用户名: 密码: 验证码:
单段式自热高温(微)好氧消化工艺处理城市污水厂污泥及其稳定化机理研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
稳定化处理是污泥减量化、无害化的一个重要手段,也是污泥处理与处置的重要环节之一。污泥稳定化处理方法包括物理、化学及生物法,生物法由于运行成本低、安全可靠而被广泛采用。污泥自热高温好氧消化(ATAD)工艺属好氧消化范畴,具有污泥停留时间短、病原菌灭活效率高等优势。该工艺较好克服了传统生物稳定法污泥停留时间长、设施占地面积大等不足,因而自上世纪九十年代开始在欧洲、北美等城市污泥稳定化处理工艺中得到较快的应用与推广。目前,我国在ATAD工艺稳定化处理污泥方面研究较少,也无应用实例。
     借鉴ATAD工艺已有研究基础,本课题组开发了一套新型的单段式污泥高温(微)好氧(ATMAD)消化装置,该装置在满足污泥稳定化处理效果的同时,具有结构简单、占地面积小等优势,其有效性已初步得到试验证明,但相关的污泥稳定化机理亟待深入研究。本论文从物质迁移转化规律、嗜热微生物种群多样性、有机物降解动力学等方面阐述了单段式ATMAD工艺的污泥稳定化过程与机理,并通过中试运行过程考察了ATMAD工艺的污泥稳定化效果、建立了消化体系的热平衡方程。
     单段式ATMAD工艺批式运行结果表明:稳定化处理污泥时,进料污泥固体物(TS)浓度以5~6%较为适宜(挥发性固体物VS含量约3.3~4.0%);增大曝气量有利于提高VS去除率,但不能显著促进有机物的快速降解,适宜曝气强度为1.0~1.2L/(h·L泥);污泥稳定化过程受消化温度影响最为明显,反应器运行温度在50~60oC条件下VS去除率明显较高。污泥经高温消化后其脱水性能明显恶化,延长消化时间有利于适当改善消化污泥的脱水性能。ATMAD工艺按半间歇运行方式在55oC消化温度下稳定化处理污泥时,水力停留时间(HRT)不低于13d的消化体系VS去除率均高于38%,且粪大肠菌群与沙门氏菌均有效灭活,消化污泥达到A类污泥各项指标。
     考察了污泥稳定化过程VFA组分及其浓度变化,阐述了消化体系有机组分的代谢途径与规律。消化体系上清液有机物浓度相对较高或快速增加时,生化代谢系统可通过乙酸、丙酸、丁酸等合成途径来满足消化体系对氧化态NAD+的需求;消化体系大量累积VFA时,除乙酸外,丙酸、异丁酸与异戊酸均为主要组分,其浓度远高于正丁酸与正戊酸。在曝气强度不变时,有机底物的生化代谢过程对消化体系ORP值存在明显影响。
     以VS为评价指标建立了单段式ATMAD工艺的有机物降解动力学。消化体系VS降解的宏观一级动力学方程为(消化时间以d计量):污泥水力停留时间不低于10d时,动力学公式计算值与试验测定结果相对误差均低于10%;中试系统半间歇运行过程中,理论计算值与实际值相对误差不超过6%。
     分离、纯化了典型的嗜热微生物并进行了生物强化试验。分离的两株典型嗜热菌T1(No: HQ436531)与T2(No: HQ436531)分别属于Hydrogenophilaceae与Xanthomonodaceae。接种嗜热菌株有利于提高污泥稳定化初期的有机物降解效果,但微观环境对稳定化过程也存在明显影响。单独接种嗜热菌T2的反应器在整个消化过程均比空白对照反应器有更高的VS去除率。DGGE图谱表明:好氧、兼性与厌氧微生物可共存于污泥高温(微)好氧消化体系。
     本论文通过中试运行考察了ATMAD工艺的污泥稳定化效果,并建立了消化体系的热平衡方程。中试系统(HRT为10d)在半间歇式操作条件下连续运行10d后,平均VS去除率为37.8%,反应器运行温度维持在58~62oC,pH值变化范围为7.8~8.2,ORP值在-325~-260mV范围内波动,氧利用率达30%左右。消化体系在60oC左右运行时,因机械能转化而产生的热量占消化体系总放热量的30.8%。可见,单段式ATMAD工艺并非完全的“自热”升温。
Sludge stabilization is an important step for sewage sludge treatment and disposal.Autothermal thermophilic aerobic digestion (ATAD) has the advantage of rapid volatilesolids (VS) reduction, short sludge retention time (SRT), and efficient pathogeninactivation, so it is a promising aerobic process that produces Class A biosolids. SinceATAD technology was first introduced in the early1970s, significant advances had beenmade in the optimization and adaption of ATAD technology for sewage sludgestabilization, and a number of ATAD units had been constructed in Europe and NorthAmerica. Although ATAD process can stabilize sewage sludge and has merits overtraditional aerobic and anaerobic digestion processes, there is no ATAD system used inChina due to lack of fundamental research in this field.
     The conventional ATAD systems are normally two-stage process. In China, a one-stage ATAD digestion device has been developed due to its simple units and small areaoccupation, and it is named as ATMAD system due to micro-aerobic operationcondition. Bench-scale experiments have revealed that a one-stage ATMAD systemcould achieve the same stabilization effects as two-stage ATAD process, so it haspresented potential application for sewage sludge stabilization in small-and medium-sized wastewater treatment plants (WWTPs). To better understand stabilizationmechanism of one-stage ATMAD process and provide recommendations for its practicaloperation, this project mainly focused on following aspects:(1) optimizing operationparameters of one-stage ATMAD system;(2) investigating digestion efficacy (includingVS removal and pathogen inactivation) and the release of nutrition components as wellas dewatering characteristics of the digested sludge;(3) examining microbial diversity during digestion process;(4) proposing biochemical metabolic pathway;(5) setting up alarge-scale ATMAD digester to examine digestion efficacy of one-stage ATMADprocess and to analyze heat balance.
     The optimal parameters of one-stage ATMAD process are5~6%total solids (TS),1.0~1.2L/(h·L sludge) aeration intensity, and50~60oC digestion temperature. Higheraeration moderately favores VS removal, however it has adverse impact on autothermalthermophilic condition. Digestion temperature is a major parameter for sludgestabilization, a one-stage ATMAD system could achieve more efficient digestionefficacy with moderate increase of thermophilic temperature, but ATMAD system shallattain low VS removal as digestion temperature is up to65oC. Thermophilic digestionresults in poor dewaterability of the digested sludge, and longer SRT is helpful tomoderately improve the dewaterability. Semi-continuous operation of one-stageATMAD digester at TS level5~6%, aeration intensity1.0~1.2L/(h·L sludge), andtemperature55oC indicated that at least13-day HRT(hydraulic retention time)isrequired to achieve above38%VS removal, and pathogen inactivation of the digestedsludge also meet the requirements of Class A biosolids.
     As the concentration of organic matter rapidly increases during ATMAD process,aeration is unable to meet the demand of oxygen, and the system maintains low oxidationreduction potential (ORP). As a result, digestion system could regulate its metabolicpathways to produce acetic, propionic, butyric acids and other volatile fatty acids (VFA)constituents in order to meet the demand for NAD+. Based on the variation of VFA andfundamental theories of aerobic and anaerobic digestions, a biochemical model isproposed. As aeration density is constant, the biochemical metabolic process of substratehas significant impact on ORP level.
     VS can be regarded as a suitable indicator for biodegradation kinetics of organicmatter, and VS concentration can be expressed asRelative error is less than6%between the determined results and the calculated valuesfor a large-scale ATMAD digester as kinetics equation is used during semi-continuous operation process.
     Two representative thermophilic strains T1(No: HQ436531) and T2(No: HQ436531) were isolated, and16S rRNA gene analysis indicated that they belongedto Hydrogenophilaceae and Xanthomonodaceae, respectively. Inoculation with thermo-philic strains can speed up the degradation of organic matter during the early stage ofthermophilic aerobic digestion, and both specific thermophilic strains and micro-environment significantly affect VS removal. Strains T2can completely acclimatize itselfto thermophilic digestion and favor digestion process. According to DGGE profiles,aerobic, anaerobic or facultative microbes can co-exist in thermophilic aerobic digester,which jointly constitute microbial community and contribute to sludge stabilization.
     A large-scale digester was designed with effective volume of10m3, and semi-continuous operation was conducted at10-day HRT to evaluate the effectiveness of one-stage ATMAD process and to analyze the heat balance of digestion system. From11to20d after start-up, digestion temperature fluctuated moderately between58and62oC,average VS removal was37.8%, the pH and ORP were7.8~8.2and-325~-260mV,respectively, and oxygen utilization coefficient was about30%. The heat derived frommechanical mixing energy contributed30.8%of the total heat release, so one-stageATMAD system is not completely self-heating.
引文
[1]孔祥娟.我国城镇污水处理厂污泥处理处置技术现状与发展趋势.上海:水泥窑协同处置废弃物论坛,2010.
    [2]马超,陈向明.浅谈城市污水处理厂中的节能技术.苏州:2010年全国给水排水技术信息网年会,2010.
    [3]Wei Y S, Renze T, Houtenb V, et al. Minimization of excess sludge production for biological waste-water treatment. Wat. Res.2003,37,4453-4467.
    [4]尹军,谭学军.污水污泥处理处置与资源化利用.北京:化学工业出版社,2004.
    [5]赵庆祥.污泥资源化技术.北京:化学工业出版社,2002.
    [6]朱明权,周冰莲.污水厂污泥稳定方法及稳定化程度的评价指标.城市给排水,1997,23(10):5-10.
    [7]张辰,王国华.污泥处理处置技术与工程实例.北京:化学工业出版社,2006.
    [8]United Nations Environment Programme. UNEP(DEC)/MED WG264/Inf.8Guidelines for sewagesludge treatment, disposal and use. Barcelona, Meeting of the MED POL National Coordinators,2005.
    [9]Dick R I. Sludge treatment, utilization, and disposal. Wat. Pollut. Control Fed.1978,50(6):1096-1131.
    [10]王洪臣.中国污泥处理处置技术路线的初步分析.水工业市场,2010,(12):12-14.
    [11]马芳,刘晓丹.浅谈城市污泥资源化利用的途径.中国资源综合利用,2007,25(8):16-18.
    [12]Matsch L C, Drnevich R F. Autothermal aerobic digestion. Wat. Pollut. Control Fed.1977,49(2):296-310.
    [13]Hartman R B, Smith D G, Bennett E R, et al. Sludge stabilization through aerobic digestion.Wat.Pollut.Control Fed.1979,51(10):2353-2365.
    [14]Benefield L D, Randall C W. Biological process design for wastewater treatment. New Jersey:Prentice-Hall,1980.
    [15]Antonio G. Aerobic digestion of thickened activated sludge. Wat. Res.1983,17(11):1525-1531.
    [16]Anderson B C, Mavinic D S. Aerobic sludge digestion with pH control-preliminary investigation.Wat. Pollut. Control Fed.1984,56(7):889-897.
    [17]USEPA. Autothermal thermophilic aerobic digestion of municipal wastewater sludge. Washington,Report EPA/625/10-90/007,1990.
    [18]汪慧贞,沈家杰. pH对污泥好氧消化的影响.给水排水,1990,(2):14-16.
    [19]韩相奎,王海山,刘颖,等.投加无机营养盐对污泥好氧消化的影响.环境科学,1992,12(2):138-143
    [20]沈耀良.污泥好氧消化处理工艺的研究.苏州城建环保学院学报,1994,7(1):55-56.
    [21]尹军,周春生,韩相奎.剩余污泥好氧消化处理的试验研究.吉林建筑工程学院学报,1994,(1):1-15.
    [22]Layden M N, Mavinic D C, Kelly H G, et al. Autothermol thermophilic aerobic digestion (ATAD)–Part I: Review of origins, design, and process operation. J. Environ. Eng. Sci.2007,6:665-678.
    [23]USEPA.40CFR PART503Standards for the use or disposal of sewage sludge. Washington: UnitedStates Environmental Protection Agency,1993.
    [24]国家环境保护总局,国家质量监督检验检疫总局. GB18918-2002城镇污水处理厂污染物排放标准.中华人民共和国国家标准,2002.
    [25]Ganczarczyk J, Hamoda M F, Wong H L. Performance of aerobic digestion at different sludge solidlevels and operation patterns. Wat. Res.1980,14(6):627-633.
    [26]Casey T J, Karmo O T. The influence of suspended solids on oxygen transfer in aeration systems.Wat. Res.1974,8(10):805-811.
    [27]Mavinic D S, Koers D A. Performance and kinetics of low-temperature aerobic sludge Digestion. Wat.Pollut.Control Fed.1979,51(8):2088-2097
    [28]周群英,高廷耀.环境工程微生物学(第3版).北京:高等教育出版社,2008.
    [29]闵航,吴雪昌.微生物学.杭州:浙江大学出版社,2005.
    [30]张自杰,林荣忱,金儒林.排水工程,下册(第4版).北京:中国建筑工业出版社,2000.
    [31]张艳萍,彭永臻,王亚宜,等.调节好氧消化pH值提高污泥沉降和脱水性能.环境污染治理技术与设备,2006,7(2):34-37.
    [32]周春生,韩相奎.剩余污泥好气消化中TTC-DHA与其他活性参数的相关性.环境科学,1991,12(1):2-7.
    [33]张立囯.脱氢酶活性测定方法及其应用研究,哈尔滨:哈尔滨工业大学,2005.
    [34]孙丰霞.活性污泥法污水厂污泥微氧消化的试验研究.上海:同济大学,2004.
    [35] Bernard S, Gray N F. Aerobic digestion of pharmaceutical and domestic wastewater sludges atambient temperature. Wat. Res.2000,34(3):725-734.
    [36]彭永臻,陈滢,王淑莹,等.污泥好氧消化的研究进展.中国给水排水,2003,19(2):36-39.
    [37]Daigger G T, Bailey E. Improving aerobic digestion by prethickening, staged operation, and aerobi-anoxic operation: four full-scale demonstrations. Wat. Environ. Res.2000,72(3):260-270.
    [38]Kim M H, Hao O J. Comparison of activated sludge stabilization under aerobic or anoxic conditions.Wat. Pollut.Control Fed.1990,62:160-168.
    [39]Surampalli R Y, Banerji S K. Microbiological stabilization of sludge by aerobic digestion andstorage. Environ. Eng.1993,119(3):493-505.
    [40]Skjelhaugen O J. Thermophilic aerobic reactor for processing organic liquid wastes. Wat. Res.1999,33(7):1593-1602.
    [41]Rozich A F, Bordacs K. Use of thermophilic biological aerobic technology for industrial wastetreatment. Wat. Sci. Technol.2002,(46):83-89.
    [42]Milenko R, Gregor D Z. Thermophilic aerobic digestion of waste activated sludge. Acta Chim. Slov.2002,49:931-943.
    [43]张艳萍,彭永臻.剩余污泥高温好氧消化及其影响因素.环境科学与技术,2009,32(6):58-61.
    [44]程洁红,周全法.城市污泥的高温好氧消化及动力学参数分析.环境科学与技术,2009,32(8):38-42.
    [45]Rajagopal K. Evaluation of parameters of measure sludge aerobic stabilization. New York: CornellUniversity,1987.
    [46]Kambhu K, John F A. Aerobic thermophilic process for the biological treatment of wastes:simulation studies. Wat. Pollut. Control Fed.1969,41(5):127-141.
    [47]Jewell W J, Kabrick R M. Autoheated aerobic thermophilic digestion with aeration.Wat. Environ.Fed.1980,52(3):512-523.
    [48]Boulanger M L. The effect of varying air supply upon supernatant quality in autoheated thermophi-lic aerobic digesters treating waste sludge from a biological phosphorus removal process. Vancouver:University of British Columbia,1995.
    [49]Bonita G P. Impacts of temperature and hydrolic retention time on odour production from autother-mal thermaphilic aerobic digestion. Vancouver: University of British Columbia,2008
    [50]Angus C, Mavinic D S, Kelly H G, et al. A biochemical model describing volatile fatty acid meta-bolism in thermophilic aerobic digestion of wastewater sludge. Wat. Res.1996,30(8):1759-1770.
    [51]van Loosdrecht M C M, Henze M. Maitenance, endogeneous respiration, lysis, decay and predation.Wat.Sci.Tech.1999,39(1):11-20.
    [52]Mavinic D S, Mahendraker V, Sharma A, et al. Effect of microaerophilic conditions on autothermalthermophilic aerobic digestion process. Environ. Eng.2001,127(4):311-316.
    [53]Kelly H G, Melcer H, Mavinic D S. Autothermal thermophilic aerobic digestion of municipal sludges:a one-year, full-scale demonstration project. Wat. Environ. Res.1993,65(7):849-861.
    [54]Layden M N, Kelly H G, Mavinic D C, et al. Autothermol thermophilic aerobic digestion (ATAD)–Part Ⅱ: Review of research and full-scale operating experiences. Environ. Eng. Sci.2007,6:679-690.
    [55]Kelly H G, Mavinic D S. Autothermal thermophilic aerobic digestion research application and oper-ational experience. Los Angeles: WEFTEC2003Workshop W104Thermophilic Digestion,2003.
    [56]张峥嵘,黄少斌,蒋然.单级预热式自动升温高温好氧消化工艺处理剩余活性污泥.化工进展,2007,26(12):1798-1804.
    [57]程洁红,周全法,朱南文.自热式高温好氧消化工艺的氧化还原电位研究.环境科学研究.2009,22(4):484-489
    [58]朱南文,林洁梅,陈华,等.污泥高温好氧消化装置.中国,发明专利, CN1587110,2005-03-02
    [59]罗刚,陈运进,黄少斌,等.一种污泥自热高温好氧消化方法及其装置.中国,发明专利,CN101717173A,2010-06-02
    [60]程洁红,张善发,陈华,等.自热式高温好氧消化污泥稳定化系统.中国给水排水,2005,21(7):9-13.
    [61]程洁红,张善发,陈华,等.曝气量对ATAD中试工艺运行的影响.水处理技术,2006,32(5):39-41.
    [62]Staton K L, Alleman J E, Pressley R L, et al.2ndgeneration autothermal thermophilic aerobicdigestion: conceptual issues and process advancements. San Diego: WEF Biosolids Conference,2001.
    [63]Li B K. ORP regulation of nutrient removal in wastewater treatment process and the structure-func-tion analyses of activated sludge floc. Cincinnati: University of Cincinnati,2002
    [64]Antoniou P, Hamilton J, Koopman B, et al. Effect of temperature and pH on the effective maximumspecific growth rate of nitrifying bacteria. Wat. Res.1990,24(1):97-10.
    [65]Juteau P. Review of the use of aerobic thermophilic bioprocesses for the treatment of swine waste.Livestock Sci.2006,102:187-196.
    [66]Placha I, Venglovsky J, Makova Z. The elimination of Salmonella typhimurium in sewage sludgeby aerobic mesophilic stabilization and lime hydrated stabilization. Bioresour. Technol.2008,99:4269-4274.
    [67]Anthony M C, Hamer G, Fleischmann T, et al. Aerobic thermophilic biodegradation of microbialcells-some effects of dissolved oxygen and temperature. Appl. Microbiol Biotechnol.1987,25:568-576.
    [68]Sonnleitner B, Bomio M. Physiology and performance of thermophilic microorganisms in sewagesludge treatment processes. Biodegradation,1990,(1):133-146.
    [69]Willer H.C, Derikx P J L,Vijn T K, et al. Nitrification limitation in animal slurries at high tempera-ture. Bioresour. Technol.1998,64:47-54.
    [70]Grady P L, Daigger G T, Lim H C. Biological wastewater treatment (2nd ed.). USA New York: CRSPress Taylor&Francis,1998:572-573.
    [71]Ponti C, Sonnleitner B, Fiechter A. Aerobic thermophilic treatment of sewage sludge at pilot plant-scale1: operating conditions. J. Biotechnol.1995,38:173-182.
    [72]Tapana C, Pagilla K R. Temperature and SRT effects on aerobic thermophilic sludge treatment. J.Environ. Eng.1999,125(7):626-629.
    [73] Murthy S N, Novak J T, Holbrook R D. Optimizing dewatering of biosolids from autothermal ther-mophilic aerobic digesters (ATAD) using inorganic conditioners. Wat. Environ. Res.2000,72(6):714-721.
    [74]Burnett C, Woelke A, Dentel S. Dewaterability of ATAD sludges. Proc. Wat. Environ.Fed.70thAnnu.Conf. Exposition, Chicago,1997,(2):299-309.
    [75]Murthy B S, Novak J T, Holbrook R D, et al. Mesophilic aeration of autothermal thermophilic aero-bically digested biosolids to improve plant operations. Wat. Environ.Res.2000,72:476-483.
    [76]Nosrati M, Sreekrishnan T R, Mukhopadhyay S N. Energy audit, solids reduction, and pathogeninactivation in secondary sludges during batch thermophilic aerobic digestion process.J. Environ.Eng.2007,133(5):474-484.
    [77]Zhou J P. Factors influencing dewaterability of thermophilic aerobic digested biosolids. Vancouver:University of British Columbia,2003.
    [78]Saurabh A, Abu-Orf M, Novak J T. Sequential polymer dosing for effective dewatering of ATADsludges. Wat. Res.2005,39:1301-1310.
    [79]Abu-Orf M. Griffin P. Dentel S. Chemical and physical pretreatment of autothermal thermophilic aero-bically digested (ATAD) biosolids for dewatering. Wat. Sci. Technol.2001,44(10):309-314.
    [80]Guild J, Boyle M, Sasser L, et al. VERTADTM-Auto thermophilic aerobic digestion: demonstration-scale test results. NORAM Engineering and Constructors Ltd., Vancouver,2002
    [81]Zwiefelhofer H P. Aerobic-thermophilic/anaerobic-mesophilic two-stage sewage sludge treatment:Practical experiences in Switzerland. Conserv. Recycling,1985,8(1-2):285-301.
    [82]Pagilla K R, Craney K C. Aerobic thermophilic pretreatment of mixed sludge for pathogen reduction andNocardia control.Wat. Environ. Res.1996,68(7):1093-1098.
    [83]Tapana C, Pagilla K R. Aerobic thermophilic and anaerobic mesophilic treatment of sludge. J. Environ.Eng.2000,126(9):790-795.
    [84]Sebastian B, Stanis aw J S. Experiences with the dual digestion of municipal sewage sludge. Bioresour.Technol.2007,98:1199-1207.
    [85]H ner A, Mason C A, Hamer G. Death and lysis during aerobic thermophilic sludge treatment: Charact-erization of recalcitrant products. Wat. Res.1994,28(4):863-869.
    [86]Hamer G, Mason C A. Fundamental aspects of waste sewage sludge treatment: Microbial solids biode-gradation in an aerobic thermophilic semi-continuous system. Bioprocess Eng.1987,(2):69-77.
    [87]Liu S G, Song F Y, Zhu N W, et al. Chemical and microbial changes during autothermal thermophi-lic aerobic digestion (ATAD) of sewage sludge. Bioresour. Technol.2010,101:9438-9444.
    [88]Jowitt Z L, Mavinic D S, Kelly H G. Pilot-scale operation of thermophilic aerobic digestion f orVFA production and distribution. J. Eng. Sci.2003,(2):187-197.
    [89]Angus C. Volatile fatty acid metabolism in thermophilic aerobic digestion of sludge. Vancouver:University of British Columbia,1995.
    [90]Fothergill S, Mavinic D S. VFA production in thermophilic aerobic digestion of municipal sludges.J. Environ. Eng.2000,126(5):388-396.
    [91]H ner A, Mason C A, Hamer G. Aerobic thermophilic waste sludge biotreatment: carboxylic acidproduction and utilization during biodegradation of bacterial cells under oxygen limitation. Appl.Microbiol. Biotechnol.1994,40:904-909.
    [92]Mavinic D S, Koers D A. Fate of nitrogen in aerobic sludge digestion. Wat. Pollut. Control Fed.1982,54(4):352-360.
    [93]Giuseppe G A. Aerobic digestion of thickened activated sludge: reaction rate constant determina-tion and process performance. Wat. Res.1983,17(11):1525-1531.
    [94]Lee J W, Lee H W, Kim S W. Nitrogen removal characteristics analyzed with gas and microbialcommunity in thermophilic aerobic digestion for piggery waste treatment. Wat. Sci. Technol.2004,49:349-357.
    [95]Xue T, Huang X. Releasing characteristics of phosphorus and other substances during thermal treat-ment of excess sludge. J. Environ. Sci.2007,19:1153-1158.
    [96]Kuroda A, Takiguchi N, Takafumi G, et al. A simple method to release polyphosphate from activat-ed sludge for phosphorus reuse and recycling. Biotechnol. Bioeng.2002,78(3):333-338.
    [97]Edenborn S L, Sexstone A J. DGGE fingerprinting of culturable soil bacterial communities comple-ments culture-independent analyses. Soil Biol. Biochem.2007,39:1570-1579.
    [98]刘树根,朱南文.污泥高温好氧消化微生物作用机理的研究进展.安徽农业科学,2010,38(3):1392-1394,1425.
    [99]Sonnleitner B, Fiechter A. Microbial flora studies in thermophilic aerobic sludge treatment. Conserv.Recycling,1985,8(1-2):303-313.
    [100]Li X S, Ma H Z, Wang Q H, et al. Isolation, identification of sludge-lysing strain and its utilizationin thermophilic aerobic digestion for waste activated sludge. Bioresour. Technol.2009,100:2475-2481.
    [101]Ugwuanyi J O, Harvey L M, McNeil B. Diversity of thermophilic populations during thermophilicaerobic digestion of potato peel slurry. J. Appl. Microbiol.2008,104:79-90.
    [102]Lapara T M, Nakatsu C H, Pantea L. Phylogenetic analysis of bacterial communities in mesophilicand thermophilic bioreactors treating pharmaceutical wastewater. Appl. Environ. Microbiol.2000,9:3951–3959.
    [103]Hayes D, Izzard L, Seviour R. Microbial ecology of autothermal thermophilic aerobic digester(ATAD) systems for treating waste activated sludge. Syst. Appl. Microbiol.2011,34:127-138.
    [104]刘树根,朱南文,楼紫阳,等.污泥高温好氧消化过程的生物多样性分析.环境科学学报,2010,30(5):990-995.
    [105]Yan S T, Kazuhiko M, Xing X H. Succession of bacterial community and enzymatic activities ofactivated sludge by heat-treatment for reduction of excess sludge. J. Biochem. Eng.2008,39:598-603.
    [106]Juteau P,Tremblay D, Villemur R, et al. Analysis of the bacterial community inhabiting an aerobicthermophilic sequencing batch reactor treating swine waste. Appl. Microbiol. Biotechnol.2005,66:115-122.
    [107]Bomio M, Sonnleitner B, Fiechter A. Aerobic thermophilic treatment of sewage sludge at pilotplant scale1-Operating conditions. J. Biotechnol.1995,38:173-182.
    [108]Joseph G,Walter S. The biocatalytic potential of extremophiles and extremozymes. Food Technol.Biotechnol.2004,42(4):223-235.
    [109]Kim Y K, Bae J H, Choi J W. Enhancement of proteolytic enzyme activity excreted from Bacillusstearothermophilus for a thermophilic aerobic digestion process. Bioresour. Technol.2002,82:157-164.
    [110]Bomio M, Sonnleitner B, Fiechter A. Growth and biocatalytic activities of aerobic thermophilicpopulations in sewage sludge. Appl. Microbiol. Biotechnol.1989,32:356-362.
    [111]Chen Y G, Jiang S, Yuan H Y, et al. Hydrolysis and acidification of waste activated sludge at diff-erent pHs. Wat. Res.2007,41:683-689.
    [112]国家环境保护总局,水和废水监测分析方法编委会.水和废水监测分析方法(第4版).北京:中国环境科学出版社,2002.
    [113]中华人民共和国卫生部. GB4789.4-2010食品微生物学检验-沙门氏菌检验.中华人民共和国国家标准,2010.
    [114]Bradford M M. A rapid and sensitive method for the quantitation of microorganism quatities ofprotein utilizing the principle utilizing the principle of protein-dye binding, Anal. Biochem.1976,72:248-254.
    [115]林炎坤.常用的几种葱酮比色定糖法的比较和改进.植物生理学通讯,1989,(4):53-55.
    [116]APHA, AWWA, WEF. Standard methods for the examination of water and wastewater (21th ed.).USA Washington,2005.
    [117]邱兆富,周琪.国内城市污水污泥的特点及处理处置对策.中国沼气,2004,22(2):22-26.
    [118]Houghton J I, Stephenson T. Effect of influent organic content on digested sludge extracellularpolymer content and dewaterability. Wat. Res.2002,36:3620-3628.
    [119]Dignac M F, Urbain V, Rybacki D, et al. Chemical description of extracellular polymers: implica-tion on activated sludge floc structure. Wat. Sci. Technol.1998,38(8-9):45-53.
    [120]Eriksson L, Alm B. Study of flocculateon mechanism by observing effects of compexing agent onactivated sludge properties. Wat. Sci. Technol.1991,24(7):21-28.
    [121]Novak J T, Sadler M E, Murthy S N. Mechanisms of floc destruction during anaerobic and aerobicdigestion and the effect on conditioning and dewatering of biosolids. Wat. Res.2003,37:3136-3144.
    [122]何培培,余光辉,邵立明,何品晶.污泥中蛋白质和多糖的分布对脱水性能的影响.环境科学,2008,29(12):3457-3461.
    [123]Poggi-Varaldo H M, Rodriguez-Vazquez R. Inhibition of mesophilic solid-substrate anaerobic dig-estion by ammonia nitrogen. Appl. Microbiol. Biotechnol.1997,47:284-291.
    [124]翁诗甫.傅立叶变换红外光谱分析(第2版).北京:化学工业出版社,2010.
    [125]Jiang J Q, Zhao Q L, Wei L L, et al. Extracellular biological organic matters in microbial fuel cellusing sewage sludge as fuel. Wat. Res.2010,44:2163-2170.
    [126]Song L J, Zhu N W, Yuan H P, et al. Enhancement of waste activated sludge aerobic digestion byelectrochemical pre-treatment. Wat. Res.2010,44:4371-4378.
    [127]Pagnanelli F, Papini M P, Toro L, et al. Biosorption of metal ions on Anthrobacter sp.: biomasscharacterization and biosorption modeling. Environ. Sci. Technol.2000,34(13):2773-2778.
    [128]Wang Q H, Kuninobu M, Ogawa H I, et al. Degradation of volatile fatty acids in highly efficientanaerobic digestion. Biomass and Bioenergy,1999,(16):407-416.
    [129]多伊尔.细菌的新陈代谢.北京:科学出版社,1983.
    [130]Gottschalk G. Bacterial Metabolism. New York: Springer,1979.
    [131]Tanaka S, Kobayashi T, Kamiyama K. Effects of thermochemical pretreatment on the anaerobicdigestion of waste activated sludge. Wat. Sci. Technol.1997,35(8):209-215.
    [132]McInerney M J. Anaerobic hydrolysis and fermentation of fats and proteins. In: Zehnder A J B.Biology of Anaerobic Microorganisms. New York: Wiley,1988.
    [133]Gorris L, van Deursen J, van der Drift C, et al. Inhibition of propionate degradation by acetate inmetnanogenic fluidized bed reactor. Biotechnol. Lett.1989,11(1):51-56.
    [134]Ramsay I R, Pullammanappallil, P C. Protein degradation during anaerobic wastewater treatment:derivation of stoichiometry. Biodegradation,2001,12:247-256.
    [135]Milenko R, Gregor D Z. Thermophilic aerobic digestion of waste activated sludge. Acta Chim Slov,2002,49:931-943.
    [136]Martin J H. A mathematical model of the autoheated aerobic sludge digestion process. USA NewYork: Cornell University,1993.
    [137]尹军,刘韬,宋显东.污泥好氧消化处理的若干问题探讨.中国给水排水,2001,17(8):23-27.
    [138]李亚峰,马辉,王晓华.污泥好氧消化的动力学关系式及相关问题.沈阳建筑工程学院学报,2002,18(2):132-136.
    [139]Liu J M, Sun D D, Liu H, et al. Biodegradation kinetics for pre-treatment of Klebsiella pneumoniawaste with autothermal thermophilic aerobic digestion. J. Chem. Eng.2010,18(6):905-909.
    [140]Datar M T, Bhargava D S. Variation in BOD and COD during aerobic digestion of activated sludge.J. Environ. Eng.(India)1984c,65:35-39.
    [141]Ganczarczyk J, Hamoda M F, Wong H L. Performance of aerobic digestion at different sludgesolid levels and operation patterns. Wat. Res.1980,14:627-633.
    [142]Abramov A V. Aerobic stabilization of activated sludge. In: Handling, treatment and disposal ofwastewater sludge, USA-USSR Symp. of US EPA, Washington D. C.1975.
    [143]Goodman B L, Englande A J. A unified model of the activated sludge process. Wat.Pollut. ControlFed.1974,46:312-332.
    [144]Krishnamoorthy R, Loehr R C. Aerobic sludge stabilization-Factors affecting kinetics. J. Environ.Eng.1989,115:283-301.
    [145]Randall C W, Richards J B, King P H. Temperature effects on aerobic digestion kinetics. J. Envi-ron. Eng. Div.1975,101(5):795-811.
    [146]Bhargava D S, Datar M T. Progess and kinetics of aerobic digestion of secondary sludges. Wat.Res.1988,22(1):37-47.
    [147]Manaia C M, Nogales B, Nunes O C. Tepidiphilus margaritifer gen. nov., sp. nov., isolated from athermophilic aerobic digester. Intern. J. Syst. Evolut. Microbiol.2003,53:1405-1410.
    [148]Chenna R, Sugawara1H, Koike1T, et al. Multiple sequence alignment with the Clustal series ofprograms. Nucleic Acids Res.2003,31(13):3497–3500.
    [149]Kumar S, Tamura K, Jakobsen I B, et al. MEGA2: molecular evolutionary genetics analysis soft-ware. Bioinformatics,2001,17(12):1244-1245
    [150]Wuyts J, Van de Peer Y, Winkelmans T, et al. The European database on small subunit ribosomalRNA. Nucleic Acids Res.2002,30(1):183-185.
    [151]Yao Y L, Lu Z M, Min H. Assessment of toxicity of tetrahydrofuran on the microbial communityin activated sludge. Bioresour.Technol.2010,101:5213-5221.
    [152]Edenborn S L, Sexstone A J. DGGE fingerprinting of culturable soil bacterial communities comp-lements culture-independent analyses. Soil Biol. Biochem.2007,39:1570-1579.
    [153]Muyzer G, Dewaal E C. Profiling of complex microbial populations by denaturing gradient gelelectrophoresis of polymerase chain reaction-amplified genes coding for16S rRNA. Appl. Environ.Microbiol.1993,59:695-700.
    [154]Bassam B J, Caetano A G, Gresshoff P M. Fast and sensitive silver staining of DNA in polyacryl-amide gels. Anal. Biochem.1991,196:80-83.
    [155]Salinas M B, Fardeau M L, Cayol J L, et al. Petrobacter succinatimandens gen. nov., sp. nov., amoderately thermophilic, nitrate-reducing bacterium isolated from an Australian oil well. Intern. J.Syst. Evolut. Microbiol.2004,54:645-649.
    [156]Kato S, Haruta S, Cui Z J, et al. Effective cellulose degradation by a mixed-culture system com-posed of a cellulolytic Clostridium and aerobic non-cellulolytic bacteria. FEMS Microbiol. Ecol.2004,51(1):133-142.
    [157]Kayhanian M. Ammonia inhibition in high-solids biogasification: an overview and practical solut-ions. Environ. Technol.1999,20:355-365.
    [158]Boon N, de Windt W, Verstraete W, et al. Evaluation of nested PCR–DGGE (denaturing gradientgel electrophoresis) with group specific16S rRNA primers for the analysis of bacterial communi-ties from different wastewater treatment plant. FEMS Microbiol. Ecol.2002,39(2):101-112.
    [159]Stamper D M, Walch M, Jacobs R N. Bacterial population changes in a membrane bioreactor forgray water treatment monitored by denaturing gradient gel electrophoretic analysis of16S rRNAgene fragments. Appl. Environ. Microbiol.2003,69(2):852-860.
    [160]Piterina A V, Bartlett J, Pembroke JT. Molecular analysis of bacterial community DNA in sludgeundergoing autothermal thermophilic aerobic digestion (ATAD): Pitfalls and improved methodo-logy to enhance diversity recovery. Diversity,2010,2:505-526.
    [161]Zein M M, Suidan M T, Venosa A D. MtBE biodegradation in a gravity flow, high-biomass retain-ing bioreactor. Environ. Sci. Technol.2004,38(12):3449-3456.
    [162]Katunuma N, Okadaa M, Nishii Y. Regulation of the urea cycle and TCA cycle by ammonia.Advances in Enzyme Regulation,1966,4:317-335.
    [163]Kayhanian M. Performance of a high-solids anaerobic digestion processs under at various ammo-nia concentrateons. J. Chem. Technol. Biotechnol.1994,59:349-352.
    [164] Kelly H G, Warren R. Autothermal thermophilic aerobic digestion design. CSCE/ASCE Environ-mental Engineering Conference, Edmonton,1997.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700