用户名: 密码: 验证码:
梯级渗滤人工湿地处理城市污水试验研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本研究充分利用山地城市地形特点构建了一种新型梯级渗滤人工湿地,系统具有多次强化自然复氧能力。主要研究了该梯级渗滤人工湿地系统不同组合方式及不同运行工况下的污染物去除效果及迁移转化规律,获得了梯级渗滤人工湿地系统的推荐组合方式和运行条件,建立了推荐组合工艺系统的一级动力学方程。通过考察不同组合湿地、不同季节的细菌种群多样性及分布特征,研究了细菌种群多样性对梯级渗滤人工湿地净化能力的影响,明确了湿地宏观运行效能与微观细菌种群的相关性。研究结果对梯级渗滤人工湿地在山地丘陵地区的应用和推广具有重要的意义。本研究主要得到以下结论:
     1)通过进行几种基质吸附磷及氨氮的试验,比较了不同基质的氮磷吸附能力。其吸附量大小依次为:钢渣>石灰石>陶粒、粗砂>砾石及钢渣>陶粒、石灰石、粗砂>砾石。选用砾石和粗砂为湿地结构承托基质,主体填料采用吸附性能较好的钢渣、石灰石及陶粒。
     2)针对传统人工湿地内部供氧不足的缺点,充分利用山地城市地形特点,构建了一种可多次强化自然复氧的梯级渗滤人工湿地。该湿地系统通过湿地构造和配水方式形成了多次强化自然复氧模式,整个湿地由串联的三级湿地床组成,各级湿地依次处于好氧、缺氧、好氧状态。系统兼有垂直流潜流湿地和水平流潜流湿地的水力特征,在不增加湿地深度的前提下,延长了水流在湿地中的行程,增大了基质层的有效工作厚度。同时通过多种基质配置方式营造出适宜硝化反应顺利进行的湿地环境,从而提高了梯级渗滤人工湿地系统对有机物去除和硝化作用的能力。梯级渗滤人工湿地特别适合用于处理山地丘陵地区的小规模城市污水和生态景观用水。
     3)考察了八种不同湿地床组合方式下的梯级渗滤人工湿地系统运行效能。B组合湿地对各种污染物的综合净化效果优势更突出,建议作为梯级渗滤人工湿地的推荐组合工艺,即:穿孔管配水;第一级湿地基质钢渣、植物风车草、侧壁下部设通气孔;第二级湿地基质陶粒、植物美人蕉;第三级湿地基质陶粒+石灰石、植物菖蒲。推荐组合工艺净化能力较优,主要是由于湿地基质类型及配置方式为硝化菌和反硝化菌生长提供了适宜的pH环境,而湿地构造的特殊复氧途径大幅提高了湿地床内溶解氧浓度,形成了有利于硝化反应和有机物降解的氧环境。
     4)通过正交试验方法,发现影响梯级渗滤人工湿地推荐组合工艺处理能力的主要因素是水力负荷和进水COD浓度。由此得到建议运行条件为:工况I——水力负荷0.5m/d、进水COD浓度150mg/L、间歇运行(间隔时间3d)、出水高度0m,其进水COD负荷75g/m2.d、TN负荷15.77g/m2.d、TP负荷1.26g/m2.d;工况II——水力负荷1.0m/d、进水COD浓度100mg/L、间歇运行(间隔时间3d)、出水高度0.6m,其进水COD负荷100g/m2.d、TN负荷21.72g/m2.d、TP负荷1.72g/m2.d。
     5)通过统计学数据拟合方法研究了推荐组合工艺进水污染物负荷对湿地污染物去除能力的影响,建立了推荐组合工艺的动力学方程。COD去除量负荷随进水负荷率增大而提高,建议运行工况下COD负荷未达上限;TN负荷超过22.4g/m2.d,TP负荷超过1.81g/m2.d,会引起系统TN、TP去除效果的下降。一级动力学模型可以较好地模拟梯级渗滤人工湿地推荐组合工艺的COD、TN、TP去除规律,模拟方程分别为:1/ln(C o/Ce)=-0.5157q-0.0668(R2=0.9417)、1/ln(C2o/Ce)=-0.668q-1.9168(R=0.833)、1/ln(C o/Ce)=-0.4326q-0.5617(R2=0.8148)
     6)考察了推荐组合工艺在两种建议运行工况下的处理效果,COD和氨氮出水平均浓度分别为10mg/L、9.67mg/L和1.62mg/L、1.53mg/L,可稳定达到《城镇污水处理厂污染物排放标准》(GB18918-2002)一级A标;TN平均出水浓度在运行工况I时为16.32mg/L,接近一级A标,在运行工况II时为11.12mg/L,可达到一级A标;TP平均出水浓度运行工况I时为0.48mg/L,可达到一级A标,运行工况II时为0.74mg/L,可达到一级B标。通过与国内其他一些水平潜流湿地和垂直流湿地的比较,认为梯级渗滤人工湿地推荐组合工艺的污染物去除能力优于水平潜流人工湿地、并与垂直流人工湿地相当。
     7)采用PCR-TGGE技术考察了不同湿地、不同季节的基质微生物多样性特征及其对湿地净化能力的影响。冬季各湿地床基质微生物Shannon指数小于夏季,相似聚类效果较夏季更好,夏季随温度升高湿地床内微生物活跃,不同微生物种群大量繁殖,细菌多样性程度提高。冬夏两季B湿地各级湿地床基质样品相似系数总体都小于A湿地,夏季相似系数差值更大,表明冬夏两季B湿地细菌种群差异性均大于A湿地,夏季植物和微生物的迅速生长使B湿地各级湿地床内微生物种群差异性加大,系统处理效果优于A湿地。A湿地冬季COD去除效果与Shannon指数相关性较差,说明冬季温度低微生物数量少、活性低,微生物对有机物的降解不占主导地位。B湿地各种污染物去除率均与总细菌Shannon指数高度相关,夏季氨氮、TP去除率与指数显著相关,冬季COD去除率与指数显著相关,表明B湿地内微生物对各种污染物的同化降解作用在不同季节都是实现湿地系统净化能力的重要作用,使B湿地具有稳定的、优于A湿地的净化能力。
A terrace-filter constructed wetland system adapted to terrain features ofmountainous city was built, which possesses the capacity for strengthing naturalreoxygenation multiplicating. The terrace-filter constructed wetland research focused onthe removal effort and migration and transformation discipline of contamination indifferent operation condition, obtaining the optimal factor combination mode and thebest operation condition, establishing a first-order kinetic equation, studying thediversity of the population and distribution characteristics of bacteria in different seasonand by different factor combination, obtaining the relativity of macro runningperformance and microcosmic bacterial population, meanwhile, Investigating the reasonof the optimum purification capability of the recommended operation process. Thesearching achievement is of great significance to the application of the terrace-filterconstructed wetland system in mountainous areas.
     The main conclusions are listed as follow:
     1) Through the test of several substrate absorpting nitrogen and phosphorus,compare ammonia nitrogen and phosphorus adsorption capacity of different substrates.Phosphorus adsorption volume is: steel slag> limestone> ceramic, rough sand> gravel,and ammonia nitrogen adsorption volume is: steel slag> ceramic, limestone, sand>gravel. Steel slag has higher adsorption volume and stronger stability. Select gravel andrough sand for wetland structures torquay mass, and steel slag, limestone and ceramicwhich have good adsorption performance as body filler.
     2) To settle the shortcoming of lacking oxygen of the traditional wetland system, aterrace-filter constructed wetland system adapted to mountainous city terrain featureswas built, which possessing the capacity for strengthing natural reoxygenation. Thecharacteristic of this new system is that by changing the wetland structure and waterdistribution mode, the new system possesses the capacity for strengthing naturalreoxygenation many times, and divides the wetland into three region in seriesconnection: aerobic-anoxic-aerobic, establishing an environment that favors nitration bytesting different substrate combination, thus increases the organic matter removal abilityand nitration ability. The terrace-filter constructed wetland is the ideal process fortreating small-scale urban wastewater and ecological landscape water in mountainousand hilly areas.
     3) Investigating the running performance of eight different combination mode ofthe terrace-filter constructed wetland system. The result shows that the B wetlandcombination mode is dominant in the integrated purification effect of pollutant, thusrecommends the B wetland combination mode as the optimum mode, that is: thewaterfall and distribution perforated pipe; the first wetland step substrate-steel slag;clinopodiumpolycephalum; airway; the second wetland step substrate-porcelain granule;canna; the third wetland step substrate-porcelain granule, limestone and calamus. Thereason why the recommended combination process has a better purification includefactors as follow: substrate type and how it is configured provides suitable pHenvironment for nitrobacteria and denitrifying bacteria; special reoxygenation waymeans a substantial increase in the concentration of dissolved oxygen in wetland bed,and builds a suitable oxygen environment for nitrification and organic matter removing.
     4) Concluding from the orthogonal test, hydraulic load and inlet CODconcentration are the two most important influence factor to the terrace-filterconstructed wetland system (mode B). The recommended optimum operation parameteris: I--0.5m/d's hydraulic load,150mg/L's inlet COD concentration,3days' operationspacing interval,0m's outlet height; II--1m/d's hydraulic load,100mg/L's inlet CODconcentration,3days' operation spacing interval,0.6m's outlet height. The inlet CODload is75g/m2.d and100g/m2.d separately, TN load is15.77g/m2.d and21.72g/m2.dseparately, TP load is1.26g/m2.d and1.72g/m2.d separately.
     5) By statistical data fitting method, study the effect of inlet contamination load topollutant removal load in the recommended combination technology. The COD removalload has the best positive linear relationship with the inlet contamination load; itrecommends that the operation COD load should better lower than the highest capacity.When TN load surpasses22.4g/m2.d, TP load surpasses1.81g/m2.d, it will lead to lowerremoval rate, thus recommends the TN and TP load should accord with the highestpermissible value. The first-order kinetic model are suitable for simulating the COD,TN, TP removal discipline of the recommended mode B process, the simulationequation is separately:1/ln(C o/Ce)=-0.5157q-0.0668(R2=0.9417),1/ln(C o/Ce)=-0.668q-1.9168(R2=0.833),1/ln(C o/Ce)=-0.4326q-0.5617(R2=0.8148).
     6) Investigating the treatment effect of recommended process under the tworecommended conditions, the outlet COD and ammonia concentration is separately10mg/L,9.67mg/L and1.62mg/L,1.53mg/L, meeting the discharge limits of primary Astandard of GB18918-2002steadily; the average outlet TN concentration is separately 16.32mg/L and11.12mg/L, separately closing to the discharge limits of primary Astandard and meeting the standard. The average outlet TP concentration is separately0.48mg/L and0.74mg/L, separately meeting the discharge limits of primary A standardand closing to the standard. Comparing with other comestic wetland, it concludes thatthe recommended mode of terrace-filter constructed wetland is better than thesubsurface-horizontal flow wetland in contaminant removal, and bears a comparisonwith the vertical wetland.
     7) The Shannon indexs of microorganism TGGE map of each step substrates arelower in winter than summer, the similarity clustering results of different samples arebetter in winter than summer,it shows that with the temperature increasing in summer,the microorganism population breed rapidly, and the diversity increases. The similarityclustering coefficent of mode B are less than mode A both in winter and summer, thegap is larger in summer, it indicates that microorganism population diversity of mode Bis larger than mode A, the rapid growth of microorganism and plant contributes to thediversity of these two wetland in summer. Each step of mode B has different amount,different kind, and different function of particular microorganism to participate indegradation, which makes it better than mode A. The COD concentration of mode A haslower correlation with the Shannon index in winter; it indicates that the microorganismis small in quantity and low in activity. When the temperature stays low in winter, andthat the assimilation of microorganism to organic matter is not in the lead place in modeA. The contamination removal rate of mode B has positive relationship with the totalbacteria shannon index, and the ammonia and TP removal rate have significantcorrelation with shannon index in summer, while the COD removal rate has significantcorrelation with shannon index in winter, these all shows that the assimilation ofmicroorganism to each kind of contamination in mode B plays an important role in thewetland purifacation system in different season, thus make it more stable and better thanmode A in purification.
引文
[1]张杰.水资源水环境与城市污水再生回用[J].给水排水,1998,24(8):1~4.
    [2]国家环保局.2009年中国环境状况公报[R].北京:国家环保局,2010.
    [3]王世和.人工湿地污水处理理论与技术[M].北京:科学出版社,2007.
    [4] Jan Vymazal. Horizontal sub-surface flow and hybrid constructed wetlands systems forwastewater treatment[J]. Ecological Engineering,2005,25(7):478~490.
    [5] Kadlec R H, Knight R L. Treatment wetlands[M]. Boca Raton FL:CRC Press.1996.
    [6] Hammer D A. Constructed wetlands for wastewater treatment[M]. Michigan: LewisPublishers Inc,1989:5-20.
    [7] Reed S.C., Brown and Donald. Subsurface flow wetlands-A performance evaluation. WaterEnvironmental Research.1995,67(2):244-248.
    [8] Shackle V J, Freeman C, Reynolds B. Carbon supply and the regulation of enzyme activity inconstructed wetlands[J]. Soil Biology&Biochemistry,2000,32:1935-1940.
    [9] International Water Association. Constructed wetlands for pollution control, processes, design,and operation[M]. London: IWA Publishing,2000.
    [10] Keith G, Bolton E, Greenway M. Pollutant removal capability of a constructed Melaleucawetland receiving primary settled sewage. Water Science and Techno1ogy,1999,39(6):199-206.
    [11] Shannon R D, Flite O P, Hunter M S. Subsurface flow constructed wetland Performance atPennsylvania campground and conference center. Journal of Environmental Quality.2000,29(6):2029-2036.
    [12] Guillory B C, Macrina J J. Constructed wetland for stormwater detention and treatment inthe Alligator Creek watershed, PinellasCounty, Florida. ASCE Wetlands Engineering RiverRestoration Conference Proceedings,1998.
    [13] Abtew W, Goforth G, Germain G. Stormwater treatment areas: Constructed wetlands forPhosphorus removal in South Florida surface waters. Proeeedings of the2004World Waterand Environrnetal Resources Congress: Critical Transitions inWater and EnvironmetalResources Management,2004:1200-1212.
    [14]李旭东,李广贺,张旭,等.沸石床处理农田暴雨径流氮磷中试研究[J].环境污染治理技术与设备,2003(4):22-26.
    [15] Martin C D, Johnson K D, Moshiri G A. Performance of a constructed wetland leaehatetreatment system at the Chunchula landfill, mobile county, Alabama. Water Science andTechnology,1999,40(3):67-74.
    [16] Marmiroli M, Marmiroli N, Maestri E. Treating wastewater from dairy parlors in aconstructed wetland. Proeeedings of the Third International Conference on Remediation ofChlorinated and Recalcitrant Compounds,2002:791-798.
    [17] Reddy G B, Hunt P G, Phillips R. Treatment of swine wastewater in marsh-pond-marshconstructed wetlands. Water Science and Technology,2001,44(11-12):545-550.
    [18] G D Ji, T H Sun, J R Ni. Surface flow constructed wetland for heavy oil-produced watertreatment[J]. Bioresource Technology,2006.
    [19] Huddleston G M, Gillespie W B, Rodgers J H. Using constructed wetlands to treatbiochemical oxygen demand and ammonia associated with a refinery effluent[J].Ecotoxicology and Environmental Safety,2000,45:188-193.
    [20] Mays P A, Edwards G S. Comparison of heavy metal accumulation in a natural wetland andconstructed wetlands receiving acid mine drainage. Eeological Engineering,2001,16:487-500.
    [21] Woulds C, Ngwenya B T. Geochemical processes governing the performance of aconstructed wetland treating acid mine drainage, Central Scotland. Applied Geochemistry,2004,19(11):1773-1783.
    [22] Ceballos B S O, Oliveira H, Meira C M B S. River water quality improvement by nature andconstructed wetland systems in the tropical semi-arid region of Northeastern Brazl. WaterScience and Teehnology,2001,44(11-12):599-605.
    [23] Kao C M, Wang J Y, Lee H Y, Wen C K. Application of a constructed wetland for non-sourcepollution control. Water Science and Technology,2001,44(11-12):585-590.
    [24] Braskerud B C. Factors affecting phosphorus retention in small constructed wetlands treatingagricultural non-point source pollution. Eeological Engineering,2002,19:41-61.
    [25] Kadlec R H, Hey D L. Construeted wetlands for river water quality improvement. WaterScience and Technology,1994,29(4):159-167.
    [26] White G C, Smalls I C, Bek P A. Carcoar wetland-a wetland system for river nutrientremoval. Water Science and Technology,1994,29(4):169-176.
    [27] Jing S R, Lin Y F, Lee D Y, Wang T W. Nutrient removal from polluted river water by usingconstructed wetlands. Bioresource Technology,2001,76(2):231-235.
    [28] Kivaisi K A. The potential for constructed wetlands for wastewater treatment and reuse indeveloping countries:a review[J]. Ecologcal Engneering,2001,16:545-560.
    [29]吴献花,侯长定,等.人工湿地处理污水的机理[J].玉溪师范学院学报,2002,18(1):103-105.
    [30]梁继东,周启星.人工湿地污水处理系统研究及性能改进分析[J].生态学杂志,2003,22(2):49-55.
    [31]梁威,胡洪营.人工湿地净化污水过程中的生物作用[J].中国给水排水,2003,19(10):28-31.
    [32]袁东海,景丽洁,张孟群,等.几种人工湿地基质净化磷素的机理[J].中国环境科学,2004,24(5):614-617.
    [33]袁东海,景丽洁,高士祥,等.几种人工湿地基质净化磷素污染性能的分析[J].环境科学,2005,26(1):51-55.
    [34] Drizo A, Frost C A, Grace J, et al. Physico-chemical screening of phosphate-removingsubstrates for use in constructed wetland systems[J]. Water Research,1999,33(17):3595-3602.
    [35]龚琴红,田光明,丁哗,等.垂直流湿地对生活污水中磷的去除效果研究[J].农业环境科学学报,2004,23(6):1046-1049.
    [36] Arias C A, Bubba D M, Brix H. Phosphorus removal by sands for use as media in subsurfaceflow constructed reed beds[J]. Water Research,2001,35(5):1159-1168.
    [37] Ann Y, Reddy K R, Delfino J J, et al. Influence of chemical amendments on phosphorusimmobilization in soil froma constructed wetland[J]. Ecological Engineering,2000,14:157-167.
    [38]吴振斌,陈辉蓉,雷腊梅,等.人工湿地系统去除藻毒素研究[J].长江流域资源与环境,2000,9(2):242-247.
    [39]戴全裕,蒋兴昌,王耀斌,等.太湖入湖河道污染物控制生态工程模拟研究[J].应用生态学报,1995,6(2):201~205.
    [40] Ellis J B, Revitt D M, Shutes R B E, etal.1994. The performance of vegetated biofilters forhighway run off control[J]. Sc.i Total Environ.,146/147:543-550.
    [41] Cheng S.2001. Efficiency of constructed wetlands decontamination of water polluted byheavy mental [J]. Eco. Eng.,(5):317-325.
    [42]阳承胜,蓝崇钰,束文圣.重金属在宽叶香蒲人工湿地系中的分布与积累[J].水处理技术,2002,28(2):101~103.
    [43]吴晓磊.构建湿地废水处理机理[J].环境科学,1995,16(3):83-86.
    [44]张鸿,陈光荣,吴振斌,等.两种构建湿地中氮、磷净化率与细菌分布关系的初步研究[J].华中师范大学学报(自然科学版),1999,33(4):575-578.
    [45]李科德,胡正嘉.芦苇床系统净化污水的机理[J].中国环境科学,1995,15(2):140-144.
    [46]沈耀良,王宝贞.人工湿地系统的除污机理[J].江苏环境科技,1997,10(3):1-6.
    [47] Kadlec R H. Chemical, physical and biological cycles in treatment wetlands[J]. Waterscience&technology,1999,40:37-44.
    [48]梁威.复合垂直流构建湿地基质酶活性与污水净化效果研究[D].武汉:中国科学院研究生院,2002.
    [49]梁威,吴振斌,詹发萃,等.人工湿地植物根区微生物与净化效果的季节变化[J].湖泊科学,2004,16(4):312-317.
    [50]付融冰,杨海真,顾国维.人工湿地基质微生物状况与净化效果相关分析[J].环境科学研究,2005,18(6):44-49.
    [51] Sun G, Gray K R, Biddlestone A J, etal. Effect of effluent recirculation on the performance ofa reed bed system treating agricultural wastewater[J]. Process Biochemistry,2003,39:351-357.
    [52]高拯民,李宪法等.城市污水土地处理利用设计手册[M].北京:中国标准出版社,1991.
    [53] Vymazal J. Constructed Wetlands for wastewater treatment [M]. ENV I T rebon,1995b, p.171.
    [54]张荣社等.自由表面人工湿地脱氮效果中试研究[J].环境污染治理技术与设备,2002,3(12):9-11.
    [55] Vymazal J. Nitrogen removal in constructed wetlands with horizontal sub-surface flow-canwe determine the key process? In:V ymazal, J.(Eds.), Nutrient Cycling and Retention inNatural and Constructed Wetlands. Backhuys Publishers, Leiden, The Netherlands,1999a, pp.1-17.
    [56] James J. Sartoris et al. Investigation of nitrogen transformations in a southern Californiaconstructed wastewater treatment wetland[J]. Ecological Engineering,2000,14:49-65
    [57]叶建锋.废水生物脱氮处理新技术.北京:化学工业出版社,2006.
    [58] Bavor H J, Roser D J, Adcock P W. Challenges for the development of advanced constructedWetlands technology. Water Seience and Techology,1995,32(3):13-20.
    [59] IWA. Constructed wetlands for Pollution control: Processes, Performance, design andoperation. International Water Association Scientific and Technical report No.8, London, UK:IWA Publishing.2000.
    [60] Romero J A, Comin F A, Gareia C. Restored wetlands as filters to remove nitrogen.ChemosPhere,1999,(39):323-332.
    [61] Crites R W, Dombeck G D, Wastson R C, et al. Removal of metals and ammonia inconstructed wetlands. wat. Envir. Res.1997,69(2):132-135.
    [62] Ying-Feng Lin, Shuh-Ren Jing, Tze-Wen Wang, et al. Effects of macrophytes and externalcarbon sources on nitrate removal from groundwater in constructed wetlands [J].Environmental Pollution,2002,119:413-420.
    [63] Van O. Ostrom A J. Nitrogen removal in constructed wetlands treating nitrified meatprocessing effluent[J]. Water Science&Technology,1995,32(3):137-147.
    [64] Xue Y, Kovacic D A, David M B, et al. In situ measurements of denitrification in constructedwetlands[J]. J. Environ. Qual.,1999,28(1):263-269.
    [65]刘超翔,董春宏,李峰民,等.潜流式人工湿地污水处理系统硝化能力研究[J].环境科学,2003,24(1):80-83.
    [66]卢少勇,金相灿,余刚.人工湿地的氮去除机理[J].生态学报,2006,26(8):2670-2677.
    [67]夏宏生,蔡明,向欣.人工湿地净化作用与微生物相关性研究.广东水利水电,2008,(3):4-8.
    [68]靖元孝,杨丹菁.风车草人工湿地系统氮去除及氮转化细菌研究[J].生态科学,2004,23(1):89-91.
    [69]张甲耀,夏盛林,邱克明.潜流型人工湿地污水处理系统氮去除及氮转化细菌的研究[J].环境科学学报,1999,19(3):323-327.
    [70] Vymazal J, Brix H, Cooper P F, et al. Removal mechanisms and types of constructedwetlands. In: Vymazal J, Brix H, Cooper P F,et aleds. constructed wetlands for wastewatertreatment in Europe. Leiden: Backhuys Publishers,1998.17-66.
    [71]廖新俤,骆世明,吴银宝,等.风车草和香根草在人工湿地中迁移养分能力的比较研究[J].应用生态学报,2005,16(1):113-117.
    [72]孙雪利,刘景双,于君宝.三江平原小叶章、毛果苔草中氮素营养动态分析.应用生态学报,2000,11(6):893-897.
    [73]朱青海,曲向荣,李秀珍.苇田养分生物循环的研究.生态学杂志,2000,19(6):21-23.
    [74]陈秀荣,周琪.人工湿地脱氮除磷特性研究[J].环境污染与防治,2005,27(7):526-529.
    [75]于淑芳,杨力.石灰性土壤Ca-P分布及转化特征的研究[J].土壤学报,2001,38(3):373-378.
    [76]钟成华,李杰,邓春光.人工湿地废水处理中氮、磷去除机理研究[J].重庆建筑大学学报,2008,30(4):141-146.
    [77] Brix H. Treatment of wastewater in the rhizosphere of wetland plants-the rootzone methodWater Science and Technology.1987,19:107-118.
    [78] Sakadevan K, Bavor H J. Phosphate adsoption characteristics of soil, slagand zeolite to beused as substrates in constructed wetland systems[J]. Wat Res,1998,32(2):393-399.
    [79] Nuttall P M, Boon A G, Rowell M R. Review of the design and management of constructedwetlands[M]. London, UK: CIRIA,1997.
    [80] Reddy I D, Dangelo E M. Biogeochemical indicator to evaluate pollutant removal efficiencyin constructed wetlands[J]. Water Science and Technology,1998,35:1-10.
    [81] Mansell R S. Experimental and simulated P transport in soil using a multireaction model[J].Soil Sci.,1992,153(3):185-194.
    [82] Arias C A, Del Bubba M, Brix H. Phosphorus removal by sands for use as media insubsurface flow constructed reed beds. Water Research,2001,35(5):2159-1165.
    [83]缪绅裕,陈桂珠,黄玉山等.人工湿地中的磷在模拟秋茄湿地系统中的分配与循环[J].生态学报,1999,19(2):236-241.
    [84] Reddy, Debusk. Nutrient removal potential of selected aquatic macrophysics[J]. EnvironQual,1985,4(4):459-462.
    [85]林鹏,林光辉.九龙江口红树林研究-Ⅳ秋茄群落的氮、磷的积累和循环[J].植物生态学与植物学丛刊,1985,9(l):21-32.
    [86]卢少勇,金相灿,余刚.人工湿地的磷去除机理.生态环境,2006,15(2):391-396.
    [87]周云龙.植物生物学[M].北京:高等教育出版社,2000:155-164.
    [88]乔建荣,任久长,陈艳卿,等.常见沉水植物对草海水体总磷去除速率的研究[J].北京大学学报:自然科学版,1996,32(6):785-789.
    [89] Tanner C C,Clayton J S,Upsdell M P. Effect of loading rate and planting on treatment ofdairy farm wastewaters in constructed wet-lands-II. Removal of nitrogen and phosphorus[J].Water Research,1995,29(1):27-34.
    [90] Richardson C J. Mechanisms controlling phosphorus retention capacity in freshwaterwetlands [J]. Seience,1985,228(14):24-27.
    [91]蒋跃平,葛滢,岳春雷,等.人工湿地植物对观赏水中氮磷去除的贡献[J].生态学报,2004,24(8):1720-1725.
    [92] Reed. Natural systems for Waste management and treatment[J]. Wat. Res.,1995,21(4):136-138.
    [93] L stroru, Andrew G Owen, Douglas L Godbold, et al. Organic acid mediated P mobilizationin the rhizosphere and uptake by maize roots[J]. Soil Biology and Biochemistry,2002,34:703-710.
    [94] T S Gahonia, Farouq Asmar, Henrietta Giese, et al. Root-released organic acid andphosphorus uptake of two barley cultivars in laboratory and field experiments[J]. EuropeanJournal of Agronomy,2000,12:281-289
    [95]张宝贵,李贵桐.土壤生物在土壤磷有效化中的利用[J].土壤学报,1998,35(1):105-111.
    [96] Tarafdar J C. Phophatase activity in the rhizosphere and its relation to the depletion of soilorganic phosphrus[J]. Biol Pertil. Soils,1992,14:121-125.
    [97]许光辉,郑洪元.土壤微生物分析方法手册[M].北京:农业出版社,1986
    [98]梁威,周巧红,成水平,等.构建湿地基质微生物与净化效果及相关分析[J].中国环境科学,2002,22(3):282-285.
    [99]翁酥颖,戚蓓静,史家樑,等.环境微生物学[M].北京:科学出版社,1985:66-69.
    [100]顾夏声.污水生物处理数学模式[M].第2版.北京:清华大学出版社,1993:212-213.
    [101] Lantzke L R, Mitchell D S, Heritage A D, et al. A model of factors controllingorthophosphate removal in planted vertical flow wetlands [J]. Ecological Engineering,1999,12:93-105.
    [102]吴振斌,任明迅,等.垂直流人工湿地水力学特点对污水净化效果的影响[J].环境科学,2006,22(5):45-49.
    [103] Gopal B. Natural and constructed wetlands forwastewater treatment: potential sandproblems [J]. Wat Sei Teeh.,1999,40(3):27-35.
    [104]熊国祥.人工湿地磷的行为与去除机理的研究[D].广东:广东工业大学硕士学位论文,2007.
    [105] Gerritse R G. Prediction of travel times of phosphate in soils at disposal site forwastewater[J].WatRes,1993,27:263-267.
    [106] Zhu T, Jenssen P D,Maehlum T, et a.l Phosphorus sorption and chemical characteristics oflightweight aggregates (LWA): potential filtermedia in treatmentwetlands [J].Wat Sci.Tech,1997,35(5):103-108.
    [107]雒维国,王世和,钱卫一,等.潜流型人工湿地除磷效果研究[J].安全与环境工程,2004,11(4):21-25.
    [108]吴建强,黄沈发,丁玲,等.人工湿地中的SND机理以及DO、pH对其的影响[J].环境污染与防治,2005,27(6):476-478.
    [109] Mayer T D,Jarrell W M. Phosphorus sorption during iron(II) oxidation in the presence ofdissolved silica[J]. Water Research,2000,34(16):3949-3956.
    [110]钟秋爽,王世和,黄娟,鄢璐,刘洋.人工湿地溶解氧的研究[J].盐城工学院学报,2006,19(1):55-56.
    [111]张兵之,吴振兵,徐光来.人工湿地发展概况和面临的问题[J].环境科学与技术,2003,26(21):87-90.
    [112]黄辉,赵浩,饶群,等.人工湿地基质除磷影响因素研究进展[J].环境科学与技术,2006,29(11):112-114.
    [113]刘波,陈玉成,王莉玮.人工湿地基质除磷研究进展[J].四川环境,2008,27(6):41-45.
    [114] Brix H. Use of constructed wetland in water pollution contro:l His-torical development,present status and future per-spectives [J]. Wat Sci Tech,1994,30(8):209-223.
    [115]梁继东,周启星,孙铁珩.人工湿地污水处理系统研究及性能改进分析[J].生态学杂志,2003,22(2):49-55.
    [116] Joan Garcia, Jordi Chiva, Paula Aguirre, et al. Hydraulic behaviors of horizontalsubsurface flow constructed wetlands with different aspect ratio and granular medium size[J]. Ecol. Eng,2004,23:177-187.
    [117] Brooks A S. Phosphorus removal by wollastonite: a constructed wetland[J].EcolEng,2000,15(1~2):121-132.
    [118]廖新俤,骆世明.人工湿地对猪场废水有机物处理效果的研究[J].应用生态学报,2002,13(1):113-117.
    [119]闻岳.水平潜流人工湿地处理受污水体的研究[D].上海:同济大学博士学位论文,2007.
    [120]王世和,王薇,俞燕.水力条件对人工湿地处理效果的影响[J].东南大学学报,2003,33(3):360-361.
    [121] Felde, K. V. and Kunst, S. N and COD removal in vertical-flow systems[J]. Wat. Sci. Tech.1997,35(5):63-70.
    [122]鄢璐,王世和,刘洋,王峰.人工湿地氧状态影响因素研究[J].水处理技术,2007,33(1):31-34.
    [123] Brown D S, Reed S C. Inventory of constructed wetlands in the United States[J]. Wat. Sci.Tech.1994,29(4):309-318.
    [124] David A K, David M B, Gentry L E et al. Effectiveness of constructed wetlands in reducingnitrogen and phosphorus export from agriculture tile drainage[J]. Environmental Quality.2000,(29):1262-1274.
    [125]刘超翔,胡洪营,孟远航,等.人工复合生态床的除污性能及流态[J].中国给水排水,2003,19:13-16.
    [126] Savin M C, Amador L A. Biodegradation of norflurazon in a bog soil[J]. Soil Biology&Biochemistry,1998,30:275-284.
    [127] Tanner C C. Substratum phosphorus accumulation during maturation of gavel bedconstructed wetlands[J]. Water Science and Technology.1999,40(3):147-154.
    [128]钱鸣飞,李勇,黄勇.芦苇和香蒲人工湿地系统净化微污染河水效果比较[J].工业用水与废水,2008,39(6):55-58.
    [129] SEO D C, CHO J S, LEE H J, et al. Phosphorus retention capacity of filter media forestimating the longevity of constructed wetland[J]. Water Research,2005,39:2445-2457.
    [130] DRIZO A, FROST C A, SMITH K A, et al. Phosphate and ammonium removal byconstructed wetlands with horizontal subsurface flow, using shale as a substrate[J]. WaterScience and Technology,1997,35(5):95-102.
    [131]国家环境保护总局编.水与废水监测分析方法[M].(第四版),北京,中国环境科学出版社,2002.
    [132]田胜元,箫曰嵘.试验设计与数据处理[M].北京:中国建筑工业出版社,1988
    [133]王全金,李丽,李忠卫.复合垂直流人工湿地除氮磷效果研究[J].湖北农业科学,2010,(6)
    [134]张超兰,陈秀娟,韦必帽,等.改进型和传统型复合垂直流人工湿地的净化效果研究[J].农业环境科学学报,2009,28(10):2161-2166
    [135]徐德星,海热提,丁文明,等.人工湿地对化粪池出水净化效果的对比研究[J].环境科学与技术,2009,32(8):164-168.
    [136]李晓东,郎咸明,师晓春.不同人工湿地组合净化生活污水效果研究[J].环境保护与循环经济:24-26.
    [137]梁骥,周云新,冼萍,等.垂直流人工湿地净化生活污水的试验研究[J].工业用水与废水,2010,41(4):47-49.
    [138]唐显枝.梯级渗滤人工湿地净化城市生态补水技术试验研究[M].重庆:重庆大学硕士论文,2009
    [139]张化清.TGGE法分析人工湿地细菌种群结构与净化效果[M].重庆:重庆大学硕士论文,2011

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700