用户名: 密码: 验证码:
射水抽汽低压加热除氧器性能的理论分析及实验研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
面对日益剧增的能源需求与资源接近枯竭的矛盾,热力发电厂节能降耗已迫在眉睫。目前国内外电厂低压加热系统采用的主要方式是面式加热器加热给水,诸如高端差、易结垢、凝结水含铜、系统庞大等问题一直无法得到根本有效的解决,且汽轮机的凝结水经低压加热器加热后进入除氧器中需要被蒸汽再次加热至104℃来脱氧。本文针对国家发明专利“工业锅炉引射式热力除氧器”(专利号:ZL2009101038522)的核心问题,对利用汽水混合加热的射水抽汽低压加热除氧器进行理论分析与实验研究。通过实验的方法对射水抽汽器的性能进行研究,提出采用二级引汽使凝结水温升至110℃以上,使高压过饱和水喷入大气式除氧器中迅速降压直接闪蒸除氧的方法。应用一维守恒方程从整体上建立射水抽汽器的性能计算模型,并用数值模拟方法获得其内部参数分布,进而在理论模型与实验结果的基础上分析影响其性能的主要因素,该研究具有重要的学术意义和工业应用前景。
     通过对射水抽汽器性能的实验研究发现,运行参数对其性能有很大影响。射水抽汽器的喷射系数随着进水压力和进水温度的升高而下降,随蒸汽压力的升高而增大;其出口水温随着进水压力的升高而下降,随蒸汽压力的升高而增大;其阻力系数随着进水压力和进水温度的升高而增大。存在一最佳背压值,使得射水抽汽器的出口水温最高,且当射水抽汽器背压为0.12MPa时,其出水温度可以达到110℃,因而能够达到进入除氧器的给水温度要求。实验研究还发现,两级射水抽汽器具有很好的加热性能,可使出口水温升高87℃,并且平均温升比单级引射提高23%以上,因此,对于加热不足的情况下可以采用两级引射方式。
     本文采用全局模型,通过采用一定的简化假设和经验公式,直接从整体上得到射水抽汽器的性能计算模型,进而在理论计算模型的基础上编程计算,得出了不同运行工况下射水抽汽器出口水压的变化情况。研究结果表明,计算结果与实验结果吻合较好。出口水压随着入口蒸汽压力的升高达到最大值,然后逐渐减小;进水温度的升高将降低射水抽汽器的升压性能;随着进水流量的增加,射水抽汽器的出口水压逐渐升高,当进水流量达到一定值后,继续增加进水流量时,出口水压变化较平缓。
     通过建立射水抽汽器的分析模型,从可用能角度出发分析了运行参数对射水抽汽器运行经济性的影响。研究发现,射水抽汽器的效率随进水温度的升高而增大,随喷射系数的增大而升高,随蒸汽压力的变化存在最小值,与升压比呈近似线性关系。通过对比,两级射水抽汽器的效率较高,平均比单级射水抽汽器的效率高21%。射水抽汽器各部件的损失随着喷射系数的增加而减小,且射水抽汽器内最大的损失产生于一级混合室,水喷嘴的损失最小。
     采用数值模拟方法计算并分析了结构参数对射水抽汽器性能的影响,数值计算结果表明,随着面积比的增加,射水抽汽器的喷射系数首先增大然后减小,且在面积比m=6.25时出现了最大值。对于一个给定的射水抽汽器,存在一最佳归一化喉嘴距L=6使得其获得最大的喷射系数,距离过小没有足够的时间和长度来引射蒸汽,距离太大引射蒸汽会产生回流现象,使其喷射性能下降。
     本文创新地提出采用射水抽汽低压加热除氧器来代替目前电厂中所使用的表面式低压加热器,它利用凝结水压力来引射蒸汽,使之与凝结水混合,把水加热至近饱和温度,而获得的高温过饱和水(对大气式除氧而言)在加热器的扩压段升压后可顺利地流入除氧器中闪蒸除氧。与传统的大气式热力除氧相比,这种方法减少了蒸汽消耗量。通过表面式单级回热和射水抽汽单级回热加热系统的对比分析,采用射水抽汽低压加热除氧器替代原有的面式加热器,可使机组的热效率提高1.29%,这也被永荣矿务局发电厂6MW汽轮发电机组的工业运行试验所证实,因而具有很好的工业应用前景。
At present, energy demand is rising dramatically for human life and industrialproduction. But fossil resources are being exhausted. Facing this contradiction, savingenergy and reducing consumption is imminent in power plant. The surface heater ismainly used to heat feed water in low-pressure heating system of the power plant. It hassome weaknesses, such as high terminal temperature difference, scaling easily,containing copper in the condensed water, large system and so on. The condensed waterinto the deaerator needs to be heated at temperature of104℃again by the steam.Therefore, this paper focuses the core issues of national invention patent “ejectedthermal deaerator of the industrial boiler”(patent number: ZL2009101038522). Thetheoretical analysis and experimental research on the low-pressure heater and deaeratorwith water jet steam injector is carried out. The performance of water jet steam injectoris researched by experiment. The paper presents the method of the flash deoxidation.The water is heated above the temperature of110℃by two-stage steam. Then the highpressure saturated water into the atmospheric deaerator is directly flashed to remove theoxygen. The performance calculation model for water jet steam injector is establishedaccording to one-dimensional conservation equations. The parameters distribution isobtained by numerical simulation method. Based on the theoretical model andexperimental results, the main factors of the injector performance are analyzed.
     The experimental research indicates that operating parameters have importantinfluence on the performance of water jet steam injector. The entrainment ratio of theinjector decreases with the increase of inlet water pressure and temperature, andincreases with the increase of inlet steam pressure. Similarly, the outlet watertemperature decreases with the increase of inlet water pressure, and increases with theincrease of inlet steam pressure. The resistance coefficient increases while inlet waterpressure and temperature increases. There exists an optimum back pressure valuecorresponding to the maximum of outlet water temperature. The outlet temperature canreach110℃when the back pressure of the injector is0.12MPa. Therefore, it is able tomeet the temperature requirements of feed water into the deaerator. The experimentalresults also show that the two-stage injector has good heating performance. The outletwater temperature can increase87℃, and the average temperature rise of two-stageinjector is23%more than that of single-stage one. So the two-stage injector can be used in conditions of insufficient heating.
     Based on the certain simplifying assumptions and empirical formulas, theperformance calculation model for water jet steam injector is established by the globalmodel. Then the outlet water pressure under different operating conditions is obtainedaccording to the programming calculation on the basis of the theoretical model. Theresults show that the calculated results are consistent with the experimental results. Theoutlet water pressure of the injector increases firstly, and then decreases while inletsteam pressure increases. The boosting performance of the injector will be weakenedwhile inlet water temperature increases. The outlet water pressure increases with theincrease of inlet water flux at the initial stage. When inlet water flux reaches a certainvalue, the outlet water pressure little changes.
     Exergy analysis model of injector is deduced in view of available energy point.The influence of the operating parameters on economical performance is analyzed onthe basis of exergy analysis model. The results indicate that exergy efficiency ofinjector increases with the increase of inlet water temperature and entrainment ratio. Aminimum of exergy efficiency occurs as inlet steam pressure changes. The relationshipbetween exergy efficiency and pressure ratio is approximatively linear. According to thecontrast, the average exergy efficiency of the two-stage injector is21%more than thatof the single-stage one. It is also found that the exergy losses of each componentdecrease with the increase of entrainment ratio. The amounts of exergy losses in thefirst-stage mixing chamber play a large and critical part in this process while the exergylosses of the water nozzle are the lowest.
     The influence of the structural parameters on the injector performance is analyzedby numerical simulation method. The calculated results show that the entrainment ratioof injector increases at first and then decreases with the increase of area ratio. Thereexists a maximum value of entrainment ratio corresponding to the area ratio m=6.25.For a given water jet steam injector, there exists a maximum value of entrainment ratiowhile the dimensionless distance between throat and spout L=6. It has not enough timeand length to eject the steam due to short distance. The phenomenon of the reflowingwill appear if the distance between throat and spout is too long.
     This paper presents a lower-pressure heater and deaerator with water jet steaminjector to instead of the surface heater in power plant. The steam is ejected by thecondensed water in injector and heat the water at nearly saturated temperature. The hightemperature and saturated water will flash to remove the oxygen in the deaerator after the water pressure is boosted in the diffuser. Compared to the traditional atmosphericthermal deaerator, the steam consumption will be reduced by this method. According tothe contrast, the thermal efficiency of singe-stage recuperative heating system withwater jet steam injector is more1.29%than that of heating system with surface type. Itis confirmed by the industrial test of6MW turbogenerator in Yongrong power plant.Therefore, the lower-pressure heater and deaerator with water jet steam injector hasgood foreground for industrial application.
引文
[1] JIANG Ze-min. Reflections on Energy Issues in China [J]. Journal of Shanghai JiaotongUniversity(Science),2008,13(3):257-274.
    [2]盛伟,肖增弘等.电厂热力设备及运行[M].北京:中国电力出版社2007,3.
    [3]周怀春,等.热力系统节能[M].北京:中国电力出版社,2008,3.
    [4]郑体宽.热力发电厂[M].北京:中国电力出版社,2000.
    [5]李又奎.大型汽轮机机组经济性分析与优化[D].南京:东南大学,2000.
    [6]林万超.火电厂热系统节能理论[M].西安:西安交通大学出版社,1994.
    [7]刘继平,严俊杰,邢秦安等.超音速两相流加热技术用于电厂低压加热器理论研究[J].中国电机工程学报,2003,23(12):175-178.
    [8] Инж·Epmoлоъ等,苏运昌编译.300兆瓦汽轮机组采用混合式低压加热器的经验[M].China Academic Journal Electronic Publishing house,1976,3:72-76.
    [9]费洪.混合式加热器的发展及应用简介[N].广西轻工业,2005,86(1):31-32.
    [10]史向东,刘风娥.混合式加热器重力联接探讨[J].东北电力技术,2002,(4):20-21.
    [11] Yinhai Zhu, Wenjian Cai, Changyun Wen, et al. Simplified ejector model for control andoptimization [J]. Energy Conversion and Management,2008,49:1424-1432.
    [12]田疆,刘继平等.汽液两相流喷射升压加热器供暖系统特性研究[J].节能,2003,254(9):16-19.
    [13]高阳,沙泳洪.喷射式混合加热器及其运用[J].节能与环保(运用技术),2001,9:42-43.
    [14]高阳.喷射式混合加热器在供热系统中的应用与节能[J].节能与环保技术,2006,8:41-44.
    [15]李刚,袁益超,刘聿拯.汽液喷射器特性研究的进展与现状[J].锅炉技术,2009,40(2):10-13.
    [16] JueJie Yan, ShuFeng Shao, JiPing Liu, et al. Experiment and analysis on performance ofsteam-driven jet injector for district-heating system [J].Applied Thermal Engineering,2005,25:1153-1167.
    [17]刘立成,陈国慧,严俊杰等.热电厂采用升压加热装置的经济性分析[J].汽轮机技术,2004,46(2):129-131.
    [18]伍小林.混合式加热器在电厂中的应用[J].华北电力技术,1997,4:56-59.
    [19]董厚忱.烟道式低压给水加热器经济性分析[J].发电设备,2007,1:9-11.
    [20]何大林,王志远,童明伟.火电厂运用引射混合型低压加热器的可行性试验[J].河南科技大学学报(自然科学版),2008,29(5):22-25.
    [21]田疆,刘继平等.汽液两相流喷射升压加热器供暖系统特性研究[J].节能,2003,254(9):16-19.
    [22]周兰欣,邱春花.喷射式加热器结构设计计算与分析[J].节能,2006,289(8):20-24.
    [23]周兰欣,邱春花.环周进汽型喷射式加热器特性分析[J].华北电力大学学报,2007,34(3):36-40.
    [24]曾玲娜,王刚,严俊杰等.超音速汽液两相流升压加热装置供热系统的经济性[J].山东电力技术,2003,4:1-4.
    [25]冉景煜,温宇馨.引射式加热器应用于200MW机组低压回热系统热经济性分析[J].电站系统工程,2010,25(5):39-42.
    [26]刘凤娥.2号低压加热器改为混合式加热器热经济性分析[J].山东电力高等专科学校学报,1998,1(1):50-51.
    [27]李庆,王建梅,胡念苏等.高压加热器疏水采用汽液两相流的经济性分析[J].汽轮机技术,2005,47(5):374-375.
    [28]王汝武.电厂回热系统用混合式加热器代替面式高压加热器的研究[J].中国能源:研究与探讨,2001,9:38-39.
    [29] Xiaoyao Tan, Goksen Capar, K. Li. Analysis of dissolved oxygen removal in hollow fibremembrane modules: effect of water vapor [J]. Journal of Membrane Science,2005,251:111-119.
    [30]陆宏圻.喷射技术理论及应用[M].武汉:武汉大学出版社,2005,86(1):31-32.
    [31] S. Balamurugan,V.G. Gaikar, A.W. Patwardhan. Hydrodynamic characteristics of gas-liquidejectors [J]. Chemical Engineering Research and Design,2006,84:1166-1179.
    [32] M.T. Kandakure, V.G. Gaikar, A.W. Patwardhan. Hydrodynamic aspects of ejectors [J].Chemical Engineering Science,2005,60:6391-6402.
    [33]吴继平,陈建,王振国.多喷嘴超声速引射器启动性能试验[J].推进技术,2008,29(2):174-178.
    [34]袁丹青,王冠军,乌骏等.多喷嘴射流泵数值模拟及试验研究[J].农业工程学报,2008,24(10):95-99.
    [35]高孝良.回油喷射器的设计与优化[D].大连理工大学,2009:20-28.
    [36] H. El-Dessouky, H. Ettouney, I. Alatiqi, G. Al-Nuwaibit. Evaluation of steam jet ejectors [J].Chemical Engineering and Processing,2002,41:551-561.
    [37]索科洛夫.喷射器[M].北京:科学出版社,1977.
    [38] G. Cattadori, L. Galbiati, L. Mazzocchi. A single-stage high pressure steam injector for nextgeneration reactors: test results and analysis [J]. Int. J. Multiphase Flow,1995,21(4):591-606.
    [39] N. Deberne, J. F. Leone, A. Duque,et al. A model for calculation of steam injectorperformance[J].International Journal of Multiphase Flow,1999,25(5):841-855.
    [40] T. Narabayashi, W. Mizumachi, M. Mori. Study on two-phase flow dynamics in steam injectors[J]. Nuclear Engineering and Design,1997,175:147–156.
    [41] T. Narabayashi, M. Mori, M. Nakamaru, et al. Study on Two-Phase Flow Dynamics in SteamInjectorsⅡ. High-pressure Tests Using Scale-Models [J]. Nuclear Engineering and Design,2000,200(2):261-271.
    [42] Vincent P. Manno, Abdelouhab A Dehbi. A note: A model of steam injector performance [J].Chem. Eng. Comm,1990,95(1):107-119.
    [43]严俊杰,刘继平,邢秦安等.变截面通道内超音速两相流极限升压能力研究[J].西安交通大学学报,2003,37(9):881-884.
    [44]刘继平,严俊杰,邢秦安等.低进汽压力下超音速两相流升压特性实验研究[J].工程热物理学报,2003,24(2):268-270.
    [45] DaoTong Chong, JunJie Yan, GeSheng Wu, et al. Structural optimization and experimentalinvestigation of supersonic ejectors for boosting low pressure natural gas [J]. Applied ThermalEngineering,2009,29:2799-2807.
    [46] XinZhuang Wu, JunJie Yan, WenJun Li, et al. Experimental study on sonic steam jetcondensation in quiescent subcooled water [J]. Chemical Engineering Science,2009,64:5002-5012.
    [47]徐海涛,桑芝富.蒸汽喷射器喷射系数计算的热力学模型[J].化工学报,2004,55(5):704-710.
    [48]沈胜强,张琨.新型可调式喷射器性能的计算与分析[J].热科学与技术,2007,6(3):230-234.
    [49] Shengqiang Shen, Xiaoping Qu, Bo Zhang, et al. Study of a gas-liquid ejector and itsapplication to a solar-powered bi-ejector refrigeration system [J]. Applied Thermal Engineering,2005,25:2891-2902.
    [50]赵良举,王飞,高虹等.汽-液两相流激波研究[J].核动力工程,2007,28(4):25-28.
    [51] DanLing Zeng, LiangJu Zhao, Yan Xiao. Sound velocity in vapor-liquid two-phase fluidsystem [A]. Proceedings of ICECA [C]. Wuhan: ICECA,2001,18-20.
    [52]赵良举,曾丹苓.两相流超音速流动、激波及其应用研究[J].热能动力工程,2002,17(100):332-335.
    [53]赵良举,曾丹苓,袁鹏等.汽液两相混合物的加速与激波的热力学分析[J].工程热物理学报,2001,22(3):284-286.
    [54] HEDGSDIR, HILLPG. Journal of Fluids Engineering, Trans ASME,1974,96:277-288.
    [55] N. Beithou, H.S. Aybar. A mathematical model for steam-driven jet pump [J]. InternationalJournal of Multiphase Flow,2000,26:1609-1619.
    [56] M. Ouzzane, Z. Aidoun. Model development and numerical procedure for detailed ejectoranalysis and design [J]. Applied Thermal Engineering,2003,23:2337-2351.
    [57]严俊杰,刘继平.汽液两相流激波升压特性的研究[J].西安交通大学学报,2001,35(5):467-470.
    [58]严俊杰,刘继平,林万超等.汽液两相流喷射升压装置的机理研究[J].核动力工程,2001,22(6):490-493.
    [59]严俊杰,刘继平,邢秦安等.变截面通道内超音速两相流升压过程的研究[J].西安交通大学学报,2003,37(3):221-224.
    [60] Yinhai Zhu, Wenjian Cai, Changyun Wen, et al. Numerical investigation of geometryparameters for design of high performance ejectors [J]. Applied Thermal Engineering,2009,29:898-905.
    [61]陈辉,陈修娟,肖立川.喷射器二维流场与性能的数值分析[J].煤矿机械,2008,29(6):57-60.
    [62]李海军,沈胜强,张博等.蒸汽喷射器流动参数与性能的数值分析[J].热科学与技术,2005,4(1):52-57.
    [63]龙新平,关运生,韩宁等.可调式射流泵性能的数值模拟[J].排灌机械,2008,26(6):1-5.
    [64]陈亮,刘敬辉,陈江平等.两相流喷射器流动模型研究[J].制冷学报,2010,31(2):26-31.
    [65]谢玉健,洪厚胜.蒸汽喷射器射流流场流动模型研究综述[J].石油化工设备,2008,37(2):43-47.
    [66] B. J. Huang, C. B. Jiang, F. Fu. Ejector performance characteristics and design analysis of jetrefrigeration system [J]. Journal of Engineering for Gas Turbines and Power,1985,107:792-802
    [67] K. Matsuo, K. Sasaguchi. Investigation of supersonic air ejectors, Part1: performance in thecase of zero-secondary flow [J]. Bulletin of JSME,1981,24(198):2090-2097.
    [68] K. Matsuo, K. Sasaguchi. Investigation of supersonic air ejectors, Part2: effects ofthroat-area-ratio on ejector performance [J]. Bulletin of JSME,1982,25(210):1898-1905.
    [69]韩惠霖.喷射器的新计算方法[J].流体机械,1988,12:24-32.
    [70]刘志强,沈胜强,李素芬.喷射器一维设计理论的研究进展[J].热能动力工程,2001,16(5):229-232.
    [71]沈胜强,张琨,刘佳等.喷嘴可调式喷射器性能的实验研究[J].化工学报,2009,60(6):1398-1401.
    [72] A. Levy, M. Jelinek, I. Borde. Numerical study on the design parameters of a jet ejector forabsorption systems [J]. Applied Energy,2002,72:467-478.
    [73] Randheer L. Yadaw,Ashwin W. Patwardhan. Design aspects of ejectors: Effects of suctionchamber geometry [J]. Chemical Engineering Science,2008,63:3886-3897.
    [74] K. Cizungu, M. Groll, Z.G. Ling. Modelling and optimization of two-phase ejectors for coolingsystems [J]. Applied Thermal Engineering,2005,25:1979-1994.
    [75] Y. J. Chang, Y. M. Chen. Enhancement of a steam-jet refrigerator using a novel application ofthe petal nozzle [J]. Experimental Thermal and Fluid Science,2000,22:203-211.
    [76]沈胜强,宋煜,张琨等.喷嘴可调式蒸汽喷射器的性能计算[J].热科学与技术,2010,9(1):64-69.
    [77]马昕霞,袁益超,黄鸣等.多喷嘴汽-液两相喷射性能的实验研究[J].动力工程学报,2010,30(10):777-781.
    [78]王时珍.两级吸入式高效高引射系数引射器[J].力学学报,1980,4:413-418.
    [79]李小龙,张朋飞,严俊杰等.旋流喷射乏汽回收装置性能的实验研究[J].工程热物理学报,2009,30(5):799-802.
    [80] P. Dumaz, G. Geffraye, V. Kalitvianski, et al. The DEEPSSI project, design, testing andmodeling of steam injectors [J]. Nuclear Engineering and Design,2005,235:233-251.
    [81] Bo Zhang, Shengqiang Shen. A theoretical study on a novel bi-ejector refrigeration cycle [J].Applied Thermal Engineering,2006,26:622-626.
    [82] M.D. Butterworth, T.J. Sheer. High-pressure water as the driving fluid in an ejector refrigerationsystem [J]. Applied Thermal Engineering,2007,27:2145-2152.
    [83] E. Rusly, Lu Aye, W.W.S. Charters, et al. CFD analysis of ejector in a combined ejector coolingsystem [J]. International Journal of Refrigeration,2005,28:1092-1101.
    [84] L. Kairouani, M. Elakhdar, E. Nehdi, et al. Use of ejectors in a multi-evaporator refrigerationsystem for performance enhancement [J]. International Journal of Refrigeration,2009,32:1173-1185.
    [85] Praitoon Chaiwongsa, Somchai Wongwises. Effect of throat diameters of the ejector on theperformance of the refrigeration cycle using a two-phase ejector as an expansion device [J].International Journal of Refrigeration,2007,30:601-608.
    [86] R.S. Kumar, S. Kumaraswamy, A. Mani. Experimental investigations on a two-phase jet pumpused in desalination systems [J]. Desalination,2007,204:437-447.
    [87] S. Balamurugan,Mayank D. Lad,Vilas G. Gaikar,et al. Hydrodynamics and mass transfercharacteristics of gas-liquid ejectors [J]. Chemical Engineering Journal,2007,131:83-103.
    [88] S. Balamurugan, V.G. Gaikar, A.W. Patwardhan. Effect of ejector configuration onhydrodynamic characteristics of gas-liquid ejectors [J]. Chemical Engineering Science,2008,63:721-731.
    [89]程富强.环周进汽的汽液两相流喷射升压装置研究[D].西安:西安交通大学,2002:49-54.
    [90]郭锦鹏.低压蒸汽喷射器换热装置的特性研究[D].北京:华北电力大学,2004:17-20.
    [91] T. Narabayashi, S. Ohmori, M. Mori, et al. Development of multi-stage steam injector forfeedwater heaters in simplified nuclear power plant [J]. JSME International Journal,2006,49(2):368-376.
    [92] V.P. Isachenko, S.A. Sotskov, E.V. Yakusheva, Heat transfer during steam condensation on acylindrical laminar water jet [J]. Thermal Engineering,1976,23(8):72-74.
    [93] V.P. Isachenko, A.P. Solodov, Investigation of heat transfer during steam condensation onturbulent liquid jets [J]. Thermal Engineering,1971,18(2):7-10.
    [94] V.P. Isachenko, A.P. Solodov, Heat transfer during steam condensation on continuous anddispersed liquid jets [J]. Thermal Engineering,1972,19(9):24-27.
    [95] E.V. Eroshkina, V.I. Kisina, A.L. Shvarts, et al., Experimental investigation of heat transferduring condensation of steam from a steam-water mixture on cold water jets at high pressure[J]. Thermal Engineering,2007,54(1):55-60.
    [96] E.V. Somova, V.I. Kisina, A.L. Shvarts, et al., The condensation of steam from steam-watermixture on water jets at high pressure [J]. Thermal Engineering,2009,56(1):69-77.
    [97] E.V. Somova, V.I. Kisina, A.L. Shvarts, et al., Studies of a direct-contact feed water heater at afragment of the secondary coolant circuit of a new-generation reactor plant [J]. ThermalEngineering,2009,56(6):510-515.
    [98]高阳.喷射式混合加热器在供热系统中的应用与节能[J].节能环保技术,2006,8:41-43.
    [99]王汝武.蒸汽系统节能的喷射技术[J].冶金能源,2004,23(3):42-45.
    [100] Akira Ito, Kazuaki Yamagiwa, Masato Tamura, et al., Removal of dissolved oxygen usingnon-porous hollow-fiber membranes [J]. Journal of Membrane Science,1998,145:111-117.
    [101]鲁维舜,姚文涛,宋振.工业锅炉除氧方式浅析[J].河南冶金,2005,13(6):52-54.
    [102]陈光.热力除氧技术研究及其发展[J].能源研究与信息,2010,26(2):63-71.
    [103]高璞珍,邢永辉,庞凤阁.小型热力除氧器传热计算[J].哈尔滨工程大学学报,1999,20(6):29-35.
    [104]沈慧.弹簧喷嘴除氧器的设计与应用[J].北京节能,1998,16(4):5-8.
    [105]郭玉双,潘效军.除氧器运行方式性能分析[J].东北电力学院学报,1998,18(4):89-91.
    [106]张兢.热力除氧器的选择与使用[J].工业锅炉,1991,7(1):30-32.
    [107]谢建育,黄卫剑.热力除氧机理及除氧器水位控制系统的调整策略[J].广东电力,2006,19(12):41-43.
    [108] S. He, Y. Li, R.Z. Wang. Progress of mathematical modeling on ejectors [J]. Renewable andSustainable Energy Reviews,2009,13:1760-1780.
    [109] M. Yari. Performance analysis and optimization of a new two-stage ejector-expansiontranscritical CO2refrigeration cycle [J]. International Journal of Thermal Sciences,2009,48:1997-2005.
    [110] G. Grazzini, A. Rocchetti. Numerical optimization of a two-stage ejector refrigeration plant [J].International Journal of Refrigeration,2002,25:621-633.
    [111]童明伟,白秀娟,蔡琴.单双级引射混合式低压加热器加热特性的实验研究[J].中国电机工程学报,2010,30(5):83-86.
    [112]童明伟,白秀娟,蔡琴.引射混合式低压加热器加热特性的实验[J].重庆大学学报,2009,32(12):1436-1439.
    [113]童明伟,刘宏帅,童师颖.工业锅炉引射式热力除氧器.中国,2009,200910103852(P):2009.
    [114] Kim J H, Simon T W. Policy on reporting uncertainties in experimental measurements andresults [J]. Journal of heat transfer,1993,115(1):5-6.
    [115] Moffat R J. Using uncertainty analysis in the planning of an experiment [J]. ASME J. FluidsEngineering,1985,107(2):173-178.
    [116]徐海涛.蒸汽喷射器的理论及数值研究[D].南京:南京工业大学,2003:22-23.
    [117]冯骥.喷射器噪声控制的理论与数值研究[D].呼和浩特:内蒙古农业大学,2007:30-52.
    [118]薛凤娟.气液两相喷射器的实验研究[D].大连:大连理工大学,2008:34-44.
    [119]邱春花.环周进汽型喷射式加热器特性研究[D].华北电力大学,2006:13-14.
    [120] G. Anand. Phenomenological and mathematical modeling of a high-pressure steam driven jetinjector [D]. Ohio State: The Ohio State University, U.S.A.1993.
    [121] W. E. Lear, et al. Design consideration of jet pumps with supersonic two-phase flow andshocks for refrigeration and thermal management applications [J]. International Journal ofEnergy Research,2000,24(15):1373-1389.
    [122] S. A. Sherif, W. E. Lear, J. M. Steadham, P. L. hunt, J. B. Holladay. Analysis and modeling of atwo-phase jet pump of a thermal management system for aerospace applications [J].International Journal of Mechanical Sciences,2000,42:185-198.
    [123]严俊杰,刘继平,林万超,等.汽液两相流激波升压特性的研究[J].西安交通大学学报,2001,35(5):467-470.
    [124] Saltanov, G. A., Tsiklauri, G. V., Shanin, V. K.,1970. Shock waves in a flow of wet vapor withhigh liquid phase content [J]. Teplofisika Vysokikh Temperature,8:571-578.
    [125] Young J. B., Guha A.,1991. Normal shock-wave structure in two-phase vapor-droplet flows[J]. J. Fluid Mech.228,243-274.
    [126] J.J. Yan, S.F. Shao, J.P. Liu, Z. Zhang. Experiment and analysis on performance ofsteam-driven jet injector for district-heating system [J]. Applied Thermal Engineering,2005,25:1153-1167.
    [127]傅秦生.能量系统的热力学分析方法[M].西安交通大学出版社,2005.
    [128] A. Bejan, G. Tsatsaronis and M. Moran. Thermal Design and Optimization, Inc., New York,NY,1996.
    [129]姚志刚.汽液两相流凝结激波升压装置的性能研究[D].西安交通大学,2001:56-57.
    [130] P. Regulagadda, I. Dincer, G.F. Naterer. Exergy analysis of a thermal power plant withmeasured boiler and turbine losses [J]. Applied Thermal Engineering,2010,30:970-976.
    [131] Marian Trela, Roman Kwidzinski, Dariusz Butrymowicz, et al. Exergy analysis of two-phasesteam-water injector [J]. Applied Thermal Engineering,2010,30:340-346.
    [132] Yiping Dai, Jiangfeng Wang, Lin Gao. Exergy analysis, parametric analysis and optimizationfor a novel combined power and ejector refrigeration cycle [J]. Applied Thermal Engineering,2009,29:1983-1990.
    [133] Jianlin Yu, Gaolei Tian, Zong Xu. Exergy analysis of Joule-Thomson cryogenic refrigerationcycle with an ejector [J]. Energy,2009,34:1864-1869.
    [134] JunJie Yan, DaoTong Chong, XinZhuang Wu. Effect of swirling vanes on performance ofsteam-water jet injector [J]. Applied Thermal Engineering,2010,30:623-630.
    [135] Jong-Jin Kim, Myoung-Ho Park, chul Kim. Performance improvemen of integrated coalgasification combined cycle by a new approach in exergy analysis [J]. Korean J. Chem. Eng.,2001,18(1):94-100.
    [136]张博,沈胜强,李海军等.二维流动模型的喷射器性能分析研究[J].热科学与技术,2003,2(2):149-154.
    [137]杨燕勤,安志强,经树栋.喷射器流场的数值模拟研究[J].西南民族大学学报,2006,32(2):316-324.
    [138]沈志勇.微小型蒸汽喷射器的数值模拟和优化研究[D].东华大学,2007:36-37.
    [139]韩占忠,王敬,兰小平. FLUENT流体工程仿真计算实例与应用[M].北京:北京理工大学出版社,2004:20-30.
    [140] Handbook of Fluent6.3.26, Fluetn.inc,2005.
    [141] Sideman S., Maron D.M. Advances in Heat Transfer. Academic Press, Newyork.1982,15:227.
    [142]严俊杰,武心壮,种道彤等.低温乏汽回收利用装置性能的实验研究[J].西安交通大学学报,2009,43(5):8-12.
    [143]季红军,陶乐仁,王金锋等.喷嘴位置对喷射器的性能影响的研究[J].制冷,2007,26(4):16-19.
    [144]李海军.喷射器性能、结构及特殊流动现象研究[D].大连理工大学,2004:98-101.
    [145]李德胜.两相超音速流动及增压换热器设计[D].重庆大学,2008:50-51.
    [146]蓝恭淳.热水闪蒸除氧流程与装置[J].天津商学院学报,1995,3:11-16.
    [147]解鲁生.锅炉水处理原理与实践[M].北京:中国建筑工业出版社,1997:260-262.
    [148]明申金.热力除氧器传热传质分析[D].哈尔滨:哈尔滨工程大学硕士学位论文,2000:14-15.
    [149]霍银坤.锅炉给水除氧采用高新技术替代传统技术的节能减排经济效益分析[J].机电信息,2010,249(3):33-41.
    [150] D. Saury, S. Harmand, M. Siroux. Flash evaporation from a water pool: Influence of the liquidheight and of the depressurization rate [J]. International Journal of Thermal Sciences,2005,44:953-965.
    [151] Adel K. El-Fiqi, N.H. Ali, H.T. El-Dessouky, et al. Flash evaporation in a superheated waterliquid jet [J]. Desalination,2007,206:311-321.
    [152]白秀娟.引射式低压加热器的性能试验及应用研究[D].重庆大学,2010:60-70.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700