α/β水解酶催化结构域的N-末端和盖子结构域(Cap),并且NC-loop在序列、长度、柔性以及构象上差异很大。本论文以来源于嗜热细菌长白山闪烁杆菌(Fervidobacteriumchangbaicum)且属于脂肪酶第五家族的嗜热脂肪酶FClip1作为研究对象,利用蛋白质工程手段系统地研究了NC-loop在催化过程、稳定性和趋异进化中的功能性作用。
     首先,根据残基的溶剂可及性表面积(Solvent Accessible Surface),我们将FClip1的NC-loop(Asp131-Lys151)分为N-末端(酶分子内部区域,Asp131-Ser138)和C-末端(酶分子表面区域,Glu139-Lys151)两部分,并设计和构建了N-末端和C-末端不同长度的系列截短突变体;结果表明删除N-末端的3-8个残基均导致酶的催化活性显著降低(对对硝基苯酚丁酸酯的活力降低67-500倍),说明N-末端对于酶的催化作用至关重要;而删除C-末端的3-13个残基促进了酶催化活性的提高(野生型的125-221%)、78℃下热稳定性的提高(3.0-11.9倍)以及对盐酸胍半失活浓度的提高(野生型的105-167%),表明C-末端不参与酶的催化作用。其次,我们也使用丙氨酸扫描突变来确定N-末端对酶催化活性有重要影响的残基,然而活性测定表明丙氨酸的替换并未使酶的活性显著降低(野生型的71-223%),说明N-末端残基的侧链即使只保留一个甲基也不会损失酶的催化活性。进一步定点饱和突变分析显示保守残基Tyr134突变为Glu后,酶的催化活性降低为野生型4.5%,表明NC-loop对酶催化作用的重要性不仅体现在N-末端区域的构象完整性上,而且还与N-末端的氨基酸组成相关。最后,利用环化排列技术研究了C-末端区域的柔性和可塑性,突变体CP146和CP152仍保持较高的催化活性(野生型的28-52%),表明C-末端区域具有一定的柔性和可塑性;结合C-末端区域残基的删除提高了酶的活性和稳定性表明NC-loop的C-末端区域作为可塑区可以进行酶分子再设计而进一步优化酶学性质。
     FClip1的NC-loop既有其他α/β水解酶NC-loop的共同点——参与底物口袋和底物通道入口的形成,也存在明显的差异——长度、序列、构象和功能不同,推测NC-loop在α/β水解酶超家族的趋异进化中起重要作用,此外,FClip1的NC-loop序列和长度与过水解酶家族的更相似,同时FClip1也表现出较低的过水解酶活性(3mU/mg),表明FClip1可能是脂肪酶和过水解酶家族间的进化中间体。
Loop was the important element of secondary structure. Flexible loops play importantroles in protein functions. The elegant catalytic mechanism of enzymes relies on mobility andflexibility of functional loops in many aspects, such as orientating important catalytic residues,participating in the substrate binding, and regulating the entrance of substrates and the releaseof products. It has been shown that the members of α/β hydrolase superfamily (lipase Vfamily, epoxide hydrolases, haloalkane dehalogenases, and perhydrolases) possessed theNC-loop connecting the N-terminal of the catalytic domain and the Cap domain. NC-loopswere diverse in the sequence, length, flexibility, and conformation. In this work, we took thethermostable lipase FClip1from Fervidobacterium changbaicum and belonging to lipase Vfamily as a research model, investigated systemically the role of NC-loop of the lipase FClip1on catalytic process, stability, and divergent evolution by protein engineering.
     The model of FClip1possesses a catalytic domain and a cap domain. NC-loop contains21residues (Asp131-Lys151). Based on the solvent accessibility of residues, NC-loop can beroughly divided into two parts. The N-terminal (Asp131-Ser138) is located in the proteininterior and participates in the formation of the substrate binding pocket, while the C-terminal(Glu139-Lys151) is a highly surface-exposed region. We designed and constructed a series ofmutants by systematically truncating the NC-loop from its N-terminal or C-terminal.Deletions from the N-terminal or C-terminal part of NC-loop had different effects on activity.Deletions from the N-terminal caused the enzyme to retain no more than1.5%activity of wildtype. Removing as small as three residues could greatly inactivate the enzyme. TheN-terminal was very important for catalytic activity of the enzyme. However, deletions fromthe C-terminal improved the catalytic activity, the thermal stability at78oC, and the resistanceagainst GdnHCl. It was suggested that the C-terminal was not involved in the enzyme catalysis.
     Ala-scanning mutagenesis on the N-terminal and saturation mutagenesis at the Tyr134were carried out to determine the important residues for enzyme catalysis. Enzyme assayexhibited that the introduction of alanine did not change the enzyme activity of FClip1. Thissuggested that the side chains of N-terminal residues retaining only a methyl group did notlose the catalytic activity of the enzyme. Besides, the enzymatic activity of the mutant Y134Ereduced about22-fold. It indicated that the importance of NC-loop for enzyme catalysis notonly reflected in the confomational integrity, but also was related with the amino acidcomposition. We also used circular permutation to probe the flexibility and plasticity ofNC-loop. The permutants CP146and CP152maintained high enzymatic activity. It showedthat the C-terminal of NC-loop was flexible and plastic, and might be a target region forenzyme redesign to optimize further the enzymatic properties.
     The NC-loop of FClip1shared some common features with those of other α/β hydrolases,such as participating the formation of substrate pocket and the entrance of substrate channel.There are also obvious differences, such as diverse length, sequence, conformation, andfunction. This suggested that NC-loop might play an important role in the divergent evolutionof α/β hydrolase superfamily. In addition, the sequence and length of NC-loop of FClip1weremore similar with perhydrolases, and FClip1displayed a low activity of perhydrolysis (3mU/mg). It indicated that FClip1might be the evolutionary intermediate between lipases andperhydrolases.
引文
[1] Leszczynski JF, Rose GD.(1986) Loops in globular proteins: a novel category ofsecondary structure. Science234:849-855.
    [2] Holmquist M.(2000) α/β-hydrolase fold enzymes: structures, functions and mechanisms.Curr Protein Pept Sci1:209-235.
    [3] Jennens ML, Lowe ME.(1994) A surface loop covering the active site of humanpancreatic lipase influences interfacial activation and lipid binding. J Biol Chem269:25470-25474.
    [4] Dugi KA, Dichek HL, Santamarina-Fojo S.(1995) Human hepatic and lipoprotein lipase:the loop covering the catalytic site mediates lipase substrate specificity. J Biol Chem270:25396-25401.
    [5] Derreumaux P, Schlick T.(1998) The loop opening/closing motion of the enzymetriosephosphate isomerase. Biophys J74:72-81.
    [6] Vandemeulebroucke A, De Vos S, Van Holsbeke E, Steyaert J, Versées W.(2008) Aflexible loop as a functional element in the catalytic mechanism of nucleoside hydrolasefrom Trypanosoma vivax. J Biol Chem283:22272-22282.
    [7] Sampson NS, Kass IJ, Ghoshroy KB.(1998) Assessment of the role of an omega loop ofcholesterol oxidase: a truncated loop mutant has altered substrate specificity. Biochemistry37:5770-5778.
    [8] Lee CC, Medrano FJ, Craig SP III, Eakin AE.(2001) Investigation of the functional roleof active site loop II in a hypoxanthine phosphoribosyltransferase. Biochim Biophys Acta1537:63-70.
    [9] Yates SP, Merrill AR.(2001) A catalytic loop within Pseudomonas aeruginosa exotoxin Amodulates its transferase activity. J Biol Chem276:35029-35036.
    [10] Rajamohan G, Dahiya M, Mande SC, Dikshit KL.(2002) Function of the90-loop(Thr90-Glu100) region of staphylokinase in plasminogen activation probed throughsite-directed mutagenesis and loop deletion. Biochem J365:379-389.
    [11] Shi Z, Ferreira GC.(2004) Probing the active site loop motif of murine ferrochelatase byrandom mutagenesis. J Biol Chem279:19977-19986.
    [12] Pa s G, Tran V, Takahashi M, Boukari I, O'Donohue MJ.(2007) New insights into therole of the thumb-like loop in GH-11xylanases. Protein Eng Des Sel20:15-23.
    [13] Ramasubbu N, Ragunath C, Mishra PJ.(2003) Probing the role of a mobile loop insubstrate binding and enzyme activity of human salivary amylase. J Mol Biol325:1061-1076.
    [14] Tan XH, Huang SM, Ratnam M, Thompson PD, Freisheim JH.(1990) The importance ofloop region residues40-46in human dihydrofolate reductase as revealed by site-directedmutagenesis. J Biol Chem265:8027-8032.
    [15] Fukamizo T, Miyake R, Tamura A, Ohnuma T, Skriver K, Pursiainen NV, Juffer AH.(2009) A flexible loop controlling the enzymatic activity and specificity in a glycosylhydrolase family19endochitinase from barley seeds. Biochim Biophys Acta1794:1159-1167.
    [16] Zgiby S, Plater AR, Bates MA, Thomson GJ, Berry A.(2002) A functional role for aflexible loop containing Glu182in the class II fructose-1,6-bisphosphate aldolase fromEscherichia coli. J Mol Biol315:131-140.
    [17] Light SH, Minasov G, Shuvalova L, Peterson SN, Caffrey M, Anderson WF, Lavie A.(2011) A conserved surface loop in type I dehydroquinate dehydratases positions anactive site arginine and functions in substrate binding. Biochemistry50:2357-2363.
    [18] Banerjee S, Pieper U, Kapadia G, Pannell LK, Herzberg O.(1998) Role of theomega-loop in the activity, substrate specificity, and structure of classAβ-lactamase.Biochemistry37:3286-3296.
    [19] Ollis DL, Cheah E, Cygler M, Dijkstra B, Frolow F, Franken SM, Harel M, RemingtonSJ, Silman I, Schrag J, et al.(1992) The α/β hydrolase fold. Protein Eng5:197-211.
    [20] Nardini M, Dijkstra BW.(1999) α/β hydrolase fold enzymes: the family keeps growing.Curr Opin Struct Biol9:732-737.
    [21] Oey CB, Bao X, Lewis C, Kerrigan JE, Fan H.(2011) High tolerance to mutations in aChlamydia trachomatis peptide deformylase loop. World J Biol Chem2:90-97.
    [22] Pickersgill R, Varvill K, Jones S, Perry B, Fischer B, Henderson I, Garrard S, Sumner I,Goodenough P.(1994) Making a small enzyme smaller; removing the conserved loopstructure of hen lysozyme. FEBS Lett347:199-202.
    [23] Heinis C, Johnsson K.(2010) Using peptide loop insertion mutagenesis for the evolutionof proteins. Methods Mol Biol634:217-232.
    [24] Heinis C, Schmitt S, Kindermann M, Godin G, Johnsson K.(2006) Evolving thesubstrate specificity of O6-alkylguanine-DNA alkyltransferase through loop insertion forapplications in molecular imaging. ACS Chem Biol1:575-584.
    [25] Tawfik DS.(2006) Loop grafting and the origins of enzyme species. Science311:475-476.
    [26] Ochoa-Leyva A, Soberón X, Sánchez F, Argüello M, Montero-Morán G, Saab-Rincón G.(2009) Protein design through systematic catalytic loop exchange in the (β/α)8fold. JMol Biol387:949-964.
    [27] Park HS, Nam SH, Lee JK, Yoon CN, Mannervik B, Benkovic SJ, Kim HS.(2006)Design and evolution of new catalytic activity with an existing protein scaffold. Science311:535-538.
    [28] Boersma YL, Pijning T, Bosma MS, van der Sloot AM, Godinho LF, Dr ge MJ, WinterRT, van Pouderoyen G, Dijkstra BW, Quax WJ.(2008) Loop grafting of Bacillus subtilislipase A: inversion of enantioselectivity. Chem Biol15:782-789.
    [29] Hedstrom L, Szilagyi L, Rutter WJ.(1992) Converting trypsin to chymotrypsin: the roleof surface loops. Science255:1249-1253.
    [30] Jochens H, Stiba K, Savile C, Fujii R, Yu JG, Gerassenkov T, Kazlauskas RJ,Bornscheuer UT.(2009) Converting an esterase into an epoxide hydrolase. Angew ChemInt Ed Engl48:3532-3535.
    [31] Thompson MJ, Eisenberg D.(1999) Transproteomic evidence of a loop-deletionmechanism for enhancing protein thermostability. J Mol Biol290:595-604.
    [32]丁彦蕊,蔡宇杰,孙俊,须文波.(2007)二级结构组件与蛋白质耐热性的关系研究.生物信息学3:106-108.
    [33] De Simone G, Menchise V, Manco G, Mandrich L, Sorrentino N, Lang D, Rossi M,Pedone C.(2001) The crystal structure of a hyper-thermophilic carboxylesterase from thearchaeon Archaeoglobus fulgidus. J Mol Biol314:507-518.
    [34] Russell RJ, Ferguson JM, Hough DW, Danson MJ, Taylor GL.(1997) The crystalstructure of citrate synthase from the hyperthermophilic archaeon Pyrococcus furiosus at1.9A resolution. Biochemistry36:9983-9994.
    [35] Scalley-Kim M, Minard P, Baker D.(2003) Low free energy cost of very long loopinsertions in proteins. Protein Sci12:197-206.
    [36] Wang L, Rivera EV, Benavides-Garcia MG, Nall BT.(2005) Loop entropy andcytochrome c stability. J Mol Biol353:719-729.
    [37] Nagi AD, Regan L.(1997) An inverse correlation between loop length and stability in afour-helix-bundle protein. Fold Des2:67-75.
    [38] Urfer R, Kirschner K.(1992) The importance of surface loops for stabilizing an eightfoldbeta alpha barrel protein. Protein Sci1:31-45.
    [39] Badoei-Dalfard A, Khajeh K, Asghari SM, Ranjbar B, Karbalaei-Heidari HR.(2010)Enhanced activity and stability in the presence of organic solvents by increased activesite polarity and stabilization of a surface loop in a metalloprotease. J Biochem148:231-238.
    [40]王斌,王靖,余江,刘会洲.(1999) FT-Raman光谱对蛋白质二级结构的定量分析.光谱学与光谱分析,19(5)。
    [41] Loria JP, Berlow RB, Watt ED.(2008) Characterization of enzyme motions by solutionNMR relaxation dispersion. Acc Chem Res41:214-221.
    [42] Massi F, Wang C, Palmer AG III.(2006) Solution NMR and computer simulation studiesof active site loop motion in triosephosphate isomerase. Biochemistry45:10787-10794.
    [43] McElheny D, Schnell JR, Lansing JC, Dyson HJ, Wright PE.(2005) Defining the role ofactive-site loop fluctuations in dihydrofolate reductase catalysis. Proc Natl Acad SciUSA102:5032-5037.
    [44] Osborne MJ, Schnell J, Benkovic SJ, Dyson HJ, Wright PE.(2001) Backbone dynamicsin dihydrofolate reductase complexes: role of loop flexibility in the catalytic mechanism.Biochemistry40:9846-9859.
    [45] Doucet N, Watt ED, Loria JP.(2009) The flexibility of a distant loop modulates activesite motion and product release in ribonuclease A. Biochemistry48:7160-7168.
    [46] Aung HP, Bocola M, Schleper S, R hm KH.(2000) Dynamics of a mobile loop at theactive site of Escherichia coli asparaginase. Biochim Biophys Acta1481:349-359.
    [47] Munagala N, Basus VJ, Wang CC.(2001) Role of the flexible loop ofhypoxanthine-guanine-xanthine phosphoribosyltransferase from Tritrichomonas foetus inenzyme catalysis. Biochemistry40:4303-4311.
    [48] Fujii T, Iwane AH, Yanagida T, Namba K.(2010) Direct visualization of secondarystructures of F-actin by electron cryomicroscopy. Nature467:724-728.
    [49] Wang GP, Cahill SM, Liu X, Girvin ME, Grubmeyer C (1999) Motional dynamics of thecatalytic loop in OMP synthase. Biochemistry38:284-295.
    [50] Dinescu A, Anderson ME, Cundari TR.(2007) Catalytic loop motion in humanglutathione synthetase: A molecular modeling approach. Biochem Biophys Res Commun353:450-456.
    [51] Kamerlin SC, Rucker R, Boresch S.(2007) A molecular dynamics study of WPD-loopflexibility in PTP1B. Biochem Biophys Res Commun356:1011-1016.
    [52] Gunasekaran K, Ma B, Nussinov R.(2003) Triggering loops and enzyme function:identification of loops that trigger and modulate movements. J Mol Biol332:143-159.
    [53] Ho BK, Agard DA.(2009) Probing the flexibility of large conformational changes inprotein structures through local perturbations. PLoS Comput Biol5: e1000343.
    [54] Iwakura M, Nakamura T, Yamane C, Maki K.(2000) Systematic circular permutation ofan entire protein reveals essential folding elements. Nat Struct Biol7:580-585.
    [55] Hennecke J, Sebbel P, Glockshuber R.(1999) Random circular permutation of DsbAreveals segments that are essential for protein folding and stability. J Mol Biol286:1197-1215.
    [56] Kumar S, Tsai CJ, Nussinov R.(2000) Factors enhancing protein thermostability. ProteinEng13:179-191.
    [57] Yang DF, Wei YT, Huang RB.(2007) Computer-aided design of the stability of pyruvateformate-lyase from Escherichia coli by site-directed mutagenesis. Biosci BiotechnolBiochem71:746-753.
    [58] Kim HS, Le QAT, Kim YH.(2010) Development of thermostable lipase B from Candidaantarctica (CalB) through in silico design employing B-factor and RosettaDesign.Enzyme Microb Technol47:1-5.
    [59] Zhou C, Xue Y, Ma Y.(2010) Enhancing the thermostability of alpha-glucosidase fromThermoanaerobacter tengcongensis MB4by single proline substitution. J Biosci Bioeng110:12-17.
    [60] Zhu GP, Xu C, Teng MK, Tao LM, Zhu XY, Wu CJ, Hang J, Niu LW, Wang YZ.(1999)Increasing the thermostability of D-xylose isomerase by introduction of a proline into theturn of a random coil. Protein Eng12:635-638.
    [61] Strub C, Alies C, Lougarre A, Ladurantie C, Czaplicki J, Fournier D.(2004) Mutation ofexposed hydrophobic amino acids to arginine to increase protein stability. BMCBiochem5:9.
    [62] Talakad JC, Wilderman PR, Davydov DR, Kumar S, Halpert JR.(2010) Rationalengineering of cytochromes P4502B6and2B11for enhanced stability: Insights intostructural importance of residue334. Arch Biochem Biophys494:151-158.
    [63] Anbar M, Lamed R, Bayer EA.(2010) Thermostability Enhancement of Clostridiumthermocellum Cellulosomal Endoglucanase Cel8A by a Single Glycine Substitution.ChemCatChem2:997-1003.
    [64] Emond S, André I, Jaziri K, Potocki-Véronèse G, Mondon P, Bouayadi K, Kharrat H,Monsan P, Remaud-Simeon M.(2008) Combinatorial engineering to enhancethermostability of amylosucrase. Protein Sci17:967-976.
    [65] Acharya P, Rajakumara E, Sankaranarayanan R, Rao NM.(2004) Structural basis ofselection and thermostability of laboratory evolved Bacillus subtilis lipase. J Mol Biol341:1271-1281.
    [66] Johannes TW, Woodyer RD, Zhao H.(2005) Directed evolution of a thermostablephosphite dehydrogenase for NAD(P)H regeneration. Appl Environ Microbiol71:5728-5734.
    [67] Kotzia GA, Labrou NE.(2009) Engineering thermal stability of L-asparaginase by invitro directed evolution. FEBS J276:1750-1761.
    [68] Zhang XY, Ruan H, Mu L, He GQ, Tang XJ, Chen QH.(2006) Enhancement of thethermostability of β-1,3-1,4-glucanase by directed evolution. J ZHEJIANG UNIVSCIENCE A7:1948-1955.
    [69] Eijsink VG, Bj rk A, G seidnes S, Sirev g R, Synstad B, van den Burg B, Vriend G.(2004) Rational engineering of enzyme stability. J Biotechnol113:105-120.
    [70] Eijsink VG, G seidnes S, Borchert TV, van den Burg B.(2005) Directed evolution ofenzyme stability. Biomol Eng22:21-30.
    [71] Miele A, Giardina P, Notomista E, Piscitelli A, Sannia G, Faraco V.(2010) Asemi-rational approach to engineering laccase enzymes. Mol Biotechnol46:149-156.
    [72] Chi MC, Chen YH, Wu TJ, Lo HF, Lin LL.(2010) Engineering of a truncatedalpha-amylase of Bacillus sp. strain TS-23for the simultaneous improvement of thermaland oxidative stabilities. J Biosci Bioeng109:531-538.
    [73] Ma YF, Eglinton JK, Evans DE, Logue SJ, Langridge P.(2000) Removal of the fourC-terminal glycine-rich repeats enhances the thermostability and substrate bindingaffinity of barley β-amylase. Biochemistry39:13350-13355.
    [74] Liu HL, Doleyres Y, Coutinho PM, Ford C, Reilly PJ.(2000) Replacement and deletionmutations in the catalytic domain and belt region of Aspergillus awamori glucoamylaseto enhance thermostability. Protein Eng13:655-659.
    [75] Giver L, Gershenson A, Freskgard PO, Arnold FH.(1998) Directed evolution of athermostable esterase. Proc Natl Acad Sci U S A95:12809-12813.
    [76] Zhang N, Suen WC, Windsor W, Xiao L, Madison V, Zaks A.(2003) Improvingtolerance of Candida antarctica lipase B towards irreversible thermal inactivationthrough directed evolution. Protein Eng16:599-605.
    [77] Suen WC, Zhang N, Xiao L, Madison V, Zaks A.(2004) Improved activity andthermostability of Candida antarctica lipase B by DNA family shuffling. Protein EngDes Sel17:133-140.
    [78] Song JK, Rhee JS.(2000) Simultaneous enhancement of thermostability and catalyticactivity of phospholipase A1by evolutionary molecular engineering. Appl EnvironMicrobiol66:890-894.
    [79] Rha E, Kim S, Choi SL, Hong SP, Sung MH, Song JJ, Lee SG.(2009) Simultaneousimprovement of catalytic activity and thermal stability of tyrosine phenol-lyase bydirected evolution. FEBS J276:6187-6194.
    [80] Johannes TW, Woodyer RD, Zhao H.(2005) Directed evolution of a thermostablephosphite dehydrogenase for NAD(P)H regeneration. Appl Environ Microbiol71:5728-5734.
    [81] Yasukawa K, Inouye K.(2007) Improving the activity and stability of thermolysin bysite-directed mutagenesis. Biochim Biophys Acta1774:1281-1288.
    [82] Kusano M, Yasukawa K, Inouye K.(2010) Effects of the mutational combinations on theactivity and stability of thermolysin. J Biotechnol147:7-16.
    [83] Lin LL, Chen PJ, Liu JS, Wang WC, Lo HF.(2006) Identification of glutamate residuesimportant for catalytic activity or thermostability of a truncated Bacillus sp. strain TS-23alpha-amylase by site-directed mutagenesis. Protein J25:232-239.
    [84] Kourist R, Jochens H, Bartsch S, Kuipers R, Padhi SK, Gall M, B ttcher D, Joosten HJ,Bornscheuer UT.(2010) The α/β-hydrolase fold3DM database (ABHDB) as a tool forprotein engineering. Chembiochem11:1635-1643.
    [85] Cousin X, Hotelier T, Giles K, Lievin P, Toutant JP, ChatonnetA.(1997) The α/β foldfamily of proteins database and the cholinesterase gene server ESTHER. Nucleic AcidsRes25:143-146.
    [86] Fischer M, Pleiss J.(2003) The Lipase Engineering Database: a navigation and analysistool for protein families. Nucleic Acids Res31:319-321.
    [87] Murzin AG, Brenner SE, Hubbard T, Chothia C.(1995) SCOP: a structural classificationof proteins database for the investigation of sequences and structures. J Mol Biol247:536-540.
    [88] Orengo CA, Michie AD, Jones S, Jones DT, Swindells MB, Thornton JM.(1997)CATH--a hierarchic classification of protein domain structures. Structure5:1093-1108.
    [89] Monecke P, Friedemann R, Naumann S, Csuk R.(1998) Molecular Modelling Studies onthe Catalytic Mechanism of Candida Rugosa Lipase. J. Mol. Model.4:395-404.
    [90] Jaeger KE, Eggert T.(2002) Lipases for biotechnology. Curr Opin Biotechnol13:390-397.
    [91] Sharma R, Chisti Y, Banerjee UC.(2001) Production, purification, characterization, andapplications of lipases. Biotechnol Adv19:627-662.
    [92] Reetz MT.(2002) Lipases as practical biocatalysts. Curr Opin Chem Biol6:145-150.
    [93] Levisson M, van der Oost J, Kengen SW.(2009) Carboxylic ester hydrolases fromhyperthermophiles. Extremophiles13:567-581.
    [94] Huisman GW, Wonink E, Meima R, Kazemier B, Terpstra P, Witholt B.(1991)Metabolism of poly(3-hydroxyalkanoates)(PHAs) by Pseudomonas oleovorans:Identification and sequences of genes and function of the encoded proteins in thesynthesis and degradation of PHA. J Biol Chem266:2191-2198.
    [95] Feller G, Thiry M, Gerday C.(1991) Nucleotide sequence of the lipase gene lip3fromthe antarctic psychotroph Moraxella TA144. Biochim Biophys Acta1088:323-324.
    [96] Arpigny JL, Feller G, Gerday C.(1993) Cloning, sequence and structural features of alipase from the antarctic facultative psychrophile Psychrobacter immobilis B10. BiochimBiophys Acta1171:331-333.
    [97] Kashima Y, Nakajima Y, Nakano T, Tayama K, Koizumi Y, Udaka S, Yanagida F.(1999)Cloning and characterization of ethanol-regulated esterase genes in Acetobacterpasteurianus. J Biosci Bioeng87:19-27.
    [98] Arpigny JL, Jendrossek D, Jaeger KE.(1998) A novel heat-stable lipolytic enzyme fromSulfolobus acidocaldarius DSM639displaying similarity to polyhydroxyalkanoatedepolymerases. FEMS Microbiol Lett167:69-73.
    [99] Ruiz C, Falcocchio S, Pastor FI, Saso L, Diaz P.(2007) Helicobacter pylori EstV:identification, cloning, and characterization of the first lipase isolated from anepsilon-proteobacterium. Appl Environ Microbiol73:2423-2431.
    [100] Liu K, Wang J, Bu D, Zhao S, McSweeney C, Yu P, Li D.(2009) Isolation andbiochemical characterization of two lipases from a metagenomic library of ChinaHolstein cow rumen. Biochem Biophys Res Commun385:605-611.
    [101] Cai J, Xie Y, Song B, Wang Y, Zhang Z, Feng Y.(2011) Fervidobacterium changbaicumLip1: identification, cloning, and characterization of the thermophilic lipase as a newmember of bacterial lipase family V. Appl Microbiol Biotechnol89:1463-1473.
    [102] Barth S, Fischer M, Schmid RD, Pleiss J.(2004) The database of epoxide hydrolasesand haloalkane dehalogenases: one structure, many functions. Bioinformatics20:2845-2847.
    [103] Park SY, Lee SH, Lee J, Nishi K, Kim YS, et al.(2008) High-resolution structure ofybfF from Escherichia coli K12: a unique substrate-binding crevice generated bydomain arrangement. J Mol Biol376:1426-1437.
    [104] Chovancova E, Kosinski J, Bujnicki JM, Damborsky J.(2007) Phylogenetic analysis ofhaloalkane dehalogenases. Proteins: Struct Funct Bioinf67:305-316.
    [105] Nardini M, Ridder IS, Rozeboom HJ, Kalk KH, Rink R, et al.(1999) The X-rayStructure of Epoxide Hydrolase from Agrobacterium radiobacter AD1: an enzyme todetoxify harmful epoxides. J Biol Chem274:14579-14586.
    [106] Elfstr m LT, Widersten M.(2006) Implications for an ionized alkyl-enzymeintermediate during StEH1-catalyzedtrans-stilbene oxide hydrolysis. Biochemistry45:205-212.
    [107] Barth S, Fischer M, Schmid RD, Pleiss J.(2004) The database of epoxide hydrolasesand haloalkane dehalogenases: one structure, many functions. Bioinformatics20:2845-2847.
    [108] Barth S, Fischer M, Schmid RD, Pleiss J.(2004) Sequence and structure of epoxidehydrolases: a systematic analysis. Proteins55:846-855.
    [109] Cai J, Xie Y, Song B, Wang Y, Zhang Z, Feng Y.(2011) Fervidobacterium changbaicumLip1: identification, cloning, and characterization of the thermophilic lipase as a newmember of bacterial lipase family V. Appl Microbiol Biotechnol89:1463-1473.
    [1] DeLano WL.(2005) The case for open-source software in drug discovery. Drug DiscovToday10:213-217.
    [2] Combet C, Blanchet C, Geourjon C, Deléage G.(2000) NPS@: Network ProteinSequence Analysis. TIBS25:147-150.
    [3] Pollastri G, McLysaght A.(2005) Porter: a new, accurate server for protein secondarystructure prediction. Bioinformatics21:1719-1720.
    [4] Cheng J, Randall AZ, Sweredoski MJ, Baldi P.(2005) SCRATCH: a protein structureand structural feature prediction server. Nucleic Acids Res33: W72-76.
    [5] Kelley LA, Sternberg MJ.(2009) Protein structure prediction on the Web: a case studyusing the Phyre server. Nat Protoc4:363-371.
    [6] Bhattacharya A, Tejero R, Montelione GT.(2009) Evaluating protein structuresdetermined by structural genomics consortia. Proteins66:778-795.
    [7] Huang YJ, Powers R, Montelione GT.(2005) Protein NMR recall, precision, andF-measure scores (RPF scores): structure quality assessment measures based oninformation retrieval statistics. J Am Chem Soc127:1665-1674.
    [8] Laskowski RA, MacArthur MW, Moss DS, Thornton JM.(1993) PROCHECK: aprogram to check the stereochemical quality of protein structures. J Appl Cryst26:283-291.
    [9] Lovell SC, Davis IW, Arendall WB III, de Bakker PI, Word JM, Prisant MG, RichardsonJS, Richardson DC.(2003) Structure validation by Calpha geometry: phi, psi and Cbetadeviation. Proteins50:437-450.
    [10] Lüthy R, Bowie JU, Eisenberg D.(1992) Assessment of protein models withthree-dimensional profiles. Nature356:83-85.
    [11] Sippl MJ.(1993) Recognition of errors in three-dimensional structures of proteins.Proteins17:355-362.
    [12] Cheeseman JD, Tocilj A, Park S, Schrag JD, Kazlauskas RJ.(2004) Structure of an aryl
    esterase from Pseudomonas fluorescens. Acta Crystallogr D Biol Crystallogr60:
    1237-1243.
    [1] Zheng L, Baumann U, Reymond JL.(2004) An efficient one-step site-directed andsite-saturation mutagenesis protocol. Nucleic Acids Res32: e115.
    [2] Ho SN, Hunt HD, Horton RM, Pullen JK, Pease LR.(1989) Site-directed mutagenesisby overlap extension using the polymerase chain reaction. Gene77:51-59.
    [3] Bradford MM.(1976) A rapid and sensitive method for the quantitation of microgramquantities of protein utilizing the principle of protein-dye binding. Anal Biochem72:248-254.
    [4] Morris GM, Goodsell DS, Halliday RS, Huey R, Hart WE, Belew RK, Olson AJ.(1998)Automated Docking Using a Lamarckian Genetic Algorithm and and Empirical BindingFree Energy Function. J Comput Chem19:1639-1662.
    [5] Barth S, Fischer M, Schmid RD, Pleiss J.(2004) The database of epoxide hydrolasesand haloalkane dehalogenases: one structure, many functions. Bioinformatics20:2845-2847.
    [6] Barth S, Fischer M, Schmid RD, Pleiss J.(2004) Sequence and structure of epoxidehydrolases: a systematic analysis. Proteins55:846-855.
    [7] Fushinobu S, Jun SY, Hidaka M, Nojiri H, Yamane H, et al.(2005) A series of crystalstructures of a meta-cleavage product hydrolase from Pseudomonas fluorescens IP01(CumD) complexed with various cleavage products. Biosci Biotechnol Biochem69:491-498.
    [8] Fushinobu S, Saku T, Hidaka M, Jun SY, Nojiri H, et al.(2002) Crystal structures of ameta-cleavage product hydrolase from Pseudomonas fluorescens IP01(CumD)complexed with cleavage products. Protein Sci11:2184-2195.
    [9] Nardini M, Ridder IS, Rozeboom HJ, Kalk KH, Rink R, et al.(1999) The X-rayStructure of Epoxide Hydrolase from Agrobacterium radiobacter AD1: an enzyme todetoxify harmful epoxides. J Biol Chem274:14579-14586.
    [10] Elfstr m LT, Widersten M.(2006) Implications for an ionized alkyl-enzyme intermediateduring StEH1-catalyzedtrans-stilbene oxide hydrolysis. Biochemistry45:205-212.
    [11] Park SY, Lee SH, Lee J, Nishi K, Kim YS, et al.(2008) High-resolution structure of ybfFfrom Escherichia coli K12: a unique substrate-binding crevice generated by domainarrangement. J Mol Biol376:1426-1437.
    [12] Chovancova E, Kosinski J, Bujnicki JM, Damborsky J.(2007) Phylogenetic analysis ofhaloalkane dehalogenases. Proteins: Struct Funct Bioinf67:305-316.
    [1] Takano K, Higashi R, Okada J, Mukaiyama A, Tadokoro T, Koga Y, Kanaya S.(2009)Proline effect on the thermostability and slow unfolding of a hyperthermophilic protein. JBiochem145:79-85.
    [2]易薇,胡一桥.(2004)差示扫描量热法在蛋白质热变性研究中的应用.中国药学杂志,第39卷:401-403。
    [3]杨家祥,张玉慧,许兴友,刘清亮.(1999)荧光光谱在蛋白质分子构象研究中的应用.淮海工学院学报,第8卷:28-31。
    [4] Dignam JD, Qu X, Chaires JB.(2001) Equilibrium unfolding of Bombyx moriglycyl-tRNA synthetase. J Biol Chem276:4028-4037.
    [5] Hess B, Kutzner C, van der Spoel D, Lindahl E.(2008) GROMACS4: Algorithms forhighly efficient, load-balanced, and scalable molecular simulation. J Chem TheoryComput4:435-447.
    [6] Van Der Spoel D, Lindahl E, Hess B, Groenhof G, Mark AE, Berendsen HJ.(2005)GROMACS: fast, flexible, and free. J Comput Chem26:1701-1718.
    [7] Eswar N, Webb B, Marti-Renom MA, Madhusudhan MS, Eramian D, Shen MY, PieperU, Sali A.(2006) Comparative protein structure modeling using Modeller. Curr ProtocBioinformatics Chapter5: Unit5.6.
    [8] Liang J, Edelsbrunner H, Woodward C.(1998) Anatomy of protein pockets and cavities:measurement of binding site geometry and implications for ligand design. Protein Sci7:1884-1897.
    [9] Privalov PL, Tsalkova TN.(1979) Micro-and macro-stabilities of globular proteins.Nature280:693-696.
    [10] Závodszky P, Kardos J, Svingor, Petsko GA.(1998) Adjustment of conformationalflexibility is a key event in the thermal adaptation of proteins. Proc Natl Acad Sci U S A95:7406-7411.
    [11] Giver L, Gershenson A, Freskgard PO, Arnold FH.(1998) Directed evolution of athermostable esterase. Proc Natl Acad Sci U S A95:12809-12813.
    [12] Kusano M, Yasukawa K, Inouye K.(2010) Effects of the mutational combinations on theactivity and stability of thermolysin. J Biotechnol147:7-16.
    [1] Tamura K, Dudley J, Nei M&Kumar S.(2007) MEGA4: Molecular EvolutionaryGenetics Analysis (MEGA) software version4.0. Mol Biol Evol24:1596-1599.
    [2] Fischer M, Pleiss J.(2003) The Lipase Engineering Database: a navigation and analysistool for protein families. Nucleic Acids Res31:319-321.
    [3] Bains J, Kaufman L, Farnell B, Boulanger MJ.(2011) A product analog bound form of3-oxoadipate-enol-lactonase (PcaD) reveals a multifunctional role for the divergent capdomain. J Mol Biol406:649-658.
    [4] Fushinobu S, Jun SY, Hidaka M, Nojiri H, Yamane H, et al.(2005) A series of crystalstructures of a meta-cleavage product hydrolase from Pseudomonas fluorescens IP01(CumD) complexed with various cleavage products. Biosci Biotechnol Biochem69:491-498.
    [5] Fushinobu S, Saku T, Hidaka M, Jun SY, Nojiri H, et al.(2002) Crystal structures of ameta-cleavage product hydrolase from Pseudomonas fluorescens IP01(CumD)complexed with cleavage products. Protein Sci11:2184-2195.
    [6] Barth S, Fischer M, Schmid RD, Pleiss J.(2004) The database of epoxide hydrolasesand haloalkane dehalogenases: one structure, many functions. Bioinformatics20:2845-2847.
    [7] Barth S, Fischer M, Schmid RD, Pleiss J.(2004) Sequence and structure of epoxidehydrolases: a systematic analysis. Proteins55:846-855.
    [8] Elfstr m LT, Widersten M.(2006) Implications for an ionized alkyl-enzymeintermediate during StEH1-catalyzedtrans-stilbene oxide hydrolysis. Biochemistry45:205-212.
    [9] Nardini M, Ridder IS, Rozeboom HJ, Kalk KH, Rink R, et al.(1999) The X-rayStructure of Epoxide Hydrolase from Agrobacterium radiobacter AD1: an enzyme todetoxify harmful epoxides. J Biol Chem274:14579-14586.
    [10] Park SY, Lee SH, Lee J, Nishi K, Kim YS, et al.(2008) High-resolution structure of ybfFfrom Escherichia coli K12: a unique substrate-binding crevice generated by domainarrangement. J Mol Biol376:1426-1437.
    [11] Chovancova E, Kosinski J, Bujnicki JM, Damborsky J.(2007) Phylogenetic analysis ofhaloalkane dehalogenases. Proteins: Struct Funct Bioinf67:305-316.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700