用户名: 密码: 验证码:
多层住宅自保温建筑构造体系研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
建筑节能作为我国重要的发展战略,实现全民节能成为我国各地区面临的重大课题之一。由于县域城镇及乡村地区与大中城市各方面的差异,使得在这些地区建筑节能处于停滞不前的状态。自保温建筑构造体系的提出,使得“建筑节能”在县域城镇及乡村地区推广应用成为可能。开展自保温建筑构造体系的研究,提高县域城镇及乡村地区冬季室内热环境质量,是推进我国实现“全民节能”的重要举措。
     针对县域城镇及乡村地区建筑节能匮乏的现状,运用理论计算、实验测试、数值模拟相结合的研究方法对以DS承重空心砖自保温墙体为主体承重构件的自保温建筑构造体系进行了系统的研究。本文研究得到的主要成果为:
     (1)运用ANSYS热分析软件对于DS承重空心砖和KP1多孔砖在稳态传热条件下的内部热流分布及温度梯度分布进行模拟。通过模拟不同的工况,得到三种砌块的热工参数。将模拟计算的结果与已知文献所列的数值以及通过实验测试得出的测试值进行比较,证明了运用ANSYS热分析软件对DS空心砖热工参数的模拟计算具有可靠性,可以应用于随后墙体热工参数的计算中。
     (2)通过建立以DS承重空心砖自保温墙体为基础的典型自保温建筑模型,以陕西关中的气候条件为基础,分析了这一自保温建筑构造体系在这一地区的应用性。
     (3)提出墙体非对称式保温设计原理。以傅里叶定律为理论依据,在保证建筑各朝向具有相同的室内热环境的基础上,提出各朝向在进行墙体保温设计时应该充分考虑室外空气综合温度对于不同朝向的影响进行非对称式保温设计。运用理论计算分析了应用非对称式保温设计原理设计时的建筑用材节约性的优化目标,同时运用运用EnergyPlus动态能耗软件模拟分析了应用非对称式保温设计原理设计时减低建筑能耗的优化目标。
     (4)以不同地域气候为计算条件,分析DS承重空心砖自保温墙体的地域适应性。在严寒地区建议采用以DS空心砖自保温墙体与保温砂浆相结合的墙体保温构造推广使用,在寒冷地区可直接采用DS空心砖自保温墙体并且应用墙体非对称式保温设计原理优化自保温墙体构造设计。
     拟通过本研究,为严寒和寒冷地区的县域城镇及乡村居住建筑节能设计做出有益的补充与完善,为针对这些地区编制的居住建筑节能构造图集提供理论依据。
Energy efficiency is an important developing strategy in our country and realizingnational energy saving becomes one of the major issues. Because of the differencesbetween counties and cities, the development of energy efficiency has been slowdownin these places of counties. With the advancing of self-insulation buildings, it is possibleto make energy saving popular. Carrying out the Studies on self-insulation buildings,improving the indoor heat environment quality become a significant step to achievenational energy saving.
     Based on the present of energy efficiency in counties, the paper uses the methodscombined with theoretical calculation, test and numerical simulation to researching theself-insulation buildings which main bearing structure is DS bearing hollow bricksself-insulations. Through systematic research, the major productions gained are:
     (1) Analysis the distribution of heat flux and gradient of three bricks, DS1brick,DS2brick and KP1brick to use the ANSYS soft. Providing the soft to simulate thethermal parameters in different conditions and comparing with the results by test,improves that the parameters simulated from the ANSYS soft can use for flowedcalculation.
     (2) Based on the climate of central Shaanxi area, take the DS bearing hollow brickself-insulation wall as main structure of building, analysis the applicability of thisstructural system. Using EnergyPlus software to optimize building envelopes to adaptthe two-way energy efficiency including energy saving and economic saves.
     (3) Proposing the wall asymmetric design theory. Based on the fourier law, aim tohave same indoor thermal environment of all directions, propose that the outdoor air comprehensive temperature should be taken into account the design of wall structure.Using the methods of theoretical calculation and soft simulation improve the twooptimized purposes.
     (4) On the basis of different areas, analyze the regional adaptation ofself-insulation wall. In the severe cold region, advising to use self-insulation wallcombined with Inorganic insulation mortar and in cold region can use DS hollow bricksself-insulation wall direct and take advantage of the wall asymmetric design theory tooptimize the self-insulation wall structure.
     Expect this study make a useful complement for energy efficiency of county’sresidential buildings in severe cold and cold zones and provides theory basis for editingenergy efficiency construction atlas.
引文
[1]清华大学建筑节能研究中心.中国建筑节能年度发展研究报告[R].北京:中国建筑工业出版社,2009.
    [2]姬广庆.正确解读“禁实”政策,因地制宜的发展烧结多孔砖、空心砖及砌块[J].砖瓦,2009,9:4-9.
    [3]石义海.皖西南地区建筑外墙自保温体系研究[J].铜陵学院学报,2008,4:64-66.
    [4]湛轩业.西欧烧结外墙保温隔热砌块的发展及应用(上)[J].墙体革新与建筑节能,2009,3:32-36.
    [5]湛轩业.西欧烧结外墙保温隔热砌块的发展及应用(下)[J].墙体革新与建筑节能,2009,4:38-43.
    [6]湛轩业.国内开发烧结保温隔热砌块的新视角——西欧烧结砌块的发展和填充砌块目前发展形势综述[J].砖瓦世界,2010,10:3-15.
    [7]成都市墙材革新与建筑节能办公室.成都自保温新型墙材研究与示范[J].建设科技,:24-25
    [8] Yang Dingyi, Sun Wei, Liu Zhiyong, et al.Research on improving the heat insulationand preservation properties of small-size concrete hollow blocks [J]. Cement andConcrete Research,2002.33:P1357-1361
    [9]王沁芳,王智,张朝辉.轻集料混凝土空心砌块热工性能及其改善措施[J].新型建筑材料,2006,6:58-60.
    [10]陈东.加气混凝土自保温节能体系的研究与实践[J].福建建筑,20076:58-60.
    [11]范晓鸣,黄兴田,方国标,樊传刚. Z型自保温混凝土空心砌块热工性能分析[J].新型墙材,2009,1:31-32.
    [12]马翠芬,赵雷.自保温节能承重多孔砖的研究与应用[J].山东建筑大学学报,2009,24(1):81-83.
    [13]谢自强,田学春,董孟能.节能型烧结页岩空心砖外墙自保温体系[J].新型建筑材料,2009,4:31-33.
    [14]邱勇.建筑外墙自保温材料及体系研究[D].浙江:浙江大学,2007.
    [15]黄明,邹小军.SJN轻质复合板在高层住宅自保温墙体中的应用[J].建筑节能,2010,1:51-52.
    [16]崔玉华,吴秀英.新型自保温砌块结构的开发应用与产业化[J].砖瓦世界,2010,3:23-28.
    [17]周述光,陈新孝.严寒地区自保温砌块的研制[J].新型建筑材料,2009,4:34-36.
    [18]金立虎.自保温复合砌块在肇州新农村节能住宅上的应用[J].建筑砌块与砌块建筑,2009,5:4-8.
    [19]屈志中.外墙自保温体系的应用与前景[J].建筑技术,2009,40(12):1096-1099.
    [20]刘加平.建筑物理[M].北京:中国建筑工业出版社,2009.
    [21]西安市建委,陕西省标准设计办公室等.推广应用空心砖节能建筑体系——空心砖应用技术的研究完善和试点[R].西安,1997.
    [22] GB/T13474-1992.建筑构件稳态热传递性质的测定标准和防护热箱法[S].北京:中国标准出版社,1992.
    [23] GB/T13474-2008/ISO8990:1994(E).绝热稳态传热性质的测定标定和防护热箱法[S].北京:中国标准出版社,1994.
    [24] GB51076-93.民用建筑热工设计规范[S].北京:中国标准出版社,1993.
    [25] GJBT-726(04J01).砖墙建筑构造[S].北京:中国标准出版社,2004.
    [26]代学灵,赵华玮等.玻化微珠在自保温墙体中的应用研究[J].工程力学,2010,6(2):172-183.
    [27]彦启森,赵庆珠.建筑热过程[M].北京:中国建筑工业出版社,2000.
    [28]张晴原.中国建筑用标准气象数据库[M].北京:机械工业出版社.2004.
    [29] JGJ26-2010.严寒和寒冷地区居住建筑节能设计标准[S].北京:中国标准出版社,2010.
    [30]孟繁华,王殿军.提高空心砖和多孔砖热工性能的措施[J].砖瓦,2002,2:47-48.
    [31] Zhao C Y, Tao W Q. Natural Convections in Conjugated Single and DoubleEnclosures. Int. J. Heat Mass Transfer,1995,30.
    [32] Lorente S, Petit M, Javelas R. Simplified Analytical Model for Thermal Transfer inVertical Hollow Brick. Energy and Buildings,1996,23.
    [33] Lorente S, Petit M, Javelas R. The Effects of Temperature Conditions on theThermal Resistance of Walls Made with Different Shapes Vertical Hollow Bricks.Energy and Buildings,1998,28.
    [34] Del Coz Diaz J J, Garcia Neito P J, Martin A, et al. Non-linear Thermal Analysis ofLight Concrete Hollow Brick Walls by the Finite Element Method andExperimental Validation. Applied Thermal Engineering,2006,25.
    [35] Del Coz Diaz J J, Garcia Neito P J, Martin A, et al. Analysis and Optimization ofthe Heat-insulating Light Concrete Hollow Brick Walls Design by the FiniteElement Method. Applied Thermal Engineering,2007,26.
    [36] Tao W Q. Numerical Heat Transfer.2nd edition. Xi’an: Xi’an Jiaotong UniversityPress,2001
    [37] Li Z Y, Tao W Q. A new Stability-guaranteed Second-order Difference Scheme.Numerical Heat Transfer, Part B,2002,42.
    [38] Incropera F P, Dewitt D P. Introduction to Heat Transfer. Fifth Edition. New York:John Wiley&Sons,2002.
    [39] Danko, G. The possibility of determining and using a new local heat-transfercoefficient. International Journal of Heat and Mass Transfer[J],1983,26(11),1679-1683.
    [40] Emmel, M.G., Abadie, M.O.andMendes, N. New external convective heat transfercoefficient correlations for isolated low-rise buildings. Energy and Buildings[J],2007,39(3),334-342.
    [41] Fohanno, S.andPolidori, G. Modelling of natural convective heat transfer at aninternal surface. Energy and Buildings[J],2006,38(5),548-552.
    [42] Hagishima, A.andTanimoto, J. Field measurements for estimating the convectiveheat transfer coefficient at building surfaces. Building and Environment[J],2003,38(7),873-881.
    [43] Hagishima, A., Tanimoto, J.andNarita, K. Intercomparisons of experimentalconvective heat transfer coefficients and mass transfer coefficients of urbansurfaces. Boundary-Layer Meteorology[J],2005,117(3),551-575.
    [44] Hussein, H.J.andMartinuzzi, R.J. Energy balance for turbulent flow around asurface mounted cube placed in a channel. Physics of Fluids[J],1996,8(3),764-780.
    [45] Irving, A.D., Dewson, T., Hong, G.andDay, B. Time-series estimation of convectiveheat-transfer coefficients. Building and Environment[J],1994,29(1),89-95.
    [46] Khalifa, A.J.N. Natural convective heat transfer coefficient-a review I. Isolatedvertical and horizontal surfaces. Energy Conversion and Management[J],2001,42(4),491-503.
    [47] Khalifa, A.J.N. Natural convective heat transfer coefficient-a review II. Surfacesin two-and three-dimensional enclosures Energy Conversion and Management[J],2001,42(4),504-516.
    [48] Kimura, K.andIto, N. a field experiment study on the convective heat transfercoefficient on exterior surface of a building. ASHRAE Trans.[J],1972.
    [49] Laboratory, L.B. EnergyPlus Engineering Reference. April9,2006.
    [50] Loveday, D.L.andTaki, A.H. Convective heat transfer coefficients at a plane surfaceon a full-scale building facade. International Journal of Heat and Mass Transfer[J],1996,39(8),1729-1742.
    [51] M.Yazdanian, J.H.K. Measurement of the exterior convective film coefficient forwindows in low-rise buildings. ASHARE Trans[J],1994,100(part1),1087-1095.
    [52] Nicol, K. Energy-balance of an exterior window surface. Building andEnvironment[J],1977,12(4),214-219.
    [53] Rahman, M.M.and Carey, V.P. Experimental measurements of orthogonal mixedconvection in a partial enclosure. International Journal of Heat and MassTransfer[J],1990,33(6),1307-1319.
    [54] Sharples, S. Full-scale measurements of convective energy-losses from exteriorbuilding surfaces. Building and Environment[J],1984,19(1),31-39.
    [55] Sharples, S.andCharlesworth, P.S. Full-scale measurements of wind-inducedconvective heat transfer from a roof-mounted flat plate solar collector. SolarEnergy[J],1998,62(2),69-76.
    [56] T.M.McClellanandC.O.Pedersen. Investigation of outside heat balance models foruse in a heat balance cooling load calculation procedure. ASHARE Trans[J],1997,103,469-483.
    [57] Taki, A.H.andLoveday, D.L. Surface convection coefficients for building facadeswith vertical mullion-type protrusions. Proceedings of the Institution of MechanicalEngineers Part a-Journal of Power and Energy[J],1996,210(A2),164-175.
    [58] Taki, A.H.andLoveday, D.L. External convection coefficients for framedrectangular elements on building facades. Energy and Buildings[J],1996,24(2),147-153.
    [59] Wallenten, P. Convective heat transfer coefficients in a full-scale room with andwithout furniture. Building and Environment[J],2001,36(6),743-751.
    [60] Zhai, Z.Q.andChen, Q.Y. Numerical determination and treatment of convectiveheat transfer coefficient in the coupled building energy and CFD simulation.Building and Environment[J],2004,39(8),1001-1009.
    [61] Yiqun Pan, Rongxin Yin, Zhizhong Huang, Energy modeling of two officebuildings with data center for green building design, Energy and Buildings2(34)(2004).
    [62] N. Eskin, H. Turkmen, Analysis of annual heating and cooling energy requirementsfor office buildings in different climates in Turkey, Energy and Buildings (2007) inpress.
    [63] D.B. Crawley, et al., EnergyPlus: creating a new-generation building energysimulation program, Energy and Buildings33(4)(2001)443–456.
    [64] Y. Pan, Z. Huang, B. Zhang, H. Zhou, et al., Feasibility of Appling distributingenergy supply system in an new hospital in Shanghai, Journal of HV&AC (China)2(34)(2004).
    [65]南艳丽,冯雅等.外墙自保温体系热桥实验研究[J].建筑科学,2007,23(10):74-76.
    [66]刘加平.城市环境物理[M].西安:西安交通大学出版社,1993.
    [67]章熙民等.传热学(新二版)[M].北京:中国建筑工业出版社,1994.
    [68] B.H.巴格斯罗夫斯基著,单寄平译.建筑热物理学[M].北京:中国建筑工业出版社,1988.
    [69]雷柯夫.建筑热物理理论基础[M].北京:中国建筑工业出版社,1965.
    [70]陈启高.建筑热物理基础[M].西安:西安交通大学出版社,1989.
    [71]沈韫元,白玉珍等.建筑材料热物理性能[M].北京:中国建筑工业出版社,1981.
    [72]庄涛声.建筑的节能[M].上海:同济大学出版社,1988.
    [73]郭宽良.计算传热学[M].合肥:中国科技大学出版社,1988.
    [74]陶文铨编著.数值传热学(第2版)[M].西安:西安交通大学出版社,2001.
    [75]杨世铭,陶文铨编著.传热学(第三版)[M].北京:高等教育出版社,2001.
    [76]马保国等编著.外墙外保温技术[M].北京:化学工业出版社.2007.
    [77]鲍国芳等编著.新型墙体与节能保温建材[M].北京:机械工业出版社.2008.
    [78]杨柳.建筑气候分析与设计策略研究[D].西安:西安建筑科技大学,2003.
    [79]周伟.建筑科技解析及传统民居的再生研究[D].西安:西安建筑科技大学,2004.
    [80]赵群.传统民居生态建筑经验以及语言模式研究[D].西安:西安建筑科技大学,2004.
    [81]桑国臣.西藏高原低能耗居住建筑构造体系研究[D].西安:西安建筑科技大学,2009.
    [82]王晓路、黄大宇等.周期性条件下外保温空心砖墙体传热性能的数值计算与分析[J].工程热物理学报,2009,5:814-816..
    [83]李临平,吴志根等.粘土空心砖结构优化的数值模拟[J].工程热物理学报,2008,5:127-130.
    [84]陈利群,李平等.夏热冬冷地区墙体自保温体系研究[J].建筑节能,2009,3:16-18.
    [85]张俊松.夏热冬冷地区外墙自保温体系与建筑节能[J].住宅科技,2008,4:9-12..
    [86]石义海.外墙自保温体系在夏热冬冷地区的可行性分析[J].住宅科技,2008,5:23-26.
    [87]陈咏梅.建筑外围护结构自保温体系的研究与应用[J].建筑施工,2006,28(9):77-78.
    [88]王继唐.空心砖与空心砖节能建筑[J].墙材革新与建筑节能,2000,1:13-17.
    [89]陈荣生.烧结多孔空心砖两种工艺的技术经济分析[J].砖瓦世界,2006,3:33-35.
    [90]韦延年,于忠等.应以系统概念研发和应用自保温墙体材料[J].新型墙材,2008,3:4,25-28.
    [91]张朝晖.ANSYS12.0热分析工程应用实战手册[M].北京:中国铁道出版社,2010.
    [92]陕02J12-1.外墙外保温构造图集[S].西安:陕西省标准出版社,2003.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700