用户名: 密码: 验证码:
大跨径三塔结合梁斜拉桥极限承载能力研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
武汉二七长江大桥是世界上跨径最大的三塔结合梁斜拉桥,是新型的大型多塔斜拉桥结构,不仅是城市交通的重要枢纽,也是武汉市的标志性建筑,具有重要的经济和社会地位,所以,其结构安全性能是社会和研究人员所关心的首要问题。由于结构的安全性能是由其极限承载能力决定的,所以对该斜拉桥进行极限承载能力研究是很重要的。虽然严格地讲,桥梁极限承载能力包含静力、地震、风力、船撞、爆炸等荷载作用下结构的各种最大承受荷载能力,但其中最典型和最重要的是静力作用下的极限承载力和动力及偶然荷载作用下的抗震能力,且它们是确定桥梁结构静力和地震安全性的基础,所以对这两方面的研究极为重要。由于该斜拉桥跨径大,桥塔多,主梁采用较柔的结合梁,所以无论是极限承载力分析还是抗震能力分析,结构多重非线性突出,结构响应影响因素多,计算难度大。因此,为保证结构运营使用过程中的安全性和认识结构的静、动力力学性能,对该新型斜拉桥进行极限承载力研究和抗震能力研究是非常必要的。
     本文以武汉二七长江大桥为工程背景,首先研究了几何、材料非线性和结合梁界面滑移效应的计算方法,形成了大跨径结合梁斜拉桥多重非线性极限承载力分析方法;其次采用塑性铰考虑结构在地震作用下的混凝土开裂、钢筋屈服等特点以及利用二分法计算程序使计算机自动分析和减少计算量,提出了基于塑性铰模型的斜拉桥抗震能力时程分析法;最后,针对桥梁混凝土材料的疲劳损伤和地震作用下的应变率效应会影响结构的抗震能力,研究建立了基于疲劳损伤本构模型的地震中结构混凝土应变率效应分析方法。本文的研究可促进大跨径斜拉桥的极限承载力和抗震能力计算方法的进步和提高,进一步探明多塔结合梁斜拉桥的力学性能,为大型桥梁结构极限承载能力分析和安全性能评估提供理论基础,具有重要的理论和现实意义。主要内容和研究成果如下:
     (1)系统研究了结构几何、材料非线性和结合梁界面滑移效应的计算方法,形成了大跨径结合梁斜拉桥多重非线性极限承载力分析方法,并分析了大跨径三塔结合梁斜拉桥极限承载力特性和研究了重要非线性因素对承载能力极限状态的结构响应的影响规律。结果表明,该三塔斜拉桥极限承载力为P恒+4.1P活,安全系数为2.41,结构具有较高的极限承载力和安全性;中塔抗弯能力对整体结构极限承载力的影响较大;材料非线性对结构承载能力极限状态的响应影响相对较大,结合梁界面滑移效应和斜拉索垂度效应的影响较小。
     (2)根据斜拉桥地震作用特点,系统地研究了考虑几何非线性、多维地震作用以及行波效应的斜拉桥地震反应时程分析方法,在此基础上研究了大跨径三塔斜拉桥在三向地震作用下的结构响应及行波效应,获得该新型桥梁的地震反应特性及行波效应对结构响应的影响规律。结果表明,三塔斜拉桥中塔的最大弯矩要远远大于边塔,桥塔的横向地震反应总体较小;行波效应对先到达的边塔的纵向地震反应的影响最大,其次是最后到达的边塔,但对中塔的地震反应影响很小,行波效应对结构横向地震反应的影响很小。
     (3)提出了基于塑性铰模型的斜拉桥抗震能力时程分析法。该方法充分利用了时程分析法的优点,采用塑性铰考虑结构在地震作用下的混凝土开裂、钢筋屈服等截面损伤特点,并利用二分法计算程序使计算机自动分析和减少计算量,因此分析斜拉桥的抗震能力较为简便;采用该方法既可以获得结构的抗震能力,还可以得到抗震能力状态结构的地震反应特性和结构失效模式。通过该方法研究了大跨径三塔斜拉桥的抗震能力,结果表明,基于塑性铰模型的抗震能力时程分析法计算效果较好;该三塔斜拉桥能承受的最大地震作用的峰值加速度为0.302g,结构具有较高的抗震能力;在抗震能力状态,中塔地震反应最大,是控制整体桥梁抗震能力的关键结构。
     (4)建立了基于疲劳损伤本构模型的地震中结构混凝土应变率效应分析方法。因为桥梁混凝土材料在运营使用过程中受到疲劳荷载作用而会出现损伤,而在地震作用下又具有应变率效应,两者都会影响结构抗震能力,所以分析计算时应当予以考虑,以准确评价结构地震安全性。为此,基于边界面理论和连续损伤力学理论,推导了应变控制的拉、压混凝土疲劳损伤本构模型,并通过对应变能释放率进行Perzyna粘性规则化,形成了包含静力、应变率相关及无关的统一疲劳损伤本构模型,通过与文献模拟试验进行对比验证,表明模型计算效果较好。由此建立了基于疲劳损本构模型的结构混凝土应变率效应分析方法,并利用该方法对在地震作用下斜拉桥混凝土的应变率效应进行了应用性分析。
Wuhan Erqi Yangzi River Brige is a composite girder cable-stayed bridge with three pylons, which has the longest span in this kind of bridges in the world, and is a new type of multi-tower cable-stayed bridge. Because the bridge is a very important huge of traffic and transportation and one of landmark architectures of Wuhan city, it posses a very important position in economy and society. Therefore, the safety performance of this bridge is a primary important problem for attention by bridge experts. Because safety performance of structure is determinated by its ultimate load-carrying capacity, it is important to research the ultimate load-carrying capacity of this new type of cable-stayed bridge. Though the ultimate load-carrying load-carrying capacity of a bridge includes the largest loads under static load, earthquake, wind load, explosion load, or ship collision and so on, the failure load under static load and seismic resistance capacity of a bridge are most typical and important, which provide foundation for determining safety performance of bridge under static load and earthquake, so researchs on them are very important. The cable-stayed bridge has very long spans, many pylons and composite girder which is more flexure, so the multiple nonlinearities are very large in ultimate load-carrying capacity state of structure, and calculations of those nonlinear effects are very complex. In order to make clear the ultimate load-carrying capacity of the cable-stayed bridge so as to make sure the safety performance of structure in period of service and understand the mechanic performance of the structure under static or dynamic load, it is quite necessary to research the failure load and seismic resistance capacity of the long-span composite girder cable-stayed bridge with three pylons.
     This paper takes Wuhan Erqi Yangzi River Brige as the background of research. Firstly methods are studied for calculating geometric nonlinearity, material nonlinearity and interface slip effect in composite girder, so a method considering multiple nonlinearities is formed to analyze the ultimate load-carrying capacity of long-span composite girder cable-stayed bridges. Secondly making full use of advantages of time-history method for calculating seismic responses, a new method of analyzing seismic resistance capacity of a cable-stayed bridge based on plastic hinge is achieved considering concrete cracking and reinforcement yielding with plastic hinges under earchquake and using the bisection method program to make computer automatically analyze and reduce work of calculation. Lastly a method is established to analyze strain-rat effect of structural concrete in earthquake based on damage constitutive model under fatigue loading, in view that bridges may emerge fatigue damage due to fatigue loading during period of service and concrete of structure can appear strain-rat effect under earthquake. The reseach of this paper can improve methods for analyzing failure load under static load and seismic resistance capacity of long-span composite girder cable-stayed bridges, make more clear mechanic characteristics of multi-tower cable-stayed bridges, and provide theoretic foundation for analysis of ultimate load-carrying capacity and for assessment of safety performance of large scale bridges, so the research posses important theoretical and practical significance. The main contents of research are as followings:
     (1) Studying systemically calculating methods for structural nonlinearity, material nonlinearity and interface slip effect in composite girder, a method is formed for analyzing the failure loads under static load of long-span composite girder cable-stayed bridges considering multiple nonlinearities. By the method the failure load is studied of the long-span composite girder cable-stayed bridge with three pylons and the influence of important nonlinearities is analyzed on structural internal forces and displacements of cable-stayed bridge at bearing capacity limited state in design. The results show that failure load of the composite girder cable-stayed bridge with three pylons is relatively high because the failure load is Pdead+4.1Plive and the safety factor is2.41, and the middle pylon is key structure for ultimate load-carrying capacity of the cable-stayed bridge with three pylons. The study also showes influence of material nonlinearity is relatively large on responses of the cable-stayed bridge, influence of interface slip effect in composite girder and cable sage effect are relatively small.
     (2) After time-history methods of analyzing seismic responses are studied when considering geometric nonlinearity, multi-dimentional earthquake and travalling wave effect, seismic responses of the long-span cable-stayed bridge with three pylons are analyzed under three dimentional seismic action and the travalling wave effects are also studied. The analyses show that the maximum bending moment of middle pylon is much more than those of side pylons in cable-stayed bridge with three pylons, and the seismic responses of the bridge in transverse are small in whole. The research also shows that traveling wave effect has the largest influence on seismic responses of the side pylon which the seismic wave first arrives to, and the larger influence on those of the side plylon which the seismic wave arrives to last, and the smallest influence of the traveling wave on the middle pylon, and traveling wave effect has very small influence on transverse seismic responses.
     (3) A time-history analysis method based on plastic hinge is put forward for cable-stayed bridges. Because this method not only fully uses advantages of the time-history analysis method, but also considers the section damages of concrete cracking and reinforcement yielding with plastic hinge and uses the bisection method program for loop calculation to make the computer automatically analyze and reduce work of calculation, it studies the seismic resistance capacity more convenent. Using the method, not only the seismic resistance capacity can be obtained, but also characteristics of seismic responses and structural failure mode are achieved at the state of seismic resistance capacity. Through studing the long-span cable-stayed bridge with three pylons by this method, the result shows that the analysis of seismic resistance capacity of cable-stayed bridge is relatively convenent, and the cale-stayed bridge with three pylons has relatively high seismic resistance capacity because the peak value of acceleration of the largest seismic action is0.302g, and seismic responses of the middle pylon is largest in the cable-stayed bridge with three pylons in state of seismic resistance capacity, so it is the key structure to improve eismic resistance capacity of this kind bridges.
     (4) A method of analyzing strain-rat effect of structural concrete is established based on damage constitutive model of concrete under fatigue loading. Damage will emerge in concrete in a bridge which is under fatigue loading in service stage and strain-rat effect of concrete in bridge appears under seismic loading, both of wich effect the seismic resistance capacity of structure, so the two factors should be consider in analyzing in order to assess accurately safety performance of structure. Therefore, based on the concept of boundary surface and continuum damage mechanics, a damage constitutive model of concrete under tension-compression fatigue loading is derived which is controlled by strain and can analyze fatigue characteristics of concrete. When the strain-rate effect is considered with Perzyna viscous regularization of strain-energy releasing rate in the above model, a general damage constitutive model is achieved for concrete under static, dynamic or fatigue loading. Comparing with the results of the model and test in a conference showes the proposed model is relatively good for calculating. Therefore, a medthod is obtained for analyzing strain-rate effect of structural concrete material based on damage constitutive model under fatigue loading.The strain-rat effect of concrete is analyzed in the cable-stayed bridge with three pylons under seismic actions in trial application of the above method.
引文
[1]Nakai H., Kitada T., Ohminami R, ete. Elastic-plastic and Finite Displacement Analysis of Cable-stayed Bridge[M]. Mem.Fac.Eng.osakaUniv,1985,26:251-271.
    [2]Narayanan G, Kslinamoorthy C.S.. An investigation of geometric nonlinear formulations for 3D beam element[J]. International Journal of Non-Linear Mechanics,1990,25(6):643-662.
    [3]Rankin , C.C., Brogan F.A.. An Element independent co-rotational procedure for the Treatment of large rotations [J].Journal of Pressure Vessel Technology,1986,108:165-174.
    [4]Eriksson A., Paeoste C..Element formulation and numerical techniques for stability problems in shells [J]. Computer Methods in Applied Mechanics and Engineering,2002,191 (35).
    [5]Fleming J.F.. Nonlinear static analysis of cable-stayed bridge [J].Computers and Structures,1979,(10):621-635.
    [6]中交第二航务工程局,西南交通大学.苏通长江公路大桥主桥施工控制结构计算非线性分析报告[C].中交第二航务工程局苏通长江公路大桥项目总部C3标经理部,2005.
    [7]Ernst J.H.. Der E-modul von seilen unter beruecksichtigung des durchhanges[J].Der Baningenieur,1965,40(2):52-55.
    [8]Leonhardt F., Zeller W.. Cable-Stayed Bridges:Report on Latest Development[C].Canadian Structural Engineering Conference,1970,Canadian Steel Industries Construction Council, Onlrio, Canada.
    [9]Gimsing N.J.. Anchored and Partially Stayed Bridges [C]. Proceeding of the Internations Symposium on Suspension Bridges. Lisbon,1966.
    [10]Tang D.H., Kudder I.U.. Analysis of Cables as Equivalent Two-Fore Members[J]. Engineering Journal. AISC,Jan.1968,12-19.
    [11]Podolny W.J., Sealzi J.B.. Construction and Design of Cable-Stayed Bridges[M].John Wiley And Sons,1986,New York.
    [12]罗喜恒.复杂悬索桥施工过程精细化分析研究[D].博士学位论文,上海:同济大学,2004.
    [13]Ollgaard J.G, Slutter R.G., Fisher J.W..Shear Strength of stud connectors in light weight and normal weight concrete[J].AISC Engrg.1971(4):55-64.
    [14]聂建国,沈聚敏,余志武.考虑滑移效应的钢-混凝土组合梁变形计算的折减刚度法[J].土木工程学报,1995,28(6):11-17.
    [15]薛伟辰,丁敏.单调荷载下栓钉连接件受剪性能试验研究[J].建筑结构学报,2009,1:95-100.
    [16]付果.《考虑界面滑移及掀起影响的钢-混凝土结合梁试验与理论研究》[D].西安:西安建筑科技大学,2008.
    [17]White D.W.. Plastic-Hinge Methods for Advanced Analysis of Steel Frames[J]. Journal of Constructional Steel Researeh.1993,24(2):121-152.
    [18]Wbngkaew K., Chen W.E.. Consideration of out-of-plane buckling in advanced analysis for Planar steel frame design[J]. Journal of Constructional Steel Research.2002,58:943-965.
    [19]陈骥.刚架平面稳定的整体设计法[J].钢结构.2003,18(4):46-50.
    [20]Chen W.F., Seung-Eock Kim, Se-Hyu Choi. Practical second order inelastic analysis for Three-dimensional steel frames[J].Steel Structures.2001,1:213-223.
    [21]Chan E.C.. Nonlinear Geometric, Material andTime Dependent Analysis of Reinforced Concrete Shells with Edge Beams[D]. Division of Structural Engineering and Structural Mechanics, Department of Civil Engineering, University of California, Berkeley, Report No. UCBISESM-82108,1982.
    [22]Mari A.R.. Nonlinear Geometric, Material, and Time- Dependent Analysis of Three Dimensional Reinforced Concrete Frames[D]. Division of Structural Engineering and Structural Mechanics, Department of Civil Engineering, University of California, Berkeley, Report No. UCBISESM-84112,June.1984.
    [23]Mahasuverachai M.. Inelastic Analysis of Piping and Tubular Structures[C]. Report No. EERC Earthquake Engineering Research Center, University of California, Berkeley, California, November,1982.
    [24]Izzuddin B.A. and Elnashai A.S.. Adaptive space frame analysis- Part Ⅱ:a distributed plasticity approach[J].Structures and Buildings Journal. Proceedings of the Institution of Civil Engineers.1993,99(3):317-326.
    [25]Spacone E., Filippou F.C., Taucer F.F.. Fiber beam-column model for non-linear analysis of R/C frames(Part Ⅰ)formulation[J]. Earthquake Engineering and Structural Dynamics. 1996,25(7):711-725.
    [26]Seif S.P., Dilger W.H.. Nonlinear Analysis and Collapse Load of P/C Cable-stayed Bridges[J]. Journal of Structural Engineering.1990,116(3):829-849.
    [27]贺拴海,刘志文,宋一凡.斜拉桥的极限承载力分析[J].中国公路学报.2000,13(3):53-57.
    [28]梁硕,曾庆元,张起森.肋板结构主梁混凝土斜拉桥相关屈曲极限承载力空间分析[J].土木工程学报,2001,34(5):45-51.
    [29]李国豪主编.桥梁结构稳定与振动[M].北京:中国铁道出版社,1992.
    [30]范立础.桥梁抗震[M].上海:同济大学出版社,1997.
    [31]范立础,胡世德,叶爱君.大跨度桥梁抗震设计[M].北京:人民交通出版社,2001.
    [32]Yamamura N., Hiroshi Tanaka. Response analysis of flexible MDF systems for multiple-support excitations[J]. EESD,1990,19:345-357.
    [33]Berrah M.K., Eduardo Kausel. A modal combination rule for spatially varying seismic motions[J].EESD,1993,22:791-800..
    [34]庄表中,王行新.随机振动概论[M].北京:地震出版社,1998.2.
    [35]林家浩,张亚辉.随机振动的虚拟激励法[M].北京:科学出版社,2004.
    [36]徐昭鑫.随机振动[M].北京:高等教育出版社,1990.
    [37]Loh C.H., Lin S.G.. Directionality and simulation in spatial variation of seismic waves[J].ASCE, Engineering Structures,1990,12:1-27.
    [38]Hariehandran R.S., Vanmareke E.H.. Stoehastic variation of earthquake ground motion in space and time[J]. Journal of Engineering Meehanies, ASCE,1986,105(2):217-231.
    [39]钟万勰.一个高效结构随机响应算法系列[C].自然科学进展—国家重点实验室通讯,1996,6(4):391-401.
    [40]林家浩,张亚辉.受非均匀调制演变随机激励结构响应快速精确计算[J].计算力学学报,1997,1(14):2-8.
    [41]林家浩.关于虚拟激励法与结构随机响应的注记[J].计算力学学报,1998,15(2):217-223.
    [42]林家浩,沈为平,威廉斯EW..受演变随机激励结构响应的精细逐步积分法[J].大连理工大学学报,1995,35(5):600-605.
    [43]林家浩,张亚辉,赵岩.大跨度结构抗震分析方法及近期进展[J].力学进展,2001,31(3):350-360.
    [44]钟万姗,林家浩等.大跨度桥梁分析方法的一些进展[J].大连理工大学学报,2000,40(2):127-135.
    [45]刘枫,肖从真,徐自国等.首都机场3号航站楼多维多点输入时程地震反应分析[J].建筑结构学报,2006,27(5):56-63.
    [46]杨志,韩庆华,周全智等.多维多点激励下老山自行车馆屋盖结构的地震反应分析[J].天津大学学报,2007,40(11):1277-1283.
    [47]Kawinkler H., Seneviratna G.D.. Pros and Cons of a Pushover Analysis of Seismic performance Evaluation[J]. Engineering Structures.1998,20(4-6):452-464.
    [48]Goupta B., Kunnath S.K.. Adpative spectra-based Pushover procedure for seismic evaluation of structures[J]. Earthquake SPectra.2000,16(2):367-392.
    [49]Antoniou S., Rovithakis A., Pinho R.. Development and Verification or a Fully Adaptive Pushover Procedure[C]. Proeeedings of the 12th European Conference on Earthquake Engineering, London, U.K.,2002.
    [50]Antoniou S., Pinho R.. Development and Verifieation of a DisPlaeement-Based Adaptive Pushover Proeedure[J]. Journal of Earthquake Engineering.2004,8(5):643-661.
    [51]Kalkan E., Kunnath S.K.. Adaptive Modal Combination Proeedure for Nonlinear Static Analysis of Building Structures[J]. Journal of Structural Engineering.2006,132:1721-1731.
    [52]Bracci J.M., Kuunath S.K., Reinhom A.M.. Seismic Performance and Retrofit Evaluation of Reinforced Concrete Structures[J]. Journal of Structural Engineering.1997,123(1):3-10.
    [53]Elnashai A.S.. Advanced Inelastic Static(Pushover) Analysis for Earthquake Applications[J]. Structural Engineering and Mechanics.2001,12(1):51-69.
    [54]Jennings P.C.. Equivalent Viscious Damping for Yielding Structores[J]. Journal of the Engineering Meehanies Div.1968,94(EMI):103-116.
    [55]Chopra A.K., Geol R.K.. Capacity-Demand-Diagram Methods for Estimating Seismic Deformation of Inelastic Struetures:SDOF Systems[C]. University of California, Berkeley. PEER Report.1999.
    [56]Chopra A.K., Geol R.K.. Capacity-Demand-Diagram Methods Based on Inelastic Design Spectrum[J]. Earthquake Spectra.,1999,15(4):637-656.
    [57]Freeman S.A., Nicoletti J.P., Tyrell J.V.. Evaluations of Existing Buildings for seismic Risk-A case study or Puget sound Naval shipyard[C]. Proceedings of the 1st U.S. National Conference on Earthquake Engineering. Bremerton,Washington,1975.
    [58]Freeman S.A.. Development and Use of Capacity Spectrum Method[C]. Proceedings of 6th U.S. National conference on Earthquake Engineenng. Seattle, washington.1998.
    [59]Iwan W.O., Guyader A.C.. A Study of the Accuracy of the Capacity spectrum Method in Engineering Analysis[C]. PEER, The Third U.S.-Japan Workshop on Performance-Based Earthquake Engineering Methodology for Reinforced Conerete Building Strudtures. Seattle, Washington, USA. August,2001.
    [60]潘龙.基于推倒分析方法的桥梁结构地震损伤分析与性能设计[D].上海:同济大学博士学位论文.2001.
    [61]贾红梅,阎贵平Pushover方法在双柱桥墩抗震性能评估上的应用[J].北京交通大学学报,2008,32(1):74-78.
    [62]谭皓,刘钊.能力谱方法在桥梁抗震性能评估中的应用研究[J].世界地震工程,2009,25(4):174-180.
    [63]Grote D.L.,Park S.W.,Zhou M..Dynamic behavior of concrete at high strain-rates and pressures:I.Experimental characterization[J].Int J Impact Engng,2001,25:869-886.
    [64]肖诗云,张剑.不同应变率下混凝土受压损伤试验研究[J].土木工程学报,2010,43(3):40-45.
    [65]李庆斌,邓宗才,张立翔.考虑初始弹性模量变化的混凝土动力损伤本构模型[J].清华大学学报,2003,43(8):1088-1091.
    [66]Dube J.F.,Pijaudier Cabot G.,La Borderie C..Rate dependent damage for concrete in dynamics[J].Journal of Engineering Mechanics,1996,10:939-947.
    [67]吴建营,李杰.考虑应变率效应的混凝土动力弹塑性损伤本构模型[J].同济大学学报,2006,34(4):1427-1440.
    [68]Cervera M.,Oliver J.,Manzoli O..A rate-dependent isotropic damage model for the seismic analysis of concrete dams[J].Earthquake Engineering and Structure Dynamics,1996,25:987-1010.
    [69]张皓,李宏男.应变率对钢筋混凝土剪力墙动态性能的影响[J].防灾救灾工程学报,2010,30(3):303-308.
    [70]项海帆,姚玲森.高等桥梁结构理论[M].北京:人民交通出版社,2002.
    [71]周凌远.斜拉桥非线性理论及极限承载力研究[D].成都:西南交通大学,2000.
    [72]Gimsing N.J.. Cable Supported Bridges[M]. John Wiley&Sons,1983.
    [73]Walther R.. Cable Stayed Bridges[M]. Thomas Telford Ltd., London, England,1988.
    [74]赵海均,王敏强,魏雪英.高等有限元[M].武汉:武汉理工大学出版社,2004.6.
    [75]Dhakal R.P., Maekawa K.. Modeling for post yield buckling of reinforcement[J]. ASCE Journal of Structural Engineering.2002,128(9):1139-1147.
    [76]聂建国,谭英,王洪全.钢-高强混凝土组合梁栓钉剪力连接件的设计计算[J].清华大学学报(自然科学版),1999,39(12):94-97.
    [77]张清华,李乔,唐亮.剪力连接件的三维非线性仿真分析方法[J].西南交通大学学报,2005,40(5).
    [78]Euroeode4, Design of composite steel and concrete structures[S].Commission of the European Communities,1992.
    [79]美国桥梁设计规范-荷载与抗力系数设计方法[S].美国:美国各州公路和运输工作者协会(AASHTO),1994
    [80]王宇,考虑滑移效应的钢一混凝土抗剪性能研究[D].北京:北京工业大学,2009.
    [81]占玉林.钢混凝土组合结构中剪力连接件承载力的比较[J].四川建筑科技研究,2006,12(6):16-19.
    [82]肖林.钢混组合结构中剪力连接件试验研究[D].成都:西南交通大学,2008.
    [83]樊健生,聂建国.部分抗剪连接组合梁承载力的计算[J].哈尔滨工业大学学报,2005,17.
    [84]徐凯燕.大跨度斜拉桥非线性时程分析及减、隔震研究[D].广州:华南理工大学,2009.
    [85]Gladwell I. and Thomas R.M.. Stability properties of the Newmark,Houbolt and Wilson-θmethods[J].Int.J.Numer.anal.Meth.Geomech,1980,4:143-158
    [86]陈文兵,唐家详.水平任意向地震输入下双塔楼联体结构的动力分析[J].振动与冲击.2003,22(1):29-32.
    [87]chopra A.K著,谢礼立,吕大刚等译.结构动力学-理论及其在地震工程中的应用[M].北京::高等教育出版社,2007.
    [88]沈聚敏,周锡元,高小旺等.抗震工程学[M].北京:中国建筑工业出版社,2000.
    [89]程进,肖汝诚,项海帆.超大跨径缆索承重桥梁极限承载力分析的现状与展望[J].中国公路学报,1999,12(1):59-63.
    [90]潘家英,张国政,程庆国.大跨度桥梁极限承载力的几何与材料非线性藕合分析[J].土木工程学报,2000,33(1):5-14
    [91]雷宇,赵雷,黎曦.大跨度组合梁斜拉桥极限承载力影响因素[J].西南交通大学学报,2009,44(6):812-81.
    [92]公路桥涵设计通用规范[S].北京:人民交通出版社,2004.
    [93]张琪,胡夏闽,王干.钢-混凝土组合梁纵向抗剪非线性分析[J].北京工业大学学报,2005,27(5):37-41.
    [94]李永乐,廖海黎,强士中.三塔斜拉桥抖振的耦合行为研究[J].工程力学,2004,21(4):184-188.
    [95]韩振峰,叶爱君,范立础.千米级斜拉桥的动力几何非线性分析[J].土木工程学报,2010,43(6):67-73.
    [96]张翠红,吕令毅.大跨度斜拉桥在多点随机地震激励作用下的响应分析[J].东南大学学报,2004,34(2):249-252.
    [97]Ahmed M.Abdel-Ghaffar and Aly S.Nazmy.Effect of Three-Dimensional and Nonlinearity on the Dynamic and Seismic Behavior of Cable-Stayed Bridges[C]. Proc.of the 4th structures Congress 1987,on the Bridges and Transmission Line Structures,ASCE Orlando, Florida,August 17-20,1987.
    [98]白玲.大跨度钢管混凝土拱桥地震响应分析[J].中国铁道科学,2008,29(6):41-45.
    [99]钱稼茹,纪晓东,范重,刘先明.国家体育场大跨度钢结构罕遇地震性能分析[J].建筑结构学报,2007,28(2):16-25.
    [100]刘健新,张伟,张茜.洛河特大桥抗震性能计算[J].交通运输工程学报,2006,6(1):57-62.
    [101]项海帆.斜拉桥在行波作用下的地震反应分析[J].同济大学学报,1983,(2):1-9.
    [102]陈幼平,周宏业.斜拉桥地震反应的行波效应[J].土木工程学报,1996,29(6):61-68.
    [103]陈星烨,刘文浩,唐雪松.连续刚构桥的Pushover分析与应用[J].中南大学学报(自然科学版),2008,39(1):202-208.
    [104]徐秀丽,马静静,郎冬梅等.高烈度地震区板式桥抗震性能研究[J].桥梁建设,2009,01:22-28.
    [105]何晗欣,刘健新.能力谱方法在桥梁抗震性能评估中的适用性[J].长安大学学报,2009,29(4):48-52.
    [106]何钦象,田小红,宋丹.高墩大跨径连续刚构桥抗震性能评估[J].振动与冲击,2009,28(1):68-71.
    [107]Palermo A., Pampanin S., and Marriott D.. Design, Modeling, and Experimental Response of Seismic Resistant Bridge Piers with Posttensioned Dissipating Connections[J]. Journal of Structural Engineering,2007,133(11):1648-1661.
    [108]Bryant G. Nielson and Reginald DesRoches. Seismic Performance Assessment of Simply Supported and Continuous Multispan Concrete Girder Highway Bridges[J]. Journal of Bridge Engineering,2007,12(5):611-620.
    [109]Saiidi M., Sozen M.. Simple Nonlinear Seismic Analysis of R/C structures[J]. Joumal of Structural Division(ASCE).1981,107(STS):937-951.
    [110]MoehleJ.P..Displacement Based Design of R/C Struetures Subjeeted to Earthquakes[J]. Earthquake Spectra.1992,8(3):403-427.
    [111]Pan H.H., and Weng G. J.. Study on Strain-Rate Sensitivity of Cementitious Composites [J]. Journal of Engineering Mechanics,2010,136 (9):1076-1082.
    [112]肖诗云,许东.应变率效应对钢筋混凝土柱的影响[J].防灾减灾工程学报,2009,29(6):668-675.
    [113]邹笃建,刘铁军,滕军等.混凝土梁式构件弹性模量的应变率效应研究[J].振动工程学报,2011,24(2):170-174.
    [114]王文明,李宏男.考虑应变率效应的Pushover分析方法[J].建筑科学与工程学报,2011,28(2):69-74.
    [115]李敏,李宏男ABAQUS混凝土损伤塑性模型的动力性能分析[J].防灾减灾工程学报,2011,31(3):299-303.
    [116]汪小林,刘立新.折线配筋先张梁疲劳性能试验[J].华中科技大学学报(自然科学版),2010,38(5):113-116.
    [117]王湛,甄永辉.混凝土本构关系边界面模型[J].工程力学,1999,16(3):120-129.
    [118]Abu-Lebd, Taher M. and Voyiadjis Geolge Z.. Plasticity damage model for concrete under cyclic multiaxil loading [J].Journal of Engineering Mechanics, ASCE,1993,119(7): 1465-1485.
    [119]Dafalias Y.F., and Popov E.P.. Cyclic loading for material with a vanishing elastic region[J].Nuclear Engineering Design,1977,41(2):283-302.
    [120]Fardis M.N., Alibe B., Tassoulas J.L.. Monotonic and cyclic constitutive law for concrete[J]. Journal of Engineering Mechanics, ASCE,1983,109(2):516-536.
    [121]DafaliasY.E.. Bounding surface Plasticity. I:Mathematical foundation and hypo-plasticity [J]. Journal of Engineering Mechanics, ASCE,1986,112(9):966-987.
    [122]Suaris W., Ouyang C., and Fernando V. Damage model for cyclic loading of concrete[J]. Journal of Engineering Mechanics,1990,116 (5):1020-1035.
    [123]Khan A. R., Al-Gadhib A. H., and Baluch M. H.. An elasto-damage constitutive model for high strength concrete[C]. Proceeding of the EURO-C1998Conference on Computational Modeling of Concrete Structure Austria:A. A. Balkema.1998(3):133.
    [124]吕培印,李庆斌,张立翔.混凝土拉-压疲劳损伤模型及验证[J].工程力学,2004,21(3):162-166.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700