用户名: 密码: 验证码:
上海酸雨物理化学特征及氮湿沉降研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
酸雨又被称为“空中死神”。我国是继欧洲、北美之后的世界第三大酸雨多发区。据《2009年上海市环境状况公报》中报道,上海酸雨污染高达79.2%,是世界上酸雨污染最严重的城市之一。
     本研究通过对上海宝山气象站的酸雨长期观测资料的气候特征分析,探讨了宝山酸雨pH的年际变化和月变化,发现宝山站的酸雨特征和上海市平均状况有较大差异,并和浦东气象站同期历史观测资料进行了对比分析,阐述了大气污染及气象因素对两地酸雨污染差异的影响。为了调查上海酸雨污染空间分布状况,在上海布设十个采样点,分析了降水中离子成分,并对上海市酸雨pH和化学组分进行了评估,研究了pH和离子空间分布特征。继而对宝山和浦东降水化学成分进行了对比分析,研究造成这种差异的原因。最后论述了上海地区大气氮湿沉降的长期变化趋势、时空变化特征。
     本论文主要研究结论如下:
     1.上海宝山地区酸雨长期变化趋势、月变化及原因解析。通过对上海宝山气象站1992-2009年酸雨长期观测资料分析,结果表明,宝山地区多年降水量加权平均pH为5.21,呈弱酸性,酸雨率24%,低于上海市平均水平。宝山降水pH变化区间为3.03-8.44,45%的降水pH集中在6.0-7.0之间。pH年际变化趋势不明显,和上海市平均pH变化趋势相差较大。电导率EC值呈逐年上升趋势,平均每年增加2.0pS cm-1。 pH在冷季较低,暖季较高,电导率EC相反。与浦东站2007-2009年资料对比发现,浦东酸雨状况远比宝山严重。宝山和浦东站pH均与PM10、 SO2、 NO2浓度呈负相关,EC与PM10、 SO2、 NO2浓度呈正相关。宝山和浦东降水的pH均随降水量增加略有下降,最高值出现在降水量最小的降水时段;EC值随降水量增加而降低,降水量对大气污染物稀释作用明显;酸雨率也是在降水量小的时候较低,表明大气颗粒物对降水有一定的中和作用。宝山站在西北风来向的酸雨pH最大,而在东北到东南风来向的酸雨pH最低,即酸雨程度最重;浦东站,在北到西北风来向的酸雨的pH最大,而偏南风带来的酸雨的pH最低。
     2.上海平均pH、可溶性离子浓度的时空变化。通过对上海市十个采样点降水化学组分进行分析,上海地区平均pH是4.51,降水呈酸性,酸雨率是65%,再次证明上海是世界上酸雨最严重地区之一。上海地区降水pH空间分布是不均匀的。上海西部和西南部的松江、金山和青浦三站最低,上海北部宝山、嘉定最高。上海降水pH具有明显季节变化特征,绝大部分站最低值和最高值分别出现在春季和夏秋季节,冷季的pH较暖季更低,与SO2和NO2浓度季节变化比较一致。上海地区降水平均离子浓度排序:Ca2->S042->NH4'>Cl->Na+>N03-> Mg2+>F->K+,S042-/N03为3.24,上海酸雨主要是硫酸型。平均离子浓度之和730.08μeq/L,属重度污染。可溶性无机离子浓度之和空间分布不均匀。高值出现在上海北部和市中心区域,低值出现在上海南部和西南部地区。从降水各离子空间分布可以看出,Ca2+空间分布和pH空间分布基本一致。各点平均离子浓度的季节变化,只有钙离子较为一致,九个站有七个站Ca2+浓度最高值出现在夏季。
     3.上海宝山和浦东酸雨化学组分对比分析。通过对2008年8月宝山和浦东降水化学组分和大气污染物详细研究可知,宝山降水平均pH是5.59,酸雨率9.1%;浦东酸雨比宝山更为严重,降水平均pH是4.19,酸雨率92.3%。宝山降水中离子浓度之和1306.56μeq/L,是浦东离子浓度之和(749.39μeq/L)近两倍,属于重度污染。两站共同特点是:SO42-和NO3是主要阴离子,Ca2+和NH4+是主要阳离子。宝山钙离子中和作用远高于浦东,是两站酸雨污染不同主要原因。研究还发现,浦东做为大气环境相对清洁地区,硫酸盐和硝酸盐主要是光化学反应生成,而宝山大气硫酸盐和硝酸盐主要通过非均相的化学反应生成。浦东大气颗粒物中以细粒物为主,增加降水酸性;宝山粗粒物占比重较大,对降水酸性可起缓冲作用。两地大气氧化能力和气溶胶颗粒物对降水的不同作用,从另一个角度解释了两地降水酸性不同的原因。对降水离子源解析表明,上海降水中大部分离子来自人类生活和生产过程排放,反映出上海大气是矿尘、二次气溶胶及海盐颗粒复合污染,其中矿尘和二次气溶胶贡献较大。
     4.上海大气氮湿沉降浓度和通量的长期变化趋势及时空变化。通过对1990-2009年上海市空气质量年报中NO3和NH4+浓度数据,结合宝山气象站年降水量资料,对上海地区氮湿沉降长期变化趋势进行了分析,N03--N(硝态氮)浓度最低值出现在1991年,为1.34mg/L,最高值3.41mg/L出现在2003年,多年降水量加权平均值是2.39mg/L,总体呈波动上升趋势,年平均增长率为0.05mg/L;NH4--N(氨态氮)浓度变化范围在1.70mg/L到2.62mg/L之间,最低值和最高值分别出现在1991和1997年,多年降水量加权平均值是2.07mg/L,总体呈下降趋势,年平均下降率是0.03mg/L。TN(总氮)浓度位于3.04-5.75mg/L,多年降水量加权平均值是4.46mg/L。上海大气降水中氮沉降通量年际变化较大,硝态氮年沉降通量最高值是2009年,为38.17kg hm-2yr-1,最低值是1991年为20.48kg hm-2yr1,多年平均值为27.72kg hm-2yr-1,和降水量呈弱正相关(r2=0.215);氨态氮年沉降通量最高值发生在1999年,为35.22kg hm-2yr-1,最低值是2008年为19.12kghm-2yr-1,多年降水量加权平均值为24.01kg hm-2yr1,和降水量呈弱正相关(r2=0.315);总氮年沉降通量多年降水量加权平均值为51.73kg hm-2yr-1,和降水量相关较明显(r2=0.402),降水量对大气湿沉降氮沉降通量有重要影响。
     研究表明,上海大气降水中各站点硝态氮、氨态氮和总氮浓度有明显季节变化,但呈现不同变化特征。氮沉降浓度空间分布不均,硝态氮、氨态氮及总氮年平均浓度空间分布有较大差异。硝态氮平均浓度徐家汇地区最高,为3.78mg/L;奉贤地区最低,为1.42mg/L。氨态氮浓度奉贤地区最高,达到2.42mg/L,最低值出现在南汇地区。徐家汇地区总氮浓度最高,南汇地区最低。这主要是氮沉降浓度与降水量、所处地理位置、气候条件、本地污染物排放和外区域传输综合影响,使得氮沉降空间分布复杂多变。同时,硝态氮沉降通量季节变化明显,除了闵行、青浦两站春季略高于夏季外,其他各站均表现为夏季最高,最低值除奉贤地区出现在春季外,其他各站都出现在冬季,硝态氮季节变化主要是降水量决定的。氨态氮沉降通量季节变化,除青浦地区和松江地区外,其他各站均是夏季最高,最低值除南汇地区和奉贤地区出现在春季外,其他各站均为冬季最低。总氮湿沉降通量季节变化,除了松江地区和青浦地区两站为春季最高外,其他各站均为夏季最高,市中心站点徐家汇地区硝态氮、氨态氮和总氮湿沉降通量均高于郊区。各点氨态氮沉降通量均小于硝态氮,说明上海各个区来白农业和人畜粪便挥发排放的氨态氮对大气氮湿沉降贡献普遍低于化石燃料燃烧和机动车尾气排放的氮氧化物氧化生成的硝酸盐的贡献。
As one of the most serious environment problems, acid rain also called "killer of air" not only deteriorate air qualities thus has great impact on human health but also affect ecological systems. Our country is the third pollution area of acid rain after Europe and South America.Especially Shanghai, as the economic center of our country, is the most serious area of precipitation pollution in the world.
     In this study, based on the long period history data of acid rain in Baoshan meteorological station, the climate characteristics were analyzed, the inter-annual and monthly variation of pH and conductance EC was discussed. The great discrepancy was also found between Baoshan and Shanghai general values. Through comparing with the data of Pudong, we also found the different pollution environment of acid rain.To tell the reason, we analyzed the correlation of pH and atmospheric pollutants, and discussed the influence of meteorological factors on the pH and EC. For better understand the space distribution of acid rain, we expand the study area. With the help of Shanghai meteorological bureau and Fudan University,706samples came from ten sites located at Jiading, Baoshan, Xujiahui, Minhang, Qingpu, Songjiang, Jinshan, Nanhui, Fengxian and Pudong, from May2008to April2009, were colleted, and water-soluble ions (WSI) were quantitatively measured. We evaluated the average pH and concentration of ions, discussed the temporal and space distribution of pH and the ions, then compared and analyzed the chemical constituents and the reason of this disprepancy. At last, we reported the long tendency of Nitrogen wet deposition in Shanghai and the characteristic of space and seasonal distribution.
     The major results presented below:
     1. The long-term tendency, monthly characteristic and reason analysis of acid rain in Shanghai Baoshan district:the volume-weighted average pH value was5.21, weakly acidic. The frequency of acid rain was24%, lower than Shanghai average level. The pH ranged from3.03to8.44, focus on6.0-7.0. The annual variation was not apparent, which is different from the tendency of the average pH over Shanghai area. While EC (electrical conductivity) increased gradually by the rate of2.0μS cm-1yr-1. The pH was lower in cold season compared with that in warm season. But the season variation of EC was opposite to that of pH. Compared the data of acid rain in Baoshan and Pudong, the pollution in Pudong is more serious. The pH in both sites was negatively correlated with PM10. SO2, NO2, while the EC was opposite. The pH decreased with increasing of precipitation and the pH value towered up when there was little amount of precipitation; EC decreased with amount of precipitation increasing, which revealed the dilution effect of aerosol precipitation in air. The frequency of acid rain was lower when the amount of precipitation was little, which showed the neutralization effect of particulate matters in air. When the wind direction was northwest, the pH was higher and when the wind direction was northeast to southeast, the pH was lower in Baoshan,While the acidity of precipitation was higher when the wind direction was north or northwest and lower when the direction was South in Pudong.
     2. The values and the space distribution characteristics of the volume-weighted average pH and the concentration of soluble ions in atmospheric precipitation from May2008to April2009at Shanghai area:the pH was4.51, weakly acidic, and the frequency of acid rain was65%. Shanghai was one of the most serious polluted cities in the world. The pH was not evenly distributed, the lower pH was at Songjiang, Jinshan and Qingpu, west and southwest area of Shanghai, the higher was at Baoshan and Jiading, located at north of Shanghai. The pH had significantly seasonal variation. The lowest was at spring in8of the9sites, and the highest was during summer or autumn, this means the acidity of rain was higher in warm season than cold season, which was in accordance with the variation of SO2and NO2.The concentrations of major ions were in the order of:Ca2+> SO42-> NH4+> Cl-> Na+> NO3-> Mg2+> F-> K+. The ratio of SO42-to NO3-was3.24, which means that Sulfate dominant in precipitation of Shanghai. The sum of ions was730.08μeq/L and can be viewed as the most serious pollution event.
     3. Chemical analysis of precipitation in Baoshan and Pudong:the average the volume-weighted average pH value of Baoshan and Pudong were5.59and4.19, respectively and the frequency of acid rain in the two sites were9.1%and92.3%, which means the pollution condition of precipitation in Pudong is more serious than that in Baoshan, the total water soluble ions(TWSI) in precipitation of Baoshan was1306.56μeq/L, heavy pollution level, while the precipitated TWSI in Pudong was749.39μeq/L, which was serious pollution level. The common characteristics were that SO42-and NO3-were the main acidic components, and Ca2+and NH4+were the dominant basic components. The acid neutralization capacity of Ca2+at Baoshan was three orders of magnitude that of Pudong, which was the most important reason for the different precipitation pollution. We also found that sulfate and nitrate were mainly formed by photochemical reaction in Pudong, relatively clearer region. While the formation process in Baoshan was different from that of Pudong, where the sulfate and nitrate were formed mainly through heterogeneous reaction. Percentage of fine particulate matters was lager in Pudong than in Baoshan, which aggravated the acidity of precipitation. On the contrary, the air of Baoshan, in which alkali coarse particulate matters had larger proportion, alleviated the acidity of rain. The air of the two sites had different oxidation ability and neutralization capacity, perhaps makes for another reason for the different acidity of rain. The factor analysis of the ions confirmed the mineral dust, secondary aerosol as the main sources.
     4. The long-term tendency of the concentration and flux of nitrogen wet deposition from1990to2009:The concentration of NO3-N ranged from1.34mg/L (1991) to3.41mg/L (2009), rising by0.05mg L-1/yr. The average concentration of N03"-N during the past twenty years was2.39mg/L The concentration of NH4+-N ranged from1.70mg/L to2.62mg/L, decreasing by0.03mg·L-1/yr. The average concentration was2.07mg/L The concentration of total nitrogen (TN) was3.04-5.75mg/L, and the average concentration was4.46mg/L. The inter-annual variation of nitrogen flux was obvious. The average year wet deposition flux of NO3-N was27.72kg hm-2yr-1. And there was poor correlation between the amount of precipitation (r2=0.215) and wet deposition flux. The average annual wet deposition flux of NH4+-N was27.72kg hm-2yr-1. The year wet deposition flux of NH4+-N showed a better correlation with the amount of precipitation (r2=0.315).the year wet deposition of TN was obvious correlated with amount of precipitation (r2=0.402). The overload of nitrogen deposition had great effects on the ecosystem over Shanghai.
     5. Spatial and seasonal variation characteristic from May2008to April2009. NO3-N, NH4+-N and TN had obvious but not accordant seasonal characteristic. The spatial distribution of NO3-N, NH4+-N and TN had distinct discrepancy. The highest average concentration of N03-N appeared at city centre like Xujiahui, which was3.78mg/L while the lowest at suburban region like Fengxian, was1.42mg/L. The highest average concentration of NH4+-N was2.42mg/L at Fengxian, the lowest at Nanhui, was1.06mg/L. The concentration of TN at city centre was also higher than suburbs. The highest deposition flux of NO3-N was in summer at seven sites out of nine which had positive correlation with rainfall amount.
     The highest deposition flux of NH4+-N was also in summer at seven sites out of nine but the sites different from the sites with highest flux of NO3-N. The highest flux occurred also in summer at all sites except Songjiang and Qingpu, which had the highest at spring. The flux of NO3-N, NH4+-N and TN was higher at city centre than at suburbs. In all sites, the flux of NH4-N was smaller than that of NO3-N, which illustrated that contribution of emission from fossil fuel burning was greater than that coming from agriculture and human and poultry excrement.
引文
[1]GB/T 19117-2003,酸雨观测规范[S].北京:中国气象出版社,2003.
    [2]唐孝炎,张远航,邵敏.大气环境化学[M].北京:高等教育出版社,2006,332-333.
    [3]Ducros M. Observation d'une pluieacide [J]. Journal de Pharmacie et de Chimie Serie 37,1845,273-277.
    [4]Smith A.R. Air and Rain:the Beginnings of a Chemical Climatology [M]. London: Longmans, Green, and Co.,1872,17-24.
    [5]Gorham E. Acid deposition and its ecological effects:a brief history of research [J]. Environmental Science & Policy 1998,1:153-166.
    [6]Schofield C.S. Report from the international conference on the effects of acid precipitation [C]. Telemark, Norway, Ambio 5,1976,200-263.
    [7]http://www.epa.gov/acidrain/effects/surface_water.html.
    [8]Wright R.F., Dale T., Egil T. Gjessing, et al. Impact of acid precipitation on freshwater ecosystems in Norway [J]. Water, Air, & Soil Pollution,1976,6: 483-499.
    [9]Schindler D.W. Effects of Acid Rain on Freshwater Ecosystems [J]. Science,1988, 239:149-157.
    [10]Menz F.C., Seip H.M. Acid rain in Europe and the United States:an update. Environmental Science & Policy 2004,7:253-265.
    [11]Baker L.A., Herlihy A.T., Kaufmann P.R., et al. Acidic lakes and streams in the United States:the role of acidic deposition [J]. Science 1991,252:1151-1154.
    [12]Henriksen A., Wright R.F. Concentrations of heavy metals in small Norwegian lakes [J]. Water Research,1978,12:101-112.
    [13]Driscoll C.T., Driscoll K.M. Mitchell M.J., et al. Effects of acidic deposition on forest and aquatic ecosystems in New York State [J]. Environmental Pollution 2003,123:327-336.
    [14]Beamish R.J., Harvey H.H. Acidification of the La Cloche mountain lakes of Ontario, and resulting fish mortalities [J]. Journal of the Fisheries Research Board of Canada,1972,29:1131-1143.
    [15]Ryan P.M., Harvey H. H. Growth responses of yellow perch, Perca flavescens (Mitchill), to lake acidification in the La Cloche Mountain Lakes of Ontario [J]. Environmental Biology of Fishes,1980,5:97-108.
    [16]Beamish R.J. Acidification of lakes in Canada by acid precipitation and the resulting effects on fishes [J]. Water, Air, & Soil Pollution,1976,6:501-514.
    [17]Walna B., Siepak J., Drzymala S. Soil degradation in the Wielkopolski National Park (Poland) as an Effect of Acid Rain Simulation [J]. Water, Air, and Soil Pollution,2001,130:1727-1732.
    [18]王文兴,童莉,海热提,土壤污染物来源及前沿问题[J].生态环境,2005,14(1):1-5.
    [19]周崇莲,齐玉臣,卢耀波等.酸雨对土壤微生物种群分布的影响[J].大气环境,1987,2(6):43-46.
    [20]梁骏,南京酸雨对土壤和作物产量品质形成的影响研究[D].南京:南京信息工程大学,2008.
    [21]李振华,于澎涛,王彦辉等.重庆酸雨区受害马尾松林凋落物特征及其环境因子响应[J].林业科学,2011,47(8):19-24.
    [22]冯宗炜,中国酸雨对陆地生态系统的影响和防治对策[J].中国工程科学,2000,2:5-12.
    [23]温达志,周国逸,孔国辉等.南亚热带酸雨地区陆地生态系统植被、土壤与地表水现状的研究[J].生态学杂志,2000,19(5):11-18.
    [24]王代长,蒋新,卞永荣等.酸沉降对生态环境的影响[J].中国生态农业学报,2003,11(1):107-109.
    [25]陈永喆,陈穗云,张晋海等,模拟酸雨对小麦和玉米种子萌发及幼苗发育的影响[J].山东环境,1997,4:13-15.
    [26]黎华寿,聂呈荣,胡永刚.模拟酸雨对杂交稻、常规稻、野生稻影响的研究[J].农业环境科学学报,2004,23(2):284-287.
    [27冯宗炜,曹洪法,周修萍等.酸沉降对生态环境的影响及其生态恢复[M].北京:中国环境科学出版社,1999,358.
    [28]Bravo H.A., Soto R.A., Sosa R.E., et al. Effect of acid rain on building material of the El Taji'n archaeological zone in Veracruz, Mexico [J]. Environmental Pollution,2006,144:655-660.
    [29]Kanazu T., Matsumura T., Nishiuchi T., et al. Effect of simulated acid rain on deterioration of concrete [J]. Water, Air, and Soil Pollution,2001,130: 1481-1486.
    [30]Tecer L. Laboratory experiments on the investigation of the effects of sulphuric acid on the deterioration of carbonate stones and surface corrosion [J]. Water, Air, and Soil Pollution,1999,114:1-12.
    [31]杨文静,施衍奇,黎学明等.大跨度桥梁索揽模拟酸雨加速腐蚀行为研究[J].腐蚀科学与防护技术,2011,23(1):61-65.
    [32]Kim J.H., Kim J.K., Son B.K., et al. Youn-Chol Hong, and Sung-Il Cho, Effects of Air Pollutants on Childhood Asthma [DB/MT] http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2823020/
    [33]Richardson G.M. Currie D.J., Egyed M. Does acid rain increase human exposure to mercury? A review and analysis of recent literature [J]. Environmental Toxicology and Chemistry,1995,14(5):809-813.
    [34]Yan L., Li X., Chen J.M., et al. Source and deposition of PAHs to Shanghai [J], China. Journal of Environmental Sciences,2012,24(1):116-123.
    [35]Clow D.W., Mast M.A. Long-term trends in stream water and precipitation chemistry at five headwater basins in the northeastern United State [J] Water Resources Research,1999,35(2):541-554.
    [36]Likens G.E., Bormann F.H., Pierce R.S., et al. Long-term trends in precipitation chemistry at Hubbard Brook [J]. New Hampshire. Atmospheric Environment, 1984,18(12):2641-2647.
    [37]Driscoll C.T., Poster K.M., Kretser W., et al. Long-term trends in the chemistry of precipitation and lake water in the Adirondack Region of New York, USA [J]. Water, Air and Soil Pollution,1995,85(2):583-588.
    [38]Takahashi A., Fujita S. Long-term trends in nitrate to non-seasalt sulfate ratio in precipitation collected in western Japan [J] Atmospheric Environment,2000,34 (26):4551-4555.
    [39]Okuda T., Iwase T., Ueda H., et al. Long-term trend of chemical constituents in precipitation in Tokyo metropolitan area, Japan, from 1990 to 2002 [J]. Science of the Total Environment,2005,339:127-141.
    [40]Puxbaum H., Simeonov V., Kalina M., et al. Long-term assessment of the wet precipitation chemistry in Austria (1984-1999) [J]. Chemosphere,2002,48: 733-747.
    [41]Galy-Lacaux C., Laouali D., Descroix L., et al. Long term precipitation chemistry and wet deposition in a remote dry savanna site in Africa (Niger) [J]. Atmospheric Chemistry and Physics,2009,9:1579-1595.
    [42]Buishand T.A., Kempen G.T., Frantzen A.J. Trend and seasonal variation of precipitation chemistry data in the Netherlands [J]. Atmospheric Environment, 1988,22(2):339-348.
    [43]Baez A.P., Belmont R.D., Garcia R.M., et al. Trends in Chemical Composition of Wet Precipitation in Mexico City Mexico:1992-2007 [J]. The Open Atmospheric Science Journal,2009,3:187-195.
    [44]Sicard P., Coddeville P., Sauvage S., et al. Trends in Chemical Composition of Wet-only Precipitation at Rural French Monitoring Stations Over the 1990-2003 Period [J]. Water, Air, & Soil Pollution,2007,7:48-58.
    [45]Canic'K.S.; Vidic S.; Klaic'Z.B. Precipitation chemistry in Croatia during the period 1981-2006 [J]. Environmental Monitoring,2009,11(4):839-851.
    [46]Laouali D., Galy-Lacaux C., Diop B., et al. Long term monitoring of the chemical composition of precipitation and wet deposition fluxes over three Sahelian savannas [J]. Atmospheric Environment,2012,50:314-327.
    [47]汤洁,徐晓斌,巴金等.1992-2006年中国降水酸度的变化趋势[J].科学通报,2010,55(8):705-712.
    [48]黄银芝,张明旭,郑晓红.上海市近16年湿沉降化学特征分析[J].城市环境与城市生态,2008,21(6):1-3.
    [49]沙晨燕,何文珊,童春富等.上海近期酸雨变化特征及其化学组分分析[J].环境科学研究,2007,20(5):31-34.
    [50]Huang Y.L., Wang Y.L., Zhang L.P. Long-term trend of chemical composition of wet atmospheric precipitation during 1986-2006 at Shenzhen City, China [J]. Atmospheric Environment,2008,42(16):3740-3750.
    [51]吴晓燕,张胜东,王海等.湛江市酸雨变化趋势及防治对策[J].太原师范学院学报(自然科学版),2010,9(1):139-141.
    [52]张群,郁晶,喻义勇.南京市酸雨特征及变化趋势分析[J].环境科学与管理,2009,34(12):108-126.
    [53]石春娥,邱明燕,张爱民等.安徽省酸雨分布特征和发展趋势及其影响因子[J].环境科学,2010,31(6):1675-1681.
    [54]赵卫红.福建省城市酸性降水特征及变化趋势[J].环境科学与技术,2006,29(9):41-44.
    [55]徐梅,祝青林,王丽娜等.京津地区酸雨变化特征及趋势分析[J].气象,2009,35(11):78-83.
    [55]Gene E., Likens F., Bormann H. Acid Rain:A Serious Regional Environmental Problem [J]. Science,1974,184:1176-1179.
    [56]Levis W.M., Michael J.R., Grant C. Acid Precipitation in the Western United States [J]. Science,1980,207:176-177.
    [57]Sanusi A., Wortham H. Millet M. Chemical Composition of rainwater in Easter France [J]. Atmospheric Environment,1996,30(1):59-71.
    [58]Fujita S., Takahashi A., Weng J.H., et al. Precipitation chemistry in East Asia[J]. Atmospheric Environment,2000,34:525-537.
    [59]王文兴,丁国安.中国降水酸度和离子浓度的时空变化[J].环境科学研究,1997,10(2):1-7.
    [60]胡敏,张静,吴志军.北京降水化学组成特征及其对大气颗粒物的去除作用[J].中国科学B辑:化学,2005,35(2):169-176.
    [61]Xu M., Lu A.H., Xu F., et al. Seasonal chemical composition variations of wet deposition in Urumchi, Northwestern China [J]. Atmospheric Environment,2008, 42(5):1042-1048
    [62]Huang D.Y., Xu Y.G., Peng P., et al. Chemical composition and seasonal variation of acid deposition in Guangzhou, South China:Comparison with precipitation in other major Chinese cities [J]. Environmental Pollution,2009, 157:35-41.
    [63]王文兴,许鹏举.中国大气降水化学研究进展[J].化学进展,2009,21(2-3):266-281
    [64]Aas W., Shao M., Jin L., et al. Air concentrations and wet deposition of major inorganic ions at five non-urban sites in China,2001-2003 [J]. Atmospheric Environment,2007,41:1706-1716.
    [65]Zhang G.S., Zhang J., Liu S.M. Chemical composition of atmospheric wet depositions from the Yellow Sea and East China Sea [J]. Atmospheric Research, 2007,85:84-97.
    [66]曹玉珍,王少毅,张干等.广州市白云山降水的化学特征及源解析[J].环境监测管理与技术,2009,21(6):20-23.
    [67]王艳,葛福玲,刘晓环等.泰山降水化学及大气传输的研究[J].环境科学学报,2006,26(7):1187-1194.
    [68]Li Y., Tang J., Yu X, et al. Characteristics of precipitation chemistry at Lushan Mountain, East China:1992-2009 [J]. Environmental Science and pollution research,2012, DOI:10.1007/s 11356-012-0742-2
    [69]马琳,杜建飞,闫丽丽等.崇明东滩湿地降水化学特征及来源解析[J].中国环境科学,2011,31(11):1768-1775.
    [70]Baez A., Belmont R., Garcia R., et al. Chemical composition of rainwater collected at a southwest site of Mexico City, Mexico [J]. Atmospheric Research, 2007,86(1):61-75.
    [71]Song F., Gao Y. Chemical characteristics of precipitation at metropolitan Newark in the US East Coast [J]. Atmospheric Environment,2009,43(32):4903-4913.
    [72]Herrera J., Rodriguez S., Baez A.P. Chemical composition of bulk precipitation in the metropolitan area of Costa Rica, Central America [J]. Atmospheric Research,2009,94(2):151-160.
    [73]Sauret N., Wortham H., Strekowski R., et al. Comparison of annual dry and wet deposition fluxes of selected pesticides in Strasbourg, France [J]. Environmental Pollution,2009,157(1):303-312.
    [74]Willem A.H. Asman, Jφrgensen A., Bossi R., et al. Wet deposition of pesticides and nitrophenols at two sites in Denmark:measurements and contributions from regional sources [J]. Chemosphere,2005,59(7):1023-1031.
    [75]Francisco C.B., Kleist E., Prast H., et al. Description and evaluation of a sampling system for long-time monitoring of PAHs wet deposition [J]. Chemosphere,2002,49(3):331-340.
    [76]Lee B.K., Lee C.B. Development of an improved dry and wet deposition collector and the atmospheric deposition of PAHs onto Ulsan Bay, Korea [J].Atmospheric Environment,2004,38(6):863-871.
    [77]Lim L., Wurl O., Karuppiah S., et al. Atmospheric wet deposition of PAHs to the sea-surface microlayer [J]. Marine Pollution Bulletin,2007,54(8):1212-1219.
    [78]Michael J.R. Halstead, Robert G. Cunninghame, Keith A. Hunter. Wet deposition of trace metals to a remote site in Fiordland, New Zealand [J]. Atmospheric Environment.2000,34(4):665-676.
    [79]Morsellia L., Olivierib P., Brusoria B., et al. Soluble and insoluble fractions of heavy metals in wet and dry atmospheric depositions in Bologna, Italy [J]. Environmental Pollution,2003,124(3):457-469.
    [80]Galloway J.H., Likens G.E., Edgerton E.S., et al. Acid precipitation in the Northeastern United States:pH and acidity [J]. Science,1976,194:722-724.
    [81]Kawamura K., Steinberg S., Lain N., et al. Wet deposition of low molecular weight mono-and di-carboxylic acids, aldehydes and inorganic species in Los Angeles [J]. Atmospheric Environment,2001,35(23):3917-3926.
    [82]Pena R.M., Garcia S., Herrero C., et al. Organic acids and aldehydes in rainwater in a northwest region of Spain [J]. Atmospheric Environment,2002,36(34): 5277-5288.
    [83]刘辰,何凌燕,牛或文.深圳降水中低分子量有机酸对降雨酸性的贡献[J].2007,20(5):21-25.
    [84]何晓欢.降水中甲酸乙酸的观测研究[D].北京,中国气象科学研究院,2008.
    [85]Larssen T., Lydersen E., Tang D.G., et al. Acid rain in China [J].Environmental Science Technology,2006,4(2):418-425.
    [86]Levy H. Photochemistry of minor constituents in the troposphere [J]. Planetary and Space Science,1973,21(4):575-591.
    [87]Platt U., Perner D., Harris G.W., et al. Observations of nitrous acid in an urban atmosphere by differential optical absorption [J]. Nature,1980,285:312-3141
    [88]Kleinman L., Lee Y.N., Springston S.R., et al. Peroxy radical concentration and ozone formation rate at a rural site in the southeastern United States [J]. Journal of Geophysical Research,1995,100(4):7263-72731.
    [89]Atkinson R., Aschmann S. M., Arey J., et al. Formation of OH radicals in the gas phase reactions of O3 with a series of terpenes [J]. Journal of Geophysical Research,1992,97(5):6065-6073.
    [90]Carter W.P.L, Winer A.M., Pitts J.N. Effect of peroxyacetyl nitrate on the initiation of photochemical smog [J]. Environmental Science and Technology, 1981,15(7):831-834.
    [91]杜欢欢,孔令东,王雪梅等.大气氧化性对硝酸盐气溶胶形成的影响研究.第13届离子色谱学术报告会论文集[C],青岛,2010.
    [92]张泽锋,朱彤,赵德峰.NO2在矿物颗粒物表面的非均相反应[J].化学进展,2009,21(2/3):282-287.
    [93]Usher C.R, Al-Hosney H., Carlos-Cuellar S, et al. A laboratory study of the heterogeneous uptake and oxidation of sulfur dioxide on mineral dust particles [J]. Journal of Gephysical research,2002,107(23):4713-4722
    [94]Goodman A.L., Li P., Usher C.R., et al. Heterogeneous uptake of sulfur dioxide on aluminum and magnesium oxide particles [J]. Journal of Physical Chemistry, 2001,105(25):6109-6120.
    [95]Ullerstam M, Vogt R, Langer S, et al. The kinetics and mechanism of SO2 oxidation by O3 on mineral dust [J]. Journal of Physical Chemistry,2002,4(19): 4694-4699.
    [96]Li L., Chen Z.M., Zhang Y.H., et al. Kinetics and mechanism of heterogeneous oxidation of sulfur dioxide by ozone on surface of calcium carbonate [J]. Atmospheric Chemistry and Physics discussions,2006,6(9):2453-2464.
    [97]Fu H.B., Wang X., Wu H.B. Heterogeneous Uptake and Oxidation of SO2 on Iron Oxides [J]. Journal of Physical Chemistry,2007,111(16):6077-6085.
    [98]Laskin A., Gaspar D.J., Wang W.H., et al. Reactions at Interfaces As a Source of Sulfate Formation in Sea-Salt Particles [J]. Science,2003,301(5631): 340-344.
    [99]Quan J.N., Zhang X.S. Assessing the role of ammonia in sulfur transformation and deposition in China [J]. Atmospheric Research,2008,88(1):78-88.
    [100]Tursic J., Berner A., Podkrajsek B., et al. Influence of ammonia on sulfate formation under haze conditions [J]. Atmospheric.Environment,2004,38(18): 2789-2795.
    [101]Plerson W.R., Brachaczek W.W., Gorse R.A., et al. Acid Rain and Atmospheric Chemistry at Allegheny Mountain [J]. Environment Science Technology,1987, 21(7):679-691.
    [102]王玮,汤大钢,张孟衡.大气气溶胶酸度和酸化缓冲能力的分析[J].1993,9(3):7-8.
    [103]曾凡刚,王玮,杨忠芳等.大气气溶胶酸度和酸化缓冲能力研究[J].中国环境监测,2001,17(4):13-17.
    [104]王玮,王英,苏红梅等.北京市沙尘暴天气大气气溶胶酸度和酸化缓冲能力[J].环境科学,2001,22(5):25-28.
    [105]谢鹏,霍铭群,孙倩等.大气颗粒物酸性研究[J].环境化学,2009,20(5):626-629.
    [106]黄世鸿,储惠荟,邹万年.南京市大气颗粒物缓冲作用和雨水酸度[J].气象科学,1992,12(3):445-451.
    [107]江研因,王素芸,陈惠华等.上海市区降雨酸度及若干离子含量的测定[J].环境科学,1981,2:
    [108]江研因,王素芸,杨春林等.1981年上海地区雨水酸度和化学组分的研究[J].上海环境科学,1983,3:27-31
    [109]张秀宝,吴生发,金鼎馨等.上海地区酸雨若干问题初探[J].上海环境科学,1983,4
    [110]邵德民,张维,沈爱华等.上海地区酸雨观测实验[J].1989,气象,15,3:39-43.
    [111]沈志来,黄美元,吴玉霞等.上海地区云水和雨水酸度及化学组分分析[J].大气科学,1989,4:460-466.
    [112]张维,邵德民,沈爱华等.上海梅雨季节云水和雨水的化学组分分析[J]. 应用气象学报,1991,04:375-384.
    [113]邵德民,张维,沈爱华等.上海地区高空气流长距离输送轨迹及其与酸雨的关系[J].上海环境科学,1992,11(1):6-10.
    [114]江研因,王素芸.上海地区酸雨趋势及其影响、对策研究[J].上海环境科学,1992,11(1):24-26.
    [115]许群,张文,彭惠琪等.1998-1999年上海市区酸雨状况监测研究[J].中国环境监测,2000,16(6):5-7.
    [116]邓焕广,陈振楼,姚春霞.上海酸雨变化及对策[J].云南地理环境研究,2004,16(1):29-32.
    [117]沙晨燕,何文珊,童春富等.上海近期酸雨变化特征及其化学组分分析[J].环境科学研究,2007,20(5):31-34.
    [118]黄银芝,张明旭,郑晓红.上海市近16年湿沉降化学特征分析[J].城市环境与城市生态,2008,21(6):1-3.
    [119]梅雪英,杨扬,方建德.上海地区酸雨类型格局转变研究[J].长江流域与资源环境,2010,19(9):1075-1079.
    [120]Huang K., Zhuang G.S., Xu C., et al. The chemistry of the severe acidic precipitation in Shanghai, China [J]. Atmospheric Research,2008,89(1): 149-160.
    [121]Russell K.M., Galloway J.N., Macko S.A., et al. Sources of nitrogen in wet deposit ion t o the Chesapeake Bay region [J]. Atmospheric Environment,1998, 32(14/15):2453-2465.
    [122]Peter M. Vitousek, John D. Aber, Robert W. Howarth, et al. Human alteration of the global nitrogen cycle:sources and consequences [J]. Ecological Applications,1997,7(3):737-750.
    [123]Levy H., Moxim W.J. Fate of US and Canadian combustion nitrogen emissions [J]. Nature,1987,328:414-416.
    [124]Jenkinson D.S. An introduction to the global nitrogen cycles [J]. Soil Use Manage,1990,6(2):56-61.
    [125]Galloway J.N., Townsend A.R., Erisman J.W., et al. Transformation of the nitrogen cycle:recent trends, questions, and potential solutions [J]. Science, 2008,320 (5878):889-892.
    [126]付敏,赵卫红,王江涛等.大气湿沉降对长江口水域营养盐的贡献[J].环境科学,2008,29(10):2703-2709.
    [127]Whitall D., Hendrickson B., Paerl H. Importance of atmospherically deposited nitrogen to the annual nitrogen budget of the Neuse River estuary, North Carolina [J]. International Environment,2003,29(2/3):393-399.
    [128]Duce R.A., LaRoche J., Altieri K., et al. Impacts of Atmospheric Anthropogenic Nitrogen on the Open Ocean [J]. Science,2008,320:893-897.
    [129]Strengbom J., Walheim M., Nasholm T., et al. Regional differences in the occurrence of understorey species reflect nitrogen deposition in Swedish forests [J].2003,32(2):91-97.
    [130]Fenn M. E., Jovan S., Yuan F., et al. Empirical and simulated critical loads for nitrogen deposition in California mixed conifer forests [J]. Environmental Pollution,2008,155(3):492-511.
    [131]McNulty, Steven G., Aber J.D., et al. Nitrogen saturation in a high elevation New England spruce-fir stand [J]. Forest Ecology and Management 1994,84: 109-121.
    [132]Magill A.H., Aber J.D., Currie W.S., et al. Ecosystem response to 15 years of chronic nitrogen additions at the Harvard Forest LTER, Massachusetts [J]. Forest Ecology and Management,2004,196(1),7-28.
    [133]Wallace Z.P., Lovett G.M., Hart J.E., et al. Effects of nitrogen saturation on tree growth and death in a mixed oak forest [J]. Forest Ecology and Management, 2007,243(2-3):210-218.
    [134]Wallenda T., Kottke I. Nitrogen deposition and ectomycorrhizas [J]. New Phytologist,2008,139(1):169-187.
    [135]Brandrud T.E. The effects of experimental nitrogen addition on the ectomycorrhizal fungus flora in an oligotrophic spruce forest at Gardsjon, Sweden [J]. Forest Ecology and Manage,1995,71(1-2):111-122.
    [136]Boxman A.W., Blanck K., Brandrud T.E., et al. Vegetation and soil biota response to experimentally changed nitrogen inputs in coniferous forest ecosystem s of the NITREX project [J]. Forest Ecology and Management,1998, 101(1-3):65-79.
    [137]Xu G.L., Mo J.M., Zhou G.Y., et al. Preliminary response of soil fauna to simulated N deposition in three typical subtropical forests [J]. Pedosphere,2006, 16(5):596-601.
    [138]Sparks J., Walker J., Guenther A., et al. Dry nitrogen deposition estimates over a forest experiencing free air CO2 enrichment [J]. Global Change Biology,2008, 14(4):768-781.
    [139]Fagerli H., Aas W. Trends of nitrogen in air and precipitation:Model results and observations at EMEP sites in Europe,1980-2003 [J]. Environmental Pollution, 2008,154(3):448-461.
    [140]Wright R.F., Rasmussen L. Introduction to the NITREX and EXMAN projects [J].Forest Ecology and Management,1998,101(1/2/3):1-7.
    [141]Brimblecombe P., Stedman D.H. Historical evidence for a dramatic increase in the nitrate component of acid rain [J]. Nature,1982,298:460-462.
    [142]丁国安,徐晓斌,房秀梅等,中国酸雨现状及发展趋势[J].科学通报,1997,42(2):169-173.
    [143]袁蕙,王瑛,庄国顺.气溶胶、降水中的有机酸、甲磺酸及无机阴离子的离子色谱同时快速测定法[J].分析测试学报,2003,22(6):11-14.
    [144]王瑛.中国气溶胶的离子化学[D].北京:北京师范大学,2006.
    [145]Rastogi N., Sarin M. Chemical characteristics of individual rain events from a semi arid region in India:Three-year study [J]. Atmospheric Environment,2005, 39(18):3313-3323.
    [146]冯加良,胡小玲,管晶晶.上海市大气细颗粒物的酸度及其与组成的关系[J].上海大学学报,2010,16(5):431-436.
    [147]Xu H., Bi X.H., Feng Y.C. Chemical composition of precipitation and its sources in Hangzhou [J], China. Environmental Monitoring Assessment.2011, 183(1-4):581-592.
    [148]Migliavacca D., Teixeira E.C., Wiegand F.,et al. Atmospheric precipitation and chemical composition of an urban site, Guaiba hydrographic basin, Brazil [J]. Atmospheric Environment,2005,39(10):1892-1844.
    [149]Al-Khashman O.A. Study of chemical composition in wet atmospheric precipitation in Eshidiya area, Jordan [J]. Atmospheric Environment,2005, 39(33):6175-6183.
    [150]杨书申,邵龙义,杨园园.北京、上海两地2004和2005年大气污染特征对比分析[J].长江流域资源与环境,2008,17(2):323-327.
    [151]程新金,黄美元,降水化学特性的一种分类分析方法[J].气候与环境,1998,3(1):82-90.
    [152]严向宏.上海宝山区细颗粒气溶胶PM25特征[J].广州化工,2011,39(3):130-132.
    [153]Keene W.C., Pszenny A.P., Galloway J.N., et al. Sea salt correction and interpretation of constituent ratios in marine precipitation [J]. Journal of Geophysical Research,1986,91(6):6647-6658.
    [154]Taylor S.R. Abundance of chemical elements in the continental crust:a new table [J]. Geochimica et Cosmochimica Acta,1964,28(8):1273-1285.
    [155]Chabas A. Lefevre R.A. Chemistry and microscopy of atmospheric particulates at Delos (Cyclades-Greece) [J]. Atmospheric Environment,2000,34(2): 225-238
    [156]Ali K., Momin G.A., Tiwari S., et al. Fog and precipitation chemistry at Delhi, North India [J]. Atmospheric Environment,2004,38(25):4215-4222.
    [157]Geng F.H., Zhang Q., Tie X.X., et al. Aircraft measurements of 03, NOx, CO, VOCs, and SO2 in the Yangtze River Delta region [J]. Atmospheric Environment,2009,43(3):584-593.
    [158]Seinfeld J.H., Pandis S.N. Atmospheric Chemistry and Physics:from air pollution to climate change [M].1998, New York:Willey.1326.
    [159]张修峰.上海地区大气氮湿沉降及其对湿地水环境的影响[J].应用生态学报,2006,17(6):1099-1102.
    [160]周国逸,闫俊华.鼎湖山区域大气降水特征和物质元素输入对森林生态系统存在和发育的影响[J].生态学报,2001,21(12):2002-2012.
    [161]周婕成,史贵涛,陈振楼等.上海大气氮湿沉降的污染特征[J].环境污染与防治,2009,31(11):30-34.
    [162]袁玲,周鑫斌,辜夕容等.重庆典型地区大气湿沉降氮的时空变化[J].生态学报,2009,29(11):6095-6101.
    [163]Krupa S.V. Effects of atmospheric ammonia on terrestrial vegetation:A review [J]. Environment Pollution,2003,124(2):179-221.
    [164]Zhao X., Yan X.Y., Xiong Z.Q., et al. Spatial and Temporal Variation of Inorganic Nitrogen Wet Deposition to the Yangtze River Delta Region, China [J]. Water Air and Soil Pollution,2009,203 (1-4):277-289.
    [165]王小治,朱建国,高人等.太湖地区氮素湿沉降动态及生态学意义:以常熟生态站为例[J].应用生态学报,2004,15(9):1616-1620.
    [166]张国森,陈洪涛,张经等.长江口地区大气湿沉降中营养盐的初步研究[J].应用生态学报,2003,14(7):1107-1111.
    [167]颜敏,王雪松,刘兆荣等.大气颗粒物表而非均相反应的模式研究[J].中国环境科学,2008,9:823-827.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700