用户名: 密码: 验证码:
山地城市面源污染时空分布特征研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着城市化进程的快速推进,由于暴雨径流冲刷引起的城市面源污染已成为受纳水体水质安全的重要威胁。城市面源污染的产生随机性强,影响因素众多,不同地区的研究结果鲜有一致。山地城市地形起伏多变,其面源污染的发生规律更为复杂,认识山地城市不同用地类型暴雨径流污染的时空分布特性、初期冲刷效应、污染物赋存形态分布特性,建立山地城市暴雨径流污染模型,对于山地城市暴雨径流管理具有重要意义。论文以山城重庆为例,以山地城市典型下垫面为研究对象,观测了不同用地属性的场次降雨径流特性,耦合分析了场次降雨径流监测结果,得出主要结论如下:
     ①山地城市暴雨径流污染物浓度时间分布特征研究表明,场次降雨中单一用地下垫面和城市综合流域的暴雨径流污染物浓度变化规律不同,单一下垫面大部分污染物浓度单调递减,且浓度主要降低时间段发生在产流后10-20min,而综合性流域场次降雨径流中污染物最高浓度出现在暴雨径流中前期。大尺度流域污染物浓度峰值时间滞后于径流峰值时间,小尺度流域则相反(Cd除外);大尺度流域的峰值流量和峰值雨强、降雨持续时间显著相关,而小尺度流域的峰值流量与降雨量、降雨持续时间显著相关。
     ②山地城市暴雨径流模拟研究表明,山地城市暴雨径流模型的参数取值与平原城市有较大区别。对于综合性流域,SWMM模型水力模块中透水凹蓄、不透水凹蓄、透水地面曼宁系数的取值山地城市均小于平原城市,而水质模块中污染物冲刷系数和冲刷指数的取值均大于平原城市。对于单一下垫面来说,山地城市暴雨径流污染物浓度时间分布符合指数冲刷模型,交通干道、屋面、居民区道路常规指标的相关系数分别达到0.75-0.88、0.81-0.91、0.73-0.94,且冲刷指数绝对值大于平原城市,表明山地城市暴雨径流具有较快的污染物浓度降低速率。
     ③山地城市不同下垫面暴雨径流污染物EMCs(Event Mean Concentrations)分析表明,城市交通干道TSS和COD的EMCs(597和408mg/L)显著高于生活区道路、商业区、混凝土屋面、瓦屋面和校园综合汇水区;生活区道路、商业区和城市交通干道TN的EMCs(7.1-8.6mg/L)相互接近,且高于混凝土屋面、瓦屋面和校园综合汇水区三种用地类型,TN以溶解性氮为主要赋存形态(占TN的73-82%),而溶解性氮中又以无机氮为主(占TN的63-82%)。对于TP、NH_3-N来说,校园汇水区、瓦屋面的EMCs较低,满足地表水环境质量标准(GB3838-2002)Ⅲ类标准,而城市交通干道和商业区TP、NH_3-N的EMCs则分别是该标准的2.35-5倍和3倍。对于重金属,Cu和Zn的EMCs则满足地表水环境质量标准(GB3838-2002)Ⅲ类标准,而Pb和Cd的EMCs则远大于地表水环境质量标准(GB3838-2002)的规定浓度。
     ④山地城市不同下垫面暴雨径流污染负荷产率研究表明,城市交通干道是城市面源污染负荷的主要贡献体,其TSS、COD、TP、TN、NH_3-N、NO_3-N、Fe、Cu、Zn、Pb和Cd的污染负荷产率分别达到589、404、1.0、8.5、4.4、2.1、11.1、0.124、0.6、0.63和0.05t/(km~2*y),高于其他用地类型。与平原城市相比,在年降雨量相近的前提下,山地城市交通干道的污染负荷产率大于平原城市。
     ⑤应用M(V)法识别初期冲刷效应,结果表明,对于小坡度单一下垫面(≤2.5%),在降雨强度9.1±4.0mm/h的条件下,初期40%的降雨量约携带了50-80%的污染负荷;对于大坡度路面(30%),初期20%的降雨容纳了42-58%的污染负荷(降雨强度8.5mm/h)。从污染负荷控制的角度考虑,建议山地城市大坡度道路以初期20%-30%的暴雨径流作为控制量(2.6-3.8mm),小坡度单一下垫面以初期40%的降雨径流作为控制量(3.2mm)。应用最优分割模式识别初期冲刷效应,结果表明,最优分割模式克服了M(V)法判断标准不一致、不能直接获取需要控制的初期径流量、无法识别中后期冲刷现象的缺点,但应以首要控制污染物作为初期径流控制量的判断依据。与平原城市相比,山地城市单一下垫面初期冲刷效应的发生几率几乎达到100%,高于平原城市的发生概率,且城市下垫面坡度的增加,增强了初期冲刷效应的发生强度。
     ⑥绿色屋顶可显著消减同面积不透水屋面的径流峰值、延缓径流产生时间、减少径流产生总量。同时,绿色屋顶具有良好的中和能力、硝化能力,但对氮磷的控制能力较差,相对于降雨雨水来说,绿色屋顶往往有溶解性氮磷的释放,绿色屋顶对污染负荷的消减主要是源于暴雨径流量的消减。绿色屋顶暴雨径流水质的季节差异明显,夏季污染物浓度较低,而春秋季节污染物浓度较高;随运行时间的延长,绿色屋顶暴雨径流总氮和硝酸根浓度逐渐降低,而总磷和磷酸盐浓度则呈现出一定的波动性;气温越高、前期干旱时间越长,越有利于绿色屋顶径流中氨氮浓度的降低,绿色屋顶径流中的总磷和氨氮主要来自降雨中的总磷和氨氮。
With the fast development of urbanization, urban nonpoint source pollution causedby washing-off of rainfall-runoff has become a serious threat to water quality ofreceiving water bodies. There are rare studies coincident with each other for therandomness of urban nonpoint source pollution occurring and numerous influencingfactors. The generation of nonpoint source pollution is more complex in mountainouscities with varied terrain. It is significant to understand the spatial-temporal distributionof urban stormwater runoff pollution, first flush effect, compositions of pollutants andconstruction of models for rainfall-runoff simulation in mountainous cities. TakingChongqing as a case study, representative underlying surfaces are selected as studyobjects, rainfall-runoff from different landuse types are observed and monitoring resultsare also analyzed. The main results are as follows:
     ①Results of temporal distribution of pollutant concentrations in mountainous cityshowed that there was great difference for the variation process of pollutantsconcentrations during rainfall events. The pollutants concentrations decreasedmonotonically and the main reduction occurred in the initial period of rainfall events(e.g.,10-20min after the beginning of runoff) from small catchment with simple landusetypes. However, the highest pollutants concentrations didn’t appear until the middleperiod of rainfall events when the catchment with complex layout of landuse. The peakof pollutants concentrations preceded the peak of runoff flow rate in integrated basiswith a smaller scale (except Cd), while the contrary phenomenon was observed whenthe basin had a larger scale. The peak of runoff flow rate was significantly correlatedwith rainfall intensity and rainfall duration in larger scale basin, but the significantcorrelation was found between peak of runoff volume and total rainfall/rainfall durationwhen the area of urban basin was small.
     ②The simulation of rainfall-runoff in mountainous city showed that parametervalues were different from plain cities. In urban basin, hydrological parameter values(e.g., runoff initial loss volume in pervious and impervious surfaces and manningcoefficient in pervious surfaces) were smaller than plain city, while water qualityparameter values (e.g., washing-off index and coefficient) were higher in SWMMmodel. For underlying surfaces with simple landuse types, the temporal distribution ofpollutant concentrations belonged to exponential washoff model and the value of R2were0.75-0.88,0.81-0.91and0.73-0.94for urban traffic road, roofs and residential road, respectively. The absolute values of washing-off index were higher inmountainous city, which implied a faster reduction rate of pollutant concentrations inrainfall-runoff.
     ③The analysis of EMCs showed that EMCs of TSS and COD (597and408mg/L,respectively) from urban traffic roads (UTRs) were higher than those from residentialroads (RRs), commercial areas (CAs), concrete roofs (CRs), tile roofs (TRs), andcampus catchment areas (CCAs). The EMCs of TN from RRS, CAs and UTRs weresimilar to each other (7.1-8.6mg/L), which were higher than that of the other threelanduse types. Nitrogen in stormwater was predominantly dissolved (73-82%), withDIN (Dissolved Inorganic Nitrogen) as the main form (63-82%of TN). The EMCs ofTP and NH_3-N from UTRs and CAs were respectively2.35-5times and3times ofclass-III standard values specified in Environmental Quality Standards for SurfaceWater (GB3838-2002), while that from CCA and TRs could meet class-III standardvalues. The EMCs of Pb and Cd were much higher than the class-III standard values,and that of Cu and Zn could meet class-III standard values.
     ④The analysis of pollutant load producing coefficients (PLPCs) revealed thaturban traffic road were the main pollution contributor. PLPCs of TSS, COD, TP, TN,NH_3-N, NO_3-N, Fe, Cu, Zn, Pb and Cd from urban traffic road were589,404,1.0,8.5,4.4,2.1,11.1,0.124,0.6,0.63and0.05t/(km~2*y) respectively, which were higher thanother landuse types. Compared with plain cities, PLPCs of urban traffic road was higherthan plain cities premised on similar annual rainfall volume.
     ⑤The study results of first flush effect based on M(V) method showed that50-80%of pollutant mass was transported in the first40%of runoff for catchment withsimple landuse type with small slope (e.g.,≤2.5%) when rainfall intensity is9.1±4.0mm/h and42%-58%of pollution load was carried by the initial20%of total runoffwhen the road slope was as high as30%with rainfall intensity is8.5mm/h. So, the first2.6-3.8mm rainwater should be controlled for road with bigger slopes and3.2mm forroad with smaller slopes from the point of view of pollution load controlling.Limitations existing in traditional method could be overcome by the optimalsegmentation mode, such as the difference among estimation standards, inability tocapture initial volume needing to be controlled directly, and failure in detecting the flusheffect if middle or end pollutant concentrations were high, and so on, but runoff volumeneed to be controlled should be decided based on the primary pollutant. Compared withplain cities, the probabilities of first flush effect occurrence for simple landuse types inmountainous cities could be as high as100%, which was higher than plain cities. Thebigger the slope was, the stronger the first flush effect was.
     ⑥The peak of runoff rate and total runoff volume could be reduced highly bygreen roof compared to impervious roofs with the same area. Meanwhile, green roofshad good ability in neutralizing acid deposition and NH3-N detention, but poorefficiency in controlling nitrogen and phosphors. Compared to rain water quality, greenroof runoff had higher concentrations of dissolved nitrogen and phosphors. It was thegreat reduction of runoff volume that improved pollution load reduction in green roofsystem. The water quality of stormwater runoff from green roofs varies significantlywith seasons, which was better in summer and worse in spring and autumn. Overall, theconcentrations of TN and NO_3-N in runoff from green roofs decreased gradually whenthey were operated for a long term, while that of TP and PO_4-P showed fluctuations.Analysis of Pearson correlations among meteorological factors indicated that the highertemperature and longer drying period, the more decrease of concentration of NH3-N.The TP and NH3-N of runoff in green roofs came from rain water primarily.
引文
[1]尹澄清.城市面源污染的控制原理和技术[M].北京:中国建筑工业出版社,2009.
    [2]伍发元.我国城市面源污染多层控制模式研究[D].武汉:武汉大学,2004.
    [3]杨爱玲,朱颜明.地表水环境非点源污染研究[J].环境科学进展,1998,(10):60-66.
    [4]韩易.基于“总量控制”的城市径流污染模拟及生态化处理技术研究[D].重庆:重庆大学,2010.
    [5]郑一,王学军.非点源污染研究的进展与展望[J].水科学进展,2002,13(2):105-110.
    [6] Zhang M L, Chen H, Wang J Z, et al. Rainwater utilization and storm pollution control basedon urban runoff characterization[J]. Journal of Environmental Sciences,2010,22(1):40-46.
    [7] Balloa S, Liu M, Houb L J, et al. Pollutants in stormwater runoff in Shanghai (China):Implications for management of urban runoff pollution[J]. Progress in Natural Science,2009,19(7),873-880.
    [8] Zhao J W, Shan B Q, Yin C Q. Pollutant loads of surface runoff inWuhan City Zoo, an urbantourist area[J]. Journal of Environmental Sciences,2007,19:464-468.
    [9] Gan H Y, Zhuo M N, Li D Q, et al. Quality characterization and impact assessment of highwayrunoff in urban and rural area of Guangzhou, China[J]. Environmental Monitoring andAssessment,2008,140(1-3):147–159.
    [10] Wei Q S, Zhu G F, Wu P, et al. Distributions of typical contaminant species in urban short-termstorm runoff and their fates during rain events: A case of Xiamen City[J]. Journal ofEnvironmental Sciences,2010,22(4),533–539.
    [11] Kim G, Yur J, Kim J. Diffuse pollution loading from urban stormwater runoff in Daejeon city,Korea[J]. Journal of Environmental Management,2007,85:9-16.
    [12] Lee J H and Bang K W. Characterization of urban stormwater runoff[J]. Water Research,2000,34(6):1773-1780.
    [13] Ichiki A and Mixay V. Urban runoff pollutant characteristics in vientiane capital, lao PDR[J].Journal of Water and Environmental Technology,2009,7(3):177-185.
    [14] Joshi U M and Balasubramanian R. Characteristics and environmental mobility of traceelements in urban runoff[J]. Chemosphere,2010,80:310-318.
    [15]张亚东,车伍,刘燕,等.北京城区道路雨水径流污染指标相关性分析[J].城市环境与城市生态,2003,16(6):182-184.
    [16]陈莹,赵剑强,胡博.西安市城市主干道路面径流污染及沉淀特性研究[J].环境工程学报,2011,5(2):331-336.
    [17]李立青,朱仁肖,郭树刚,等.基于源区监测的城市地表径流污染空间分异性研究[J].环境科学,2010,31(12):2896-2904.
    [18] McCarthy D T, Hathaway J M, Hunt W F, et al. Intra-event variability of Escherichia coli andtotal suspended solids in urban stormwater runoff[J]. Water Research,2012, xxx1-10.(inpress).
    [19] Ball J E, Jenks R, Aubourg D. An assessment of the availability of pollutant constituents onroad surfaces [J]. Science of the Total Environment,1998,209(223):243-254.
    [20] Brezonik P L, Stadelmann T H. Analysis and predictive models of stormwater runoff volumes,loads, and pollutant concentrations from watersheds in the Twin Cities metropolitan area,Minnesota, USA[J]. Water Research,2002,36:1743-1757.
    [21] Lee J Y, Kim H, Kim Y, et al. Characteristics of the event mean concentration (EMC) fromrainfall runoff on an urban highway[J]. Environmental Pollution,2011,159:884-888.
    [22] Huang J L, Du P F, Ao C, et al. Characterization of surface runoff from a subtropics urbancatchment[J]. Journal of Environmcntal Scienccs,2007,19:148-152.
    [23] Helmreich B, Hilliges R, Schriewer A, et al. Runoff pollutants of a highly trafficked urbanroad-Correlation analysis and seasonal influences[J]. Chemosphere,2010,80:991-997.
    [24]车伍,欧岚,汪慧贞,等.北京城区雨水径流水质及其主要影响因素[J].环境污染治理技术与设备,2002,3(1):33-37.
    [25]马英,马邕文,万金泉,等.东莞不同下垫面降雨径流污染输移规律研究[J].中国环境科学,2011,31(12):1983-1990.
    [26]颜文涛,韩易,何强.山地城市径流污染特征分析[J].土木建筑与环境工程,2011.33(3):136-142.
    [27]边博.前期晴天时间对城市降雨径流污染水质的影响[J].环境科学,2009,30(12):3522-3526.
    [28]欧阳威,王玮,郝芳华,等.北京城区不同下垫面降雨径流产污特征分析[J].中国环境科学2010,30(9):1249-1256.
    [29] Davis A P, Shokouhian M, Ni S. Loading estimates of lead, copper, cadmium, and zinc inurban runoff from specific sources[J]. Chemosphere,2001,44:997-1009.
    [30] Sabina L D, Lim J H, Stolzenbach K D, et al. Contribution of trace metals from atmosphericdeposition to stormwater runoff in a small impervious urban catchment[J]. Water Research,2005,39:3929-3937.
    [31]申丽勤,车伍,李海燕,等.我国城市道路雨水径流污染状况及控制措施[J].中国给水排水,2009,25(4):23-28.
    [32] Davis B and Birch G. Comparison of heavy metal loads in stormwater runoff from major andminor urban roads using pollutant yield rating curves[J]. Environmental Pollution,2010,158:2541-2545.
    [33] G bel P, Dierkes C, Coldewey W G. Storm water runoff concentration matrix for urbanareas[J]. Journal of Contaminant Hydrology,2007,91:26-42.
    [34]夏宏生,林芳莉.广州市城区降雨径流水质特征分析[J].环境科学与管理,2010,35(5):129-131.
    [35]郭婧,马琳,史鑫源,等.北京城市道路降雨径流监测与分析[J].环境化学,2011,30(10):1814-1816.
    [36]车伍,刘燕,李俊奇.国内外城市雨水水质及污染控制[J].给水排水,2003,29(10):38-41.
    [37] Luo H B, Luo L, Huang G, et al. Total pollution effect of urban surface runoff [J]. Journal ofEnvironmental Sciences,2009,21:1186-1193.
    [38] Crabill C, Donald R, Snellling J, et al. The impact of sediment fecal coliform reservoirs onseasonal water quality in Oak Creek, Arizona[J]. Water Research,1999,33:2163-2171.
    [39] Jeng H A C, Englande A J, Bakeer R M, et al. Impact of urban stormwater runoff on estuarineenvironmental quality[J]. Estuarine, Coastal and Shelf Science,2005,63:513-526.
    [40]李海燕,黄宇,车伍,等.非点源污染对北京城区典型流域水质影响的研究[J].给水排水,2007,33:60-63.
    [41] Lindstr m M and H kanson L. A model to calculate heavy metal load to lakes dominated byurban runoff and diffuse inflow[J]. Ecological Modelling,2001,137:1-21.
    [42] Gupta K and Saul A J. Specific relationships for the first flush load in combined sewer flows[J].Water Research,1996,30:1244–1252.
    [43]王和意,刘敏,刘巧梅,等.城市暴雨径流初始冲刷效应和径流污染管理[J].水科学进展,2006,17(2):181-185.
    [44] Li L Q, Yin C Q, He Q C, et al. First flush of storm runoff pollution from an urban catchment inChina[J]. Journal of Environmental Sciences,2007,19:295-299.
    [45] Forster J. Variability of roof runoff quality[J]. Water Science and Technology,1999,39:137-144.
    [46] Deletic A. The first flush load of urban surface runoff[J]. Water Research,1998,32(8):2462-2470.
    [47] Sollera J, Stephenson J, Olivieri K, et al. Evaluation of seasonal scale first flush pollutantloading and implications for urban runoff management[J]. Journal of EnvironmentalManagement,2005,76:309-318.
    [48] Barrett M E, Irish L B, Malina J F, et al. Characterization of highway runoff in Austin, Texas,area[J]. Journal of Environmental Engineering–ASCE,1998,124:131-137.
    [49] Saget A, Chebbo G, Bertrand-Krajewski J L. The first flush in sewer systems[J], Water Scienceand Technology,1996,33:101–108.
    [50] Lee J H, Bang K W, Ketchum L H, et al. First flush analysis of urban storm runoff[J]. Scienceof the Total Environment,2002,293(1-3):163-175.
    [51] Athanasiadis K, Horn H, Helmreich B. A field study on the first flush effect of copper roofrunoff[J]. Corrosion Science,2010,52:21-29.
    [52] Wanielista M and Youzel Y. Stormwater manage ment[M].New York: John Wiley and sons,Inc,1993,579.
    [53] Stahre P and Urbonas B.Stormwater detention[M].Englewood cliffs, New York Jersey, USA:Prendice Hall, Inc.,1990.
    [54] Bach P M, Mccarthy D T, Deletic A. Redefining the stormwater first flush phenomenon[J].Water research,2010,44:2487-2498.
    [55] Bach P M, Mccarthy D T, Deletic A. The development of a novel approach for assessment ofthe first flush in urban stormwater discharges[J]. Water Science&Technology,2010,61(10):2681-2688.
    [56]何强,王书敏,艾海男,等.城市暴雨径流初期冲刷现象识别模式[J].环境科学学报,2011,31(11):2432-2439.
    [57]王龙,黄跃飞,王光谦.城市非点源污染模型研究进展[J].环境科学,2010,30(10):2532-2541.
    [58] Burges S J, Lettenmaier D P. Probabilistic methods in stream quality management[J]. WaterResources Bulletin,1975,11(1):115-130.
    [59]董欣,杜鹏飞,李志一,等. SWMM模型在城市不透水区地表径流模拟中的参数识别与验证[J].环境科学,2008,29(6):1495-1501.
    [60]王志标.基于SWMM的棕榈泉小区非点源污染负荷研究[D].重庆:重庆大学,2007.
    [61]王书敏,于慧,张彬,等.绿色屋顶技术控制城市面源污染应用研究进展[J].重庆文理学院学报(自然科学版).2011,30(4):59-64.
    [62] Carter T L, Rasmussen T C. Hydrologic behavior of vegetated roofs[J]. Journal of theAmerican Water Resources Association,2006,42(5):1261–1274.
    [63] Berndtsson J C. Green roof performance towards management of runoff water quantity andquality: A review[J]. Ecological Engineering,2010,36(4):351-360.
    [64] Alfredo K, Montalto F, Goldstein A. Observed and Modeled Performances of Prototype GreenRoof Test Plots Subjected to Simulated Low-and High-Intensity Precipitations in a LaboratoryExperiment[J]. Journal of Hydrologic Engineering,2010,15(6):444-457.
    [65] Bengtsson L, Grahn L, Olsson J. Hydrological function of a thin extensive green roof insouthern Sweden[J]. Nordic Hydrol.,2005,36(3):259–268.
    [66] VanWoert N D, Rowe D B, Andresen J A, et al. Green roof stormwater retention: effects ofroof surface, slope, and media depth[J]. Journal of Environmental Quality,2005,34(3):1036-1044.
    [67] Denardo J C, Jarrett A R, Manbeck H B, et al. Stormwater mitigation and surface temperaturereduction by green roofs[J]. Trans. ASAE,2005,48(4):1491–1496.
    [68] Moran A, Hunt B, Smith J. Hydrological and water quality performance from greenroofs inGoldsboro and Raleigh, North Carolina[C]. In: Green Roofs for Healthy Cities Conference,Washington,2005.
    [69] Monterusso M A, Rowe D B, Russell D K, et al. Runoff water quantity and quality from greenroof systems[J]. Acta Horticulturae,2004,639:369–376.
    [70] Getter K L, Rowe D B, Andresen J A. Quantifying the effect of slope on extensive green roofstormwater retention[J]. Ecological Engineering,2007,31:225–231.
    [71] Villarreal E L, Bengtsson L. Response of a Sedum green-roof to individual rain events[J].Ecological Engineering,2005,25:1-7.
    [72] Palla A, Gnecco I, Lanza L G. Unsaturated2D modelling of subsurface water flow in thecoarse-grained porous matrix of a green roof[J]. Journal of Hydrology,2009,379:193–204.
    [73] Hilten R N, Lawrence T M, Tollner E W. Modeling stormwater runoff from green roofs withHYDRUS-1D[J]. Journal of Hydrology,2008,358:288–293.
    [74] Mentens J, Raes D, Hermy M. Green roofs as a tool for solving the rainwater runoff problem inthe urbanized21st century?[J]. Landscape and Urban Planning,2006,77:217–226.
    [75] She N and Pang J. A deterministic lumped dynamic green roof model[J]. Proc. Int. LID Conf.(CD-ROM), ASCE, Seattle,2008:16–19.
    [76] Carter T and Jackson C R. Vegetated roofs for stormwater management at multiple spatialscales[J]. Landscape and Urban Planning,2007,80:84–94.
    [77] Emilsson T. Vegetation development on extensive vegetated green roofs: Influence of substratecomposition, establishment method and species mix[J]. Ecological Engineering,2008,33:265–277.
    [78] Teemusk A and Mander ü. Rainwater runoff quantity and quality performance from agreenroof: The effects of short-term events [J]. Ecological Engineering,2007,30(3):271–277.
    [79] Berndtsson J C, Emilsson T, Bengtsson L. The influence of extensive vegetated roofs on runoffquality[J]. Science of the Total Environment,2006,355(1–3):48-63.
    [80] Berndtsson J C, Bengtsson L, Jinno K. Runoff water quality from intensive and extensivevegetated roofs[J]. Ecological Engineering,2009,35(3):369-380.
    [81] Molineux C J, Fentiman C H, Gange A C. Characterising alternative recycled waste materialsfor use as green roof growing media in the U. K.[J]. Ecological Engineering,2009,35:1507–1513.
    [82] Deletic A and Fletcher T D. Performance of grass filters used for stormwater treatment-a fieldand modeling study[J]. Journal of Hydrology,2006,317:261–275.
    [83] Dvorak B and Volder A. Green roof vegetation for North American ecoregions: A literaturereview[J]. Landscape and Urban Planning,2010,96:197-213.
    [84]国家环境保护总局.水和废水监测分析方法(第四版)[M].北京:中国环境科学出版社,2002.
    [85] Taylor G D, Fletcher T D, Wong T H F, et al. Nitrogen composition in urbanrunoff-implications for stormwater management[J]. Water Research,2005,39:1982–1989.
    [86] Francey M, Fletcher T D, Deletic A, et al. New Insights into the Quality of Urban Storm Waterin South Eastern Australia [J]. Journal of Environmental Engineering,2010,136(4),381-390.
    [87]张科峰,李贺,傅大放,等.三种不同屋面雨水径流重金属污染特性及影响因素分析[J].环境科学学报,2011,31(4):724-730.
    [88]甘华阳,卓慕宁,李定强,等.广州城市道路雨水径流的水质特征[J].生态环境2006,15(5):969-973.
    [89] Maniquiz M C, Lee S Y, Kim L H. Long-Term Monitoring of Infiltration Trench for NonpointSource Pollution Control[J]. Water Air Soil Pollution,2010,212:13-26.
    [90]韩娇.城市降雨径流面源污染水质水量动态模型研究[D].广州:华南理工大学,2011.
    [91]祁继英.城市非点源污染负荷定量化研究[D].南京:河海大学,2005.
    [92] Nasr A, Bruen M, Jordan P, et al. A comparison of SWAT, HSPF and SHETRAN/GOPC formodelling phosphorus export from three catchments in Ireland[J]. Water Research,2007,41:1065-1073.
    [93] Davis B S and Birch G F. Catchment-wide assessment of the cost-effectiveness of stormwaterremediation measures in urban areas[J]. Environmental Science&Policy,2009,12:84-91.
    [94] Charbeneau R J and Barrett M E. Evaluation of methods for estimating stormwater pollutantloads[J]. Water Environment Research,1998,70:1295–1302.
    [95] Kafi M, Gasperi J, Moilleron R, et al. Spatial variability of the characteristics of combined wetweather pollutant loads in Paris[J]. Water Reserch,2008,42:539-549.
    [96] Taebi A and Droste R L. Pollution loads in urban runoff and sanitary wastewater[J]. Science ofthe Total Environment,2004,327:175–184.
    [97] Smullen J T, Shallcross A L, Cave K A. Updating the U. S. Nationwide Urban Runoff QualityDate Base[J]. Water Science and Technology,1999,39(12):9-16.
    [98] Seitzinger S P, Sanders R W, Styles R. Bioavailability of DON from natural and anthropogenicsources to estuarine plankton[J]. Limnol Oceanogr,2002,47(2):353–366.
    [99] Metropolitan Washington Council of Governments. Urban Runoff in theWashingtonMetropolitan Area. Final NURP Report[R]. Department of Environmental Programs.Washington, DC.1983.
    [100] Abal E, Moore K, Gibbes B, Dennison B. State of South East Queensland WaterwaysReport[R]. Brisbane: Moreton Bay Waterways and Catchments Partnership, QueenslandGovernment, Australia,2001.
    [101] Davidson E A, Savage K E, Bettez N D, et al. Nitrogen in Runoff from Residential Roads ina Coastal Area[J]. Water Air Soil Pollution,2010,210:3-13.
    [102] Vitousek P M, Howarth R W. Nitrogen limitation on land and in the sea: How can it occur?[J]. Biogeochemistry,1991,13:87-115.
    [103] Pitt R, Maestre A, Morquecho R. The National Stormwater Quality Database (NSQD,version1.1)[DB]. Boca Raton, FL: Lewis Publishers,2005.
    [104] Jin S Q, Lu J, Chen D J, et al. Relationship between catchment characteristics and nitrogenforms in Cao-E River Basin, Eastern China[J]. Journal of Environmental Sciences,2009,21:429–433.
    [105] Howarth R W, Sharpley A, Walker D. Sources of nitrogenpollution to coastal waters of theUnited States[J]. Estuaries and Coasts,2002,25(4):656–676.
    [106] Butler D and Karunaratne S H P G. The Suspended Solids Trap Efficiency Of The RoadsideGully Pot[J]. Water Research,1995,29(2):719-729.
    [107] Kim H, Seagren E A, Davis A P. Engineered bioretention for removal of nitrate andstormwater runoff[J]. Water Environmental Research,2003,75(4):355–367.
    [108] Collins K A, Lawrence T J, Stander E K, et al. Opportunities and challenges for managingnitrogen in urban stormwater: A review and synthesis[J]. Ecological Engineering,2010,36:1507–1519.
    [109]杨柳,马克明,郭青海,等,城市化对水体非点源污染的影响[J],环境科学,2004,25(6):32-39.
    [110] Klocher C A, Kaushal S S, Groffman P M, et al. Nitrogen uptake and denitrification inrestored and unrestored streams in urban Maryland, USA[J]. Aquatic Sciences,2009,71:411-424.
    [111] Emilsson T, Berndtsson J C, Mattsson J E, et al. Effect of using conventional and controlledrelease fertiliser on nutrient runoff from various vegetated roof systems[J]. EcologicalEngineering,2007,29:260–271.
    [112] Collins K A, Hunt W F, Hathaway J M. Side-by-side comparision of nitrogens speciesremoval for four types of permeable pavement and standard asphalt in Eastern NorthCarolina[J]. Journal of Hydrologic Engineering,2010,15(6):512–521.
    [113] Walsh C J, Fletcher T D, Ladson A R. Retention capacity: a metric to link stream ecologyand stormwater management[J]. Journal of Hydrologic Engineering,2009,14:399-406.
    [114] Smith D P. Sorptive media biofiltration for inorganic nitrogen removal from stormwater[J].Journal of Irrigation and Drainage Engineering,2008,134:624–629.
    [115]王和意.上海城市降雨径流污染过程及管理措施研究[D].上海:华东师范大学,2005.
    [116]边博,朱伟,黄峰,等.镇江城市降雨径流营养盐污染特征研究[J].环境科学,2008,29(1):19-25.
    [117]常静,刘敏,许世远,等.上海城市降雨径流污染时空分布与初始冲刷效应[J].地理研究,2006,25(6):994-1002.
    [118] Taebi A and Droste R L. First flush pollution load of urban stormwater runoff[J]. Journal ofEnvironmental Engineering,2004,3:301-309.
    [119]高勇.山地城市居民区面源污染特征及其控制研究[D].武汉:华中农业大学,2011.
    [120] Bertrand-Krajewski J L, Chebbo G, Saget A. Distribution of pollutant mass vs volume instormwater discharges and the first flush phenomenon[J]. Water Research,1998,32(8):2341-2356.
    [121] McCarthy D T. The first flush of E. coli in urban stormwater runoff[J]. Water Science andTechnology,2009,60(11):2749-2757.
    [122]吴诚鸥,秦伟良.2007.近代实用多元统计分析[M].北京:气象出版社.261-265.
    [123]车伍,张炜,李俊奇,等.城市雨水径流污染的初期弃流控制[J].中国给水排水,2007,23(6):1-5.
    [124] Teemusk A and Mander ü. The Influence of green roofs on runoff water quality: a casestudy from Estonia[J]. Water Resour Manage,2011,25:3699-3713.
    [125] Hathaway A M, Hunt W F, Jennings G D. A field study of green roof hydrologic and waterquality performance[J]. Transactions of the ASABE,2008,51:37-44.
    [126] Beck D A, Johnson G R, Spolek G A. Amending greenroof soil with biochar to affect runoffwater quantity and quality. Environmental Pollution,2011,159:2111-2118.
    [127] Berghage R, Beattie D, Jarrett A, et al. Greenroof runoff water quality[C]. In: Proceedingsof the Greening Rooftops for Sustainable Communities, Minneapolis,2007.
    [128] Van S T, Rocha L, Mac M G. Evaluation of the runoff quantity and quality performance ofan extensive green roof in Toronto, Ontario[C]. In: Proceedings of the Greening Rooftopsfor Sustainable Communities, Minneapolis,2007.
    [129] Gregoire B G and Clausen J C. Effect of a modular extensive green roof on stormwaterrunoff and water quality[J]. Ecological Engineering,2011,37:963-969.
    [130] Wolf D and Lundholm J T. Water uptake in green roof microcosms: effects of plant speciesand water availability[J]. Ecological Engineering,2008,33:179-186.
    [131] Lucas W C, Greenway M. Hydraulic response and nitrogen retention in bioretentionmesocosms with regulated outlets: Part II-nitrogen retention. Water Environment Research,2011,83(8):703-713.
    [132] Lucas W C, Greenway M. Nutrient retention in vegetated and nonvegetated bioretentionmesocosms. Journal of Irrigation and Drainage Engineering,2008,134(5):613-623.
    [133] Schrader S and B ning M. Soil formation on green roofs and its contribution to urbanbiodiversity with emphasis on Collembolans[J]. Pedobiologia,2006,50:347-356.
    [134] Hsieh C H, Davis A P, Needelman B A. Nitrogen removal from urban stormwater runoffthrough layered bioretention columns. Water Environment Research,2007,79(12):2404-2411.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700