用户名: 密码: 验证码:
三峡库区典型区域氮、磷和农药非点源污染物随水文过程的迁移转化及其归趋研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
三峡水库蓄水后,库区大部分次级河流回水区“水华”现象频发。农业生产使用的化肥、农药是破坏库区次级河流水质的主要原因,农村人畜粪便、生活污水和生活垃圾也是造成库区次级河流污染的重要原因。据不完全统计,三峡库区次级河流中总磷、总氮、有机物等污染物有52%~59%来自农业面源污染,三峡库区氮、磷和农药面源污染已成为威胁库区地表水和地下水污染最为严重的生态环境问题之一。因此,开展对三峡库区典型区域氮、磷和农药非点源污染迁移转化和时空分布规律的研究,对于三峡库区社会、经济和环境的可持续发展、促进库区生态和谐以及保障库区水环境安全具有重要的理论意义和实践价值。
     本研究根据三峡库区气候、地形、地质、地貌、土地利用类型和紫色土坡地壤中流极为发育等特点,分别构建基于地表径流和壤中流的分布式溶解态非点源氮磷污染模型、基于不确定性理论的分布式吸附态氮磷污染灰色模型、和根据面源污染产生的动力学机制构建农药非点源污染综合迁移转化模型,并利用研究区水质实测数据进行模型验证。分别以三峡库区小江流域和忠县石宝镇新政村柑橘果园与菜地为例模拟库区典型区域总氮、总磷和农药面源污染物随水文过程的迁移转化和时空分布规律,并对污染负荷来源的关键源区进行识别,对流域氮、磷和农药面源污染的环境影响进行分析和评价。形成了较为完整的非点源污染耦合模型,实现了氮、磷和农药非点源污染的综合模拟。主要研究成果如下:
     ①考虑到壤中流产生的氮、磷非点源污染,引入具有物理机制的、以流域土地利用类型为研究单元的SLURP分布式水文模型,构建基于地表径流和壤中流的分布式溶解态非点源污染模型。通过参数的校准和优化,2003~2008年径流量模拟值与实测值的相对误差在20%以内,Nash-Sutcliffe系数为0.8左右,改善了地表径流量和壤中流量的模拟精度,提高了溶解态非点源氮磷污染负荷估算的准确性。
     ②鉴于降雨侵蚀因子和泥沙输移比因子的时空变化,建立能反映流域输沙量逐年变化的动态模型。结合通用土壤流失方程中各因子具有不确定性的特点,运用不确定性理论把各因子定义为盲因子,由土壤表层氮磷含量和污染物泥沙富集系数构建基于不确定性理论的分布式吸附态氮磷污染灰色动态模型,实现了GIS技术、不确定性理论和吸附态非点源污染模型的动态耦合。
     ③为了准确模拟流域输沙量,以与泥沙输移比密切相关的泥沙搬运力为切入点,以数字流域像元内和上游来水形成的累积径流量为突破口,根据累积径流量和泥沙搬运力的数学关系,把累积径流量分别与地形指数和流水累积量耦合,且假定具有最大泥沙搬运力像元的泥沙输移比为1,提出基于GIS空间分析技术的流域坡面和河道泥沙输移比新计算方法。为流域尺度土壤流失量的准确估算提供了科学的理论依据。
     ④污染物在植物冠层和土壤亚环境系统中的迁移机理有本质的不同,前者主要是植物冠层区农药的挥发,动力主要是蒸发,对应的方程为一阶微分方程;后者主要是农药在大气、水和土壤环境中的降解,动力主要是水势梯度和浓度梯度,对应的方程为二阶偏微分方程。根据污染物在不同媒质中迁移转化的动力学机制构建农药非点源污染综合迁移转化模型,用来描述气、水和土壤环境中农药污染物迁移转化的时空分布规律与输出过程。
     ⑤把流域氮、磷和农药非点源污染模型进行耦合,构建具有物理机制的、分布式的流域非点源污染综合动态模型,来模拟氮、磷和农药面源污染的时空分布特征和污染物输出量,进而对非点源污染负荷进行定量估算与分析评估。将更有利于准确全面地定量分析和评估三峡库区典型区域非点源污染负荷的动态变化规律,实现了农业氮、磷和农药非点源污染的综合模拟。
     ⑥论文以三峡库区小江流域和忠县石宝镇新政村农业用地为研究对象,在GIS技术支持下,借助构建的分布式综合模型,分别对氮、磷和农药非点源污染迁移转化及其趋向过程进行动态模拟验证。验证结果表明,模型构建方法合理,模拟效果良好。并据此对研究区非点源污染负荷的时空分布规律、来源构成、贡献率、关键源区、径流和侵蚀输出分别进行分析和评估。就年均情况而言,小江流域总氮负荷的来源贡献率大小依次为化肥施用(64.01%)>水土流失(26.48%)>畜禽养殖(5.14%)>生活污染(4.37%),总磷负荷的来源贡献率大小依次为化肥施用(68.2%)>水土流失(28.22%)>畜禽养殖(2.64%)>生活污染(0.94%);三峡库区地表水体和表层土壤农药残留浓度水平取决于降雨强度、降雨历时,降雨量、径流量、农药施用和农田灌溉状况。
After impoundment of Three Gorges Reservoir, the hydrodynamic situation of therelated rivers in the reservoir area had undergone fundamental changes, abnormalproliferation phenomenon of “algae bloom” in tributaries continuously breaks out. Thechemical fertilizers and pesticides in the agricultural production are the main reasons forthe destruction of water quality in tributaries; rural human and animal feces, sewage andgarbage are also the important reasons for the pollution of tributaries in the reservoirarea. According to incomplete statistics,52%-59%of total phosphorus (TP), totalnitrogen (TN) and organic pollutants in the secondary rivers of the Three GorgesReservoir Area are from agricultural non-point source pollution. Nitrogen, phosphorusand pesticide non-point source pollution in Three Gorges Reservoir Area has becomeone of the most serious ecological problems for the contamination threat of surfacewater and groundwater in the reservoir area. Therefore, the study of migration andtransformation of nitrogen, phosphorus and pesticide non-point source pollution in atypical area of the Three Gorges Reservoir Area has important theoretical significancesand practical values for the social, economic and environmental sustainability of theThree Gorges Reservoir Area, and for the promotion of ecological harmony and theprotection of the water environment security in the reservoir area.
     In this study, according to the characteristics of climate, topography, geology,geomorphology, land use types and well developed interflow in purple soil in ThreeGorges reservoir area, a distributed-dissolved non-point source nitrogen and phosphoruspollution model based on surface flow and interflow, a distributed-absorbed non-pointsource nitrogen and phosphorus pollution gray model based on the uncertainty theory,and a comprehensive migration and transformation model of pesticide pollution basedon the kinetic mechanism of non-point source pollution were built respectively, and thecalibration and validation of the model were carried out by observed data of runoff,sediment, and water quality from basin outlet. The Xiaojiang River basin, orchards andvegetable plots of Xinzheng village in Shibao Town, located in the hinterland of ThreeGorges Reservoir area, were chosen as typical case study area in this paper to simulatemigration and transformation, and spatial and temporal distribution of TN, TP, andpesticide non-point source pollutants with the hydrological processes. The criticalsource areas of pollution load were identified and the environmental impacts of nitrogen, phosphorus and pesticide non-point source pollution were analyzed and assessed,respectively. Therefore, the non-point source pollution coupled model was built toachieve the comprehensive simulation of nitrogen, phosphorus and pesticide non-pointsource pollution. The main findings are as follows:
     ①Taking into account nitrogen, phosphorus non-point source pollution of thesubsurface flow, the SLURP hydrological model with the physical mechanisms wasintroduced and assisted to build distributed-dissolved non-point source pollution modelbased on surface runoff and subsurface flow. Through calibration and optimization ofthe parameters, the simulation accuracy of the surface runoff and subsurface flow, andthe estimation accuracy of the dissolved non-point source nitrogen and phosphorusloading were both improved.
     ②In view of temporal and spatial variations of the rainfall erosion factor andsediment delivery ratio factor, the dynamic model which can reflect the annualvariations of the watershed sediment load was established. According to the uncertaintycharacteristics for each factor in the universal soil loss equation, each factor in theequation was defined as the blind factor, the distributed-adsorbed nitrogen andphosphorus pollution gray model was built via nitrogen and phosphorus content, andcontaminants enrichment efficiency. Overall, the dynamic coupling among the GIStechnology, uncertainty theory and adsorbed non-point source pollution model wasachieved successfully.
     ③In order to simulate watershed sedimenttransport accurately, the sedimenttransport capacity, which is closely related to sediment delivery ratio, was chosen as thestarting point, and the cumulative runoff amount from a pixel and the upper reaches ofthis pixel was selected as a key breakthrough. According to the mathematicalrelationship between sediment transport capacity and the cumulative runoff, thetopographic index and the flow accumulation were coupled with the cumulative runoff,and the sediment delivery ratio of the pixel with maximum sediment transport capacitywas assumed as1, a new calculation method of watershed slope and river channelsediment delivery ratio was proposed by means of the GIS spatial analysis techniques.This could provide scientific theory basis for the accurate estimation of the basin-scalesoil loss.
     ④The migration mechanism of pollutants in the plant canopy is essentiallydifferent from soil sub-environment system, the former is pesticides volatile from plantcanopy, the driving force is evaporation, and the corresponding equation is the first order differential equation; the latter is mainly the degradation of pesticides in the air,water and soil environment, the main driving force is the water potential gradient andconcentration gradient, and the corresponding equation is the second order partialdifferential equations. A comprehensive migration and transformation model ofpesticide non-point source pollution was built on the basis of dynamic mechanism ofpollutants migration and transformation in different media, and used to describe thespatial and temporal distribution and output process of pesticide pollutants in the air,water and soil environment.
     ⑤An integrated dynamic basin model, with physical and distributed mechanism,was built by coupling nitrogen, phosphorus and pesticide non-point source pollutionmodel to simulate pollution source strength of nitrogen, phosphorus and pesticidenon-point source pollution, and thus to quantitatively evaluate and analysis the temporaland spatial distribution of non-point source pollution load. This will be more accuratelyand comprehensively conducive to quantitatively analysis and evaluate the dynamicvariations of non-point source pollution load in a typical area of the Three Gorgesreservoir area, and will achieve a comprehensive simulation of the agricultural nitrogen,phosphorus and pesticide non-point source pollution.
     ⑥The Xiaojiang River watershed and the agricultural land in Xinzheng village,Shibao Town, Zhongxian in the Three Gorges Reservoir Area were selected as the casestudy of non-point source pollution, according to the established comprehensive model,the fate, migration and transformation of non-point source pollution of nitrogen,phosphorus and pesticides were simulated dynamically in support of GIS technology.The verifcation results show that the construction method of the model is reasonable.Based on this, the spatial and temporal distribution, the source composition, thecontribution rate, the critical source areas, runoff and erosion output of non-point sourcepollution load were analyzed and evaluated, respectively.
引文
鲍全盛,曹利军,王华东.1997.密云水库非点源污染负荷评价研究[J].水资源保护(1):8-11.
    蔡崇法,丁树文,史志华,等.2000.应用USLE模型与地理信息系统IDRISI预测小流域土壤侵蚀量的研究[J].水土保持学报,14(2):19-24.
    曹承进,秦延文,郑丙辉,等.2008.三峡水库主要入库河流磷营养盐特征及其来源分析[J].环境科学,29(2):310-315.
    曹建生,刘昌明,张万军,等.2005.太行山区坡地水文地质特征与渗流集蓄技术研究[J].水科学进展,16(2):216-221.
    曹彦龙,李永红,汪立飞,等.2008.三峡库区农业化肥流失污染及其成因分析[J].江苏环境科技,21(1):4-8.
    陈国湖.1998.农业非点源污染模型AGNPS及GIS的应用[J].人民长江,29(4):20-22.
    陈克亮,朱晓东,朱波,等.2006.川中紫色土区旱坡地非点源氮输出特征与污染负荷[J].水土保持学报,20(2):54-58.
    陈西平.1992.计算降雨及农田径流污染负荷的三峡库区模型[J].中国环境科学,12(1):48-52.
    陈云明,刘国彬,郑粉莉,等.2004. RUSLE侵蚀模型的应用及进展[J].水土保持研究,11(4):80-83.
    陈友媛,惠二青,金春姬,等.2003.非点源污染负荷的水文估算方法[J].环境科学研究,16(1):10-13.
    程波,张泽,陈凌,等.2005.太湖水体富营养化与流域农业面源污染的控制[J].农业环境科学学报,24S:118-124.
    程炯,林锡奎,吴志峰,等.2006.非点源污染模型研究进展[J].生态环境,15(3):641-644.
    崔键,马友华,赵艳萍,等.2006.农业面源污染的特性及防治对策[J].农业资源与环境科学,(22):335-340.
    邓春光.2007.三峡库区富营养化研究[M].北京:中国环境科学出版社.序言
    邓义祥,王琦,赖斯芸,等.2003.优化RSA和GLUE方法在非线性环境模型参数识别中的比较[J].环境科学,24(6):9-15.
    董亮.2001. GIS支持下的西湖流域水环境非点源污染研究[D].杭州:浙江大学博士学位论文.
    冯明磊,胡荣桂,许克翠,等.2008.三峡库区小流域不同尺度施氮量对水体的影响[J].中国环境科学,28(2):168-172.
    冯庆,王晓燕.2008.滇池流域非点源污染研究进展[J].云南地理环境研究,20(1):41-44.
    傅涛.2002.三峡库区坡面水土流失机理与预测评价建模[D].重庆:西南大学.
    傅涛,倪九派,魏朝富,谢德体.2003.不同雨强和坡度条件下紫色土养分流失规律研究[J].植物营养与肥料学报,9(1):71-74.
    高克昌,赵纯勇.2002.重庆市主城区降雨侵蚀力计算方法与特征研究[J].水土保持学报,16(6):13-16,30.
    高龙华.2006.遥感和GIS支持下的流域非点源污染模型研究[D].南京:河海大学,111-114.
    高祥照等.2002.肥料实用手册[M].北京:中国农业出版社.
    葛绪广,王国祥.2007.洪泽湖生态环境调查与改善对策研究[J].安徽农业科学,35(18):5537-5539.
    国家环保总局.2006.江苏:关于认真做好“说清排污总量”有关工作的通知[R].国家环保总局.
    国家环境保护总局自然生态保护司.2002.全国规模化畜禽养殖业污染情况调查及防治对策[M].北京:中国环境科学出版社.
    韩建刚.2005.紫色土丘陵区土壤及其养分流失机制与预测模拟研究[D].陕西:西北农林科技大学.
    郝达平.2005.洪泽湖水环境现状评价及水污染分析[J].江苏水利,(11):32-34.
    郝芳华,杨胜天,程红光,等.2006.大尺度区域非点源污染负荷计算方法[J].环境科学学报,26(3):375-383.
    贺宝根,周乃晟,高效江,等.2001.农田非点源污染研究中的降雨径流关系—SCS法的修正[J].环境科学研究,14(3):49-51.
    贺缠生,傅伯杰,陈利顶.1998.非点源污染的管理及控制[J].环境科学,(5):92-97.
    洪华生,黄金良,曹文志.2008.九龙江流域农业非点源污染机理与控制研究[M].北京:科学出版社.
    胡续礼,姜小三,杨树,等.2006.降雨侵蚀力简易算法地区适用性的初步探讨[J].中国水土保持科学,4(5):44-49.
    胡细英,张思华,李博之.1997.鄱阳湖区水资源综合开发与治理[J].湖泊科学,9(3):269-273.
    胡雪涛,陈吉宁.2002.非点源污染模型研究[J].环境科学,23(3):124-128.
    胡远安,程声通,贾海峰.2003.非点源模型中的水文模拟[J].环境科学研究,16(5),29-36.
    黄金良,洪华生,张珞平,杜鹏飞.2004.基于GIS的九龙江流域农业非点源氮磷负荷估算研究[J].农业环境科学学报,23(5):866-871.
    黄生斌,叶芝菡,刘宝元.2008.密云水库流域非点源污染研究概述[J].中国生态农业学报,16(5):1311-1316.
    黄真理,李玉樑,陈永灿,等.2006a.三峡水库水质预测和环境容量计算[M].北京:中国水利水电出版社,198-275.
    贾海燕,雷阿林,雷俊山,等.2006.紫色土地区水文特征对硝态氮流失的影响研究[J].环境科学学报,26(10):1658-1664.
    金相灿,叶春,颜昌宙,等.1999.太湖重点污染控制区综合治理方案研究[J].环境科学研究,12(5):1-5.
    康跃惠,刘培斌,王子健等.2000.北京官厅水库—永定河水系水体中持久性有机氯农药污染[J].湖泊科学,15(2):125-132.
    孔祥东,刘武林,邓玉林,等.2007.基于日降雨量计算川北深丘低山区降雨侵蚀力初步研究[J].中国水土保持研究,(5):29-31.
    况福虹,朱波,徐泰平,等.2006.川中丘陵区小流域非点源氮素迁移的季节特征[J].水土保持研究,13(5):93-98.
    况琪军,周广杰,胡征宇.2007.三峡库区藻类种群结构与密度变化及其与氮磷浓度的相关性分析[J].长江流域资源与环境,16(2):231-235.
    昆明市环境科学研究所.1992.滇池富营养化调查研究[M].昆明:云南科技出版社,170-172.
    李卉,苏保林,张倩,袁军营,罗运祥.2011.平原河网地区农村生活污染入河机制[J].生态与农村环境学报,27(4):110-112.
    李卉,苏保林.2009.平原河网地区农业非点源污染负荷估算方法综述[J].北京师范大学学报(自然科学版),45(5/6):662-666.
    李怀恩,沈晋.1996.非点源污染数学模型[M].西安:西北工业大学出版社.
    李怀恩,庄咏涛.2003.预测非点源营养负荷的输出系数法研究进展与应用[J].西安理工大学学报,19(4):307-312.
    李怀恩,沈晋,刘玉生.1997.流域非点源污染模型的建立与应用实例[J].环境科学学报,17(2):141-147.
    李俊然,陈利顶,郭旭东等.2000.土地利用结构对非点源污染的影响[J].中国环境科学,20(6):506-510.
    李如忠,汪家权,钱家忠.2004.巢湖流域非点源营养物控制对策研究[J].水土保持学报,18(1):119-121.
    李宪文,史学正,Coen Ritsema.2002.四川紫色土区土壤养分径流和泥沙流失特征研究[J].资源科学,24(6):22-28.
    李学平,石孝均.2008.紫色水稻土磷素动态特征及其环境影响研究[J].环境科学,29(2):434-439
    李益敏,彭永岸,王玉朝,等.2003.滇池污染特征及治理对策[J].云南地理环境研究,15(4):32-38.
    梁常德.2007.长江寸滩断面以上流域非点源氮磷污染负荷研究[D].重庆:重庆大学.
    林超文,陈一兵,黄晶晶,涂仕华,庞良玉.不同耕作方式和雨强对紫色土养分流失的影响.中国农业科学.2007,40(10):2241-2249.
    林嵬.2006.“化肥消费大国”敲响污染警钟[J].环境经济,18(6):28-28.
    刘冬梅,王育才,管宏杰.2008.陕西水资源污染农业非点源贡献分析[J].西北农林科技大学学报(社会科学版),8(5):92-96.
    刘纪辉,赖格英.2007.农业非点源污染研究进展[J].水资源与水工程学报,18(1):29.
    刘开第,吴和琴,庞彦军,等.1999.不确定性信息的数学处理及应用[M].北京:科学出版社.
    刘平,吴志锋,王继增,程炯,等.2005.基于日降雨数据的广东省降雨侵蚀力初步分析[J].热带气象学报,21(5):555-60.
    刘瑞民,杨志峰,沈珍瑶.2006.土地利用/覆盖变化对长江流域非点源污染的影响及其信息系统建设[J].长江流域资源与环境,15(3):372-377.
    柳建龙,谭正明.1999.开县库区水土流失浅析[J].重庆环境科学,21(5):24-26.
    刘晓燕,张国珍.2007.中国水环境非点源污染负荷的估算研究[J].环境科学与管理,32(4):63-66.
    龙天渝,吴磊,刘腊美,李崇明.2009.三峡库区小江流域溶解态氮素污染模拟[J].重庆大学学报自然科学版,32(10):1181-1186.
    龙中华.2006.基于遥感的水土保持价值估算—以云南省为例[D].北京:北京师范大学.
    楼平.2000.畜禽养殖环境污染调研报告[R].北京:中国环境科学出版社,286.
    吕唤春.2002.千岛湖流域农业非点源污染及其生态效应的研究[D].浙江:浙江大学,44-47.
    陆海明,尹澄清,等.2008.于桥水库周边农业小流域氮素流失浓度特征[J].环境科学学报,28(2):349-353.
    陆雍森.1999.环境评价(第2版)[M].上海:同济大学出版社.
    罗专溪,朱波,唐家良,汪涛,张剑,王振华.2009.自然沟渠控制村镇降雨径流中氮磷污染的主要作用机制[J].环境科学学报,29(3):561-568.
    孟丹.2005.基于GIS的石头口门水库流域农业非点源污染研究[D].沈阳:东北师范大学,27-29.
    宁丽丹,石辉.2003.利用日降雨量资料估算西南地区的降雨侵蚀力[J].水土保持研究,10(4):183-186.
    裴亮,王理明,于国强.2010.农业非点源污染研究的现状及应用新进展[J].水利水电技术,41(12):58-61.
    彭奎,朱波.2001.试论农业养分的非点源污染与管理[J].环境保护,(1):15-17.
    启明,王中宇,明会兰,等.2009.谁污染了我们的水[J].文明,(3),32-33,38-39.
    沈晋,沈冰,李怀恩,等.1992.环境水文学[M].安徽科技技术出版社,49-50.
    申锐莉,张建新,鲍征宇,等.2006.洞庭湖水质评价(2002-2004年)[J].湖泊科学,18(3):243-249.
    世界资源环境所、联合国环境规划署、联合国开发计划署编.1993.世界资源报告[R].北京:中环境科学出版社.
    史志华,蔡崇法,丁树文,等.2002.基于GIS的汉江中下游农业面源氮磷负荷研究[J].环境科学学报,22(4):473-477.
    孙久虎,刘晓萌,李佑钢,等.2006.北运河地区植被覆盖的遥感估算及变化分析[J].水土保持研究,3(6):97-99.
    孙小利.2011.美国工程兵师团对堪萨斯管区内水库中阿特拉津的长期监测[J].计量与认证,(4):9-12,18.
    汤国安,陈正江,赵牡丹,等.2002. ArcView地理信息系统空间分析方法[M].北京:科学出版社.
    汤国安,杨玮莹,杨昕,等.2003.对DEM地形定量因子挖掘中若干问题的探讨[J].测绘科学,28(1):28-32.
    万超,张思聪.2003.基于GIS的潘家口水库面源污染负荷计算[J].水力发电学报,(2):62-68.
    汪崔莹.2008.区域水土流失敏感性分析[D].陕西:西北农林科技大学,10-13.
    王光远.1990.未确知信息及其数学处理[J].哈尔滨建筑工程学院学报,23(4):1-10.
    王玲玲,姚文艺,刘玉兰,等.2008.我国流域泥沙输移比研究进展[J].人民黄河,30(9),36-45.
    王宁,朱颜明,徐崇刚.2002. GIS用于流域径流污染物的量化研究[J].东北师范大学学报自然科学版,34(2):92-98.
    汪涛,罗贵生,朱波,罗专溪,张剑.2009.施肥对紫色土坡耕地氮素淋失的影响[J].农业环境科学学报,28(4):716-722.
    汪涛,朱波,罗专溪,张剑.2008.紫色土坡耕地径流特征试验研究[J].水土保持学报,22(6):30-34.
    王晓辉.2006.巢湖流域非点源N、P污染排放负荷估算及控制研究[D].合肥:合肥工业大学,38-41.
    王晓燕.2003.非点源污染及其管理[M].北京:海洋出版社,1-5.
    王晓燕,王振刚,王晓峰.2003. GIS支持下密云水库石匣小流域非点源污染[J].城市环境与城市生态,16:26-28.
    王晓燕,王晓峰,汪清平,等.2004.北京密云水库小流域非点源污染负荷估算[J].地理科学,24(2):227-231.
    王艳艳,孙勇,赵言文.2008.江苏省太湖流域农业面源污染现状分析及防治措施[J].江西农业学报,20(8):118-121.
    万益群,陈燕清,占春瑞.2004.毛细管气象色谱法测定芝麻中多种有机磷农药残留量[J].分析实验室,23(7):10-12.
    卫海燕,张利科,王敬义.2002.分布式侵蚀预报模型中网格面积的选定[J].地理研究,21(5):578-583.
    沃飞,等.2007.太湖流域典型地区农村水环境氮、磷污染状况的研究[J].农业环境科学学报,26(3):819-825.
    邬昀,陈海山,倪东鸿.2010.三峡库区降水—径流关系及径流量预报模型研究[J].气象与减灾研究.33(1):46-52.
    吴昌广,曾毅,周志翔,等.2010.三峡库区土壤可蚀性K值研究.中国水土保持科学[J].8(3):8-12.
    吴磊,龙天渝,刘腊美,蒙国湖,李崇明.2008.基于SLURP的小江流域降雨侵蚀力计算研究[J].环境科学与工程,2(12),43-49.
    吴磊,龙天渝,刘腊美,等.2008.三峡库区小江流域溶解态非点源污染负荷研究[C].中国环境与生态水力学北京:中国水利水电出版社,221-227.
    武永锋.2005.紫色土不同土地利用方式下非点源磷素迁移及其环境效应[D].重庆:西南大学.
    夏立忠,杨林章.2003.太湖流域非点源污染研究与控制[J].长江流域资源与环境,12(1):45-49.
    谢云,刘宝元,章文波.2000.侵蚀性降雨标准研究[J].水土保持学报,14(4):6-11.
    许峰,蔡强国,吴淑安,张光远,蔡崇法,丁树文,史志华,黄丽.2002.等高植物篱控制紫色土坡耕地侵蚀的特点[J].土壤学报,39(1):71-80.
    许炯心.2006.人类活动和降水变化对嘉陵江流域侵蚀产沙的影响[J].地理科学,26(4):432-437.
    许其功,刘鸿亮,沈珍瑶,等.2007.三峡库区典型小流域氮磷流失特征[J].环境科学学报,27(2):326-331.
    许全喜,陈松生,熊明,陈泽方.2008.嘉陵江流域水沙变化特性及原因分析[J].泥沙研究,(2):1-8.
    徐勤学,王天巍,李朝霞,等.2010.紫色土坡地壤中流特征[J].水科学进展,21(2):229-234.
    徐泰平,朱波,况福虹,等.2006.平衡施肥对紫色土坡耕地磷素径流流失的影响[J].农业环境科学,25(4):1055-1059.
    薛金凤.2003.流域分布式非点源污染水动力学模型研究[博士学位论文][D].武汉:武汉大学.
    薛金凤,夏军,梁涛,等.2005.颗粒态氮磷负荷模型研究[J].水科学进展,16(3):334-337.
    阎伍玖,鲍祥.2001.巢湖流域农业活动与非点源污染的初步研究[J].水土保持学报,15(4):129-132
    阎自申.1996.前置库在滇池流域运用研究[J].云南环境科学,15(2):33-35.
    杨江龙,刘拉平,李岚,等.2004.蔬菜中多种有机磷农药同时测定的气象色谱法[J].环境与健康杂志,21(4):251-252.
    杨文龙,杨树华.1998.滇池流域非点源污染控制区划研究[J].湖泊科学,10(3):55-60.
    杨子生.1999.滇东北山区坡耕地土壤侵蚀的地形因子[J].山地学报,17(S1):16-18.
    于德永,潘耀忠,龙中华,等.2006.基于遥感技术的云南省生态系统水土保持价值测量[J].水土保持学报,20(2):174-178.
    于涛,孟伟,Edwin Ongley,等.2008.我国非点源负荷研究中的问题探讨[J].环境科学学报,28(3):401-407.
    余炜敏.2006.三峡库区农业非点源污染及其模型模拟研究[D].重庆:西南农业大学,48-63.
    袁旭音,王禹,陈骏,等.2003.太湖沉积物中有机氯农药的残留特征及风险评估[J].环境科学,24(1):121-125.
    袁珍丽,木志坚.2010.三峡库区典型农业小流域氮磷排放负荷研究[J].人民长江,41(4):94-98.
    张超.2008.非点源污染模型研究及其在香溪河流域的应用[博士学位论文][D].北京:清华大学.
    张继生,王平义,刘亚辉.2004.三峡库区中小流域产沙数学模型[J].重庆交通学院学报,3(4):117-120.
    张科利,彭文英,杨红丽.2007.中国土壤可蚀性值及其估算[J].土壤学报,44(1):7-13
    张晟,李崇明,付永川,等.2008.三峡水库成库后支流库湾营养状态及营养盐输出[J].环境科学,29(1):7-12.
    张晟,李崇明,郑丙辉,等.2007.三峡库区次级河流营养状态及营养盐输出影响[J].环境科学,28(3):500-505.
    张晟,郑坚,刘婷婷,等.2009.三峡水库入库支流水体中营养盐季节变化及输出[J].环境科学,30(1):58-63.
    张淑荣,陈利顶,傅伯杰.2004.于桥水库流域农业非点源磷污染控制区划研究[J].地理科学,24(2):232-237.
    章文波,谢云,刘宝元.2002.利用日雨量计算降雨侵蚀力的方法研究[J].地理科学,22(6):705-710.
    张小兵,张洁,计勇,等.2006.鄱阳湖区农业面源污染现状及对策措施[J].亚热带水土保持,18(4):12-14.
    张玉斌,郑粉莉,武敏.2007.土壤侵蚀引起的农业非点源污染研究进展[J].水科学进展,18(1):123-132.
    赵刚,张天柱,陈吉宁.2002.用AGNPS模型对农田侵蚀控制方案的模拟[J].清华大学学报(自然科学版),42(5):705-707.
    赵文武,朱婧,郭雯雯.2007.基于降雨量和降雨时间的月降雨侵蚀力简易算法[J].中国水土保持科学,5(6):8-14.
    郑丙辉,曹承进,秦延文,等.2008.三峡水库主要入库河流氮营养盐特征及其来源分析[J].环境科学,29(1):1-6.
    中华人们共和国郭晋安统计局编.2008.中国统计年鉴2008[M/CD].北京:中国统计出版社.
    周伏建,等.1995.福建省降雨侵蚀力指标R值[J].水土保持学报,9(1):13-18.
    周伏建,陈明华,林福兴,等.1995.福建省土壤流失预报研究[J].水土保持通报,15(1):25-30,36.
    周慧平,高超.2008.巢湖流域非点源磷流失关键源区识别[J].环境科学,29(10):2696-2701.
    朱波,汪涛,况福虹,等.2008.紫色土坡耕地硝酸盐淋失特征[J].环境科学学报,28(3):525-533
    朱波,汪涛,王建超,鲍玉海,贺秀斌.2010.三峡库区典型小流域非点源氮磷污染的来源与负荷[J].中国水土保持,(10):34-36.
    朱波,汪涛,徐泰平,等.2006.紫色丘陵小流域氮素迁移及其环境效应[J].山地学报,24(5):601-606.
    朱新军,王中根,李建新,等.2006. SWAT模型在漳卫河流域应用研究[J].地理科学进展,25(5):105-111.
    Ahnert F.1987. Approaches to dynamic equilibrium in theoretical simulations of slopedevelopment[J]. Earth Surface Processes and Landforms,12,3-15.
    Ahuja L R., Rojas K W, Hanson J D, Shaffer M J, Ma L.2000. The Root Zone Water QualityModel[M]. Water Resources Publications LLC, Highlands Ranch, CO,372pp.
    Arnold G, Srinavasan R, Muttiah R S, and Williams J R.1998.‘Large Area Hydrologic Modelingand Assessment. Part I. Model Development,’[J].Journal of the American Water ResourcesAssociation,34,73-89.
    Arnold J G, Williams J R.1987. Validation of SWRRB—Simulator for Water Resources in RuralBasins[J]. Journal of Water Resources Planning and Management,113(2):243-256.
    Arnold J G, Williams J R, Maidment D R.1995. Continuous-time water and sediment-routingmodel for large basins[J]. Journal of Hydraulic Engineering-ASCE,121(2):171-183.
    Arnoldus H M J.1977. Methodology Used to Determine the Maximum Potential Average Soil LossDue to Sheet and Rill Erosion in Morocco[J]. FAO Soil Bulletin,34:39-51.
    Basnyat P, Teeter L D, Lockaby B G, et al.2003. Non-point source critical area analysis in theGisselo watershed using GIS[J]. Environmental Modelling&Software,18:887-898.
    Beasley D B, Huggins L F, Monke E J.1980. ANSWERS: a model for watershed planning[J].Transactions of the American Society of Agricultural Engineers,23,938-944.
    Beasley D B, Huggins L F.1980.‘ANSWERS (Areal Nonpoint Source Watershed EnvironmentSimulation)-User's Manual,’[M].Department of Agricultural Engineering, Purdue University,West Lafayette, Indiana.
    Beasley D B, Huggins L F.1981. ANWERS Users Manual[M]. EPA905982001.Washington, DC:USEPA.
    Behrendt H.1996. Inventories of Point and Diffuse Sources and Estimated Nutrient Loads-AComparison for Different River Basins in Central Europe[J].Water Science and Technology,33(4-5):99-107.
    Beltman W H J, Boesten J J T I, van der Zee S E A T M.1995. Analytical modeling of pesticidetransport from the soil surface to a drinking water well[J]. J. Hydrol.,169,209-228.
    Beltman W H J, Boesten J J T I, van der Zee S E A T M, Quist J J.1996. Analytical modeling ofeffects of application frequency on pesticide concentrations in wells[J].Ground Water,34,470-479.
    Beskow S, Mello C R, Norton L D, Curi N, Viola M R, Avanzi J C.2009. Soil erosion prediction inthe Grande River Basin, Brazil using distributed modeling[J].Catena,79,49-59.
    Bhuyan S J, Mankin K R, Koelliker J K.2003. Watershed-scal AMC selection for hydrologicmodeling[J]. Transactions of ASAE,46:237-244.
    Bicknell B R, Imhoff J C, Kittle Jr. J L, Donigian Jr. A S, Johanson R C.1997. HydrologicalSimulation Program-FORTRAN[M],User's Manual for Release11:EPA/600/R-97/080. U.S.Environmental Protection Agency, National Exposure Research Laboratory, Athens, GA.
    Boers P C M.1996. Nutrient Emission from Agriculture in the Netherlands,Causes andRemedies[J].Water Science and Technology,33(4):183-189.
    Boesten J J T I, van der Linden A M A.1991. Modeling the influence of sorption and transformationon pesticide leaching and persistence[J]. J. Environ. Qual.,20,425-435.
    Boughton W C.1989. A review of the USDA SCS curve number method[J]. Aust. J. Soil Res.,27,511-523.
    Bouraoui F, Benabdallah S, Jrad A et al.2005. Application of the SWAT model on the Medjerdariver basin (Tunisia)[J]. Physics and Chemistry of the Earth,30(8-10):497-507.
    Briggs G G, Bromilow R H, Evans A A.1982. Relationships between lipophilicity and root uptakeand translocation of non-ionised chemicals by barley[J]. Pestic. Sci.,13,495-504.
    Brown C D, Hart A, Lewis K A, Dubus I G.2003. p-EMA (I): simulating the environmental fate ofpesticides for a farm-level risk assessment system[J]. Agronomie,23,67-74.
    Burke S, Heathwaite L, Quinn P.2003. Strategic management of non-point source pollution fromsewage sludge[J].Water Science&Technology,47(7-8):305-310.
    Carpenter S R, Caraco N F, Howarth D L et al.1998. Non-point pollution of surface waters withphosphorus and nitrogen[J].Ecology,8:559-568.
    Carsel R F, Smith C N, Mulkey L A, Dean J D, Jowise P.1984. User’s Manual for the PesticideRoot Zone Model (PRZM): Release1[M].U.S.Environmental Protection Agency, Athens, GA(EPA-600/3-84-109).
    Carsel R F, Imhoff J C, Hummel P R, Cheplick J M, Donigian Jr. A S.2003. PRZM-3, A Model forPredicting Pesticide and Nitrogen Fate in the Crop Root and Unsaturated Soil Zones: UsersManual for Release3.12[M]. National Exposure Research Laboratory,USEPA.
    Chen X H, Chen Y Q D, Xia J, Zhang H L.2008. Hydrological Sciences for Managing WaterResources in the Asian Developing World[M].IAHS Publ.,319,93-100.
    Chiou C T.2002. Partition and Adsorption of Organic Contaminants in Environmental Systems[M](Wiley-Interscience, Hoboken, N J).
    Chu X, Basagaoglu H, Mari n o M A, Volker R E.2000. Aldicarb transport in subsurfaceenvironment: Comparison of models[J]. J. Environ. Engng ASCE,126(2),121-129.
    Chu X F, Marino M A.2007. IPTM-CS: A windows-based integrated pesticide transport model for acanopy-soil system[J]. Environmental Modelling&Software,22,1316-1327.
    Cunge J A.1969. On the Subject of a Flood Propagation Computation Method (MuskingumMethod)[J]. Journal of Hydraulic Research,7(2):205-230.
    Daniel T C, Sharpley A N, Lemunyon J L.1998. Agricultural phosphorus and eutrophication: asymposium overview[J]. Journal of Environment Quality,27(1):251-257.
    Dean J D, Huyakorn P S, Donigian A S, Voss K A, Schanz R W, Meeks Y T, Carsel R F.1989. Riskof unsaturated/saturated transport and transformation of chemical concentrations (RUSTIC)[M].In: Theory and Code Verification, vol.1. U.S. Environmental Protection Agency, Athens, GA(EPA-600/3-89/048a).
    Deeb O, Goodarzi M.2010. Predicting the solubility of pesticide compounds in water using QSPRmethods[J]. Molecular Physics,108(2):181-192.
    Diodato N, Bellocchi G.2009. Assessing and modelling changes in rainfall erosivity at differentclimate scales[J]. Earth Surface Processes and Landforms,34,969-980.
    Domagalski J L.1997. Results of a prototype surface water network design for pesticides developedfor the San Joaquin River Basin, California[J]. J. Hydrol.,192,33-50.
    Domagalski J L, Dubrovsky N M, Kratzer C R.1997. Pesticides in the San Joaquin River, California:inputs from dormant sprayed orchards[J]. J. Environ. Qlty.,26,454-465.
    Duan Q Y, Sorooshian S, Gupta V.1992. Effective and Efficient Global Optimization forConceptual Rainfall-Runoff Models[J].Water Resources Research,28(4):1015-1031.
    Easton Z M, Fuka D R, Walter M T, et al.2008. Re-conceptualizing the soil and water assessmenttool (SWAT) model to predict runoff from variable source areas[J].Journal of Hydrology,348,279-291.
    Elena A, Modica C, Nearing M A, et al.2004. Scale effect in USLE and WEPP application for soilerosion computation from three Sicilian basin[J].Journal of Hydrology,293,100-114.
    Flipo N, Jeannee N, Poulin M, et al.2007. Assessment of nitrate pollution in the Grand Morinaquifers (France): Combined use of geostatistics and physically based modeling[J].Environmental Pollution,146(1):241-256.
    Foster G R.1982. Evaluation of rainfall-runoff erosivity factors for individual storms[J]. Transactionof the ASAE,25:124.
    Foster G R, Meyer L D.1975. Mathematical simulation of upland erosion by fundamental erosionmechanics[M]. In Present and prospective technology for predicting sediment yields andsources, Washington, DC: US Department of Agriculture, Agricultural Research Service,190-207.
    Friedly J C.1972. Dynamic Behavior of Processes[M].Prentice-Hall, Englewood Cliffs, NJ.
    Fournier H.1960. Climat et erosion[M]. Ed. Presses Universitaires de France, Paris.
    Garbrecht J, Campbell J.1997. TOPAZ: an automated digital landscape analysis tool for topopraphicevaluation, drainage identification, watershed segmentation and subcatchment parameterization,TOPAZ User Manual[M]. Oklahoma: USDA-ARS.
    Giles J.2005. Nitrogen study fertilizes fears of pollution[J].Nature,433:791.
    Griensven A, Meixner T, Grunwaldvan S et al.2006. A global sensitivity analysis tool for theparameters of multi-variable catchment models[J].Journal of Hydrology,324(1-4):10-23.
    Griffin J R.1991. Introducing NPS water pollution[M]. EPA Journal Nov./Dec.,6-9.
    Hairsine P B, Rose C W.1992. Modelling water erosion due to overland flow using physicalprinciples.1. Sheet flow[J]. Water Resources Research,28,237-243.
    Hantush M M, Govindaraju R S, Marino M A, Zhang Z.2002. Screening model for volatilepollutants in dual porosity soils[J]. J. Hydrol.,260,58-74.
    Hashino M, Yao H, Yoshida H.2002. Studies and evaluations on interception processes duringrainfall based on a tankmodel[J]. J. Hydrol,255(1-4):1-11.
    He X B, Xu Y B, Zhang X B.2007. Traditional farming system for soil conservation on slopefarmland in southwestern China[J].Soil and Tillage Research,94(1):193-200.
    Heathwaite A L, Dils R M, Folmar G J.2000. Phosphorus leaching from soils containing differentphosphorus concentrations in the Broadbalk experiment[J].Journal of Environmental Quality,24:904-910.
    Hinkle S R, Bohlke J K, Duff J H et al.2007. Aquifer-scale controls on the distribution of nitrate andammonium in groundwater near La Pine, Oregon, USA[J].Journal of Hydrology,333(2-4):486-503.
    Howard A D.1994. A detachment-limited model of drainage basin evolution.Water ResourcesResearch,30,2261-85.
    Huang M B, Gallichand J, Wang Z L.2005. A modification to the soil conservation service curvenumber method for steep slopes in the loess plateau of china[J].Hydrological Processes,19:1-11.
    Hutson J L, Wagenet R J.1992. LEACHM (Leaching Estimation And Chemistry Model): Aprocess-based model of water and solute movement, transformations, plant uptake andchemical reactions in the unsaturated zone, Vers.3.0[M]. Department of Soil, Crop andAtmospheric Sciences. Cornell Univ., Ithaca, N.Y.
    Institute of Hydrology.1995. Assessment of global water resources, preliminary report[R]. Report tothe Overseas Development Administration, ODA Report95/2. Wallingford: Institute ofHydrology,38.
    Johanson R C, Imhoff J D, Davis H H.1980. Users manual for hydrological simulationprogram-Fortran (HSPF)[M]: Environmental Research Laboratory,EPA-600/9-80-015, Athens,Ga.,April.
    Johnes P J.1996. Evaluation and Management of the Impact of Land Use Change on the Nitrogenand Phosphorus Load Delivered to Surface: the Export Coefficient Modeling Approach[J].Journal of Hydrology,183(3-4):323-349.
    Jury W A, Focht D D, Farmer W J.1987. Evaluation of pesticide groundwater pollution potentialfrom standard indices of soil-chemical adsorption and biodegradation[J]. J. Environ. Qlty,16(4),422-428.
    Jury W A, Spencer W F, Farmer W J.1983. Behavior assessment model for trace organics in soil. I.Model description[J]. J. Environ. Qlty,12(4),558-564.
    Karelson M, Lobanov V S, Katritzky A R.1996. Quantum-chemical descriptors in QSAR/QSPRstudies[J]. Chem. Rev.,96(3),1027-1044.
    Kazuo O, Yoshifumi Y.2008. Mapping the potential annual total nitrogen loads in the river basinsof Japan with remotely sensed imagery[J].Remote Sensing of Environment,112:3091-3098.
    Kinnell P I A.2000. AGNPS-UM:applying the USLE-M within the a Cricultural non-point sourcepollution model[J]. Environmental modeling&software,15,331-341.
    Kite G W.2002. Manual for the SLURP Hydrological Model Version12.2[M]. Canada, January.
    Kite G W, Dalton A, Dion K.1994. Simulation of streamflow in a macro-scale watershed usingGCM data[J]. Water Resour. Res.,30(5),1546-1559.
    Knisel W G.1980.‘CREAMS: A Fieldscale Model for Chemical, Runoff, and Erosion fromAgricultural Management Systems’[R].US Department of Agriculture, Science and EducationAdministration, Conservation Report No.26, Washington, D.C.
    Knisel W G.1993. GLEAMS: Groundwater Loading Effects of Agricultural Management Systems.Univ. of Georgia, Coastal Plain Expt. Sta, Bio. and Agri. Engr. Dept., Publ. No.5,260pp.
    Knisel W G, Davis F M.2000. GLEAMS: Groundwater Loading Effects of AgriculturalManagement Systems[M]. USDA-ARS, Southeast Watershed Research Laboratory, Tifton,Georgia, Version3.0Publication No. SEWRLWGK/FMD-050199, revised081500,191pp.
    Kroes J G, van Dam J C, Huygen J, Vervoort R W.1999. User’s Guide of SWAP version2.0.Simulation of water flow, solute transport and plant growth in the Soil-Water-Atmosphere-Plant environment[R]. Technical Document48, Alterra Green World Research, Wageningen,Report81, Department of Water Resources, Wageningen University,127p.
    Kroes J G, van Dam J C, Groenendijk P, Hendriks R F A, Jacobs C M J.2008. SWAP version3.2.Theory description and user manual[R]. Alterra-report1649,262pp, Alterra, Research Institute,Wageningen, The Netherlands.
    Kronvang B, Gr sb ll P, Larsen S E, Svendsen L M.1996. Andersen H E. Diffuse nutrient losses inDenmark[J]. Water Science&Technology,(33):81-88.
    Lacroix M P, Martz L W, Kite G W, Garbrecht J.2002. Using digital terrain analysis modelingtechniques for the parameterization of a hydrologic model[J].Environmental Modelling&Software,17,127-136.
    Lee J H, Bang K W.2000. Characterization of urban stormwater runoff[J].Water Research,34(6):1773-1780.
    Lee S I.1979. Nonpoint source pollution[J].Fisheries,(2):50-52.
    León L F, Soulis E D, Kouwen N, Farquhar G J.1999. Non-point source pollution: a distributedwater quality modeling approach[J].Water Research, A35(4):997-1007.
    Leonard R A. Knisel W G, Still D A.1987.‘GLEAMS: Groundwater Loading Effects ofAgricultural Management Systems,’[J]. Transactions of ASAE,30,1403-1418.
    Liebezeit G, Brepohl D, Rizzi J, Guebert F, Krome M, Machado E, Pijanowska U.2011. DDT inBiota of Paranaguá Bay, Southern Brazil: Recent Input and Rapid Degradation[J].Water Airand Soil Pollution,220,181-188.
    Liu B Y, Nearing M A, Risse L M.1994. Slope gradient effects on soil loss for steep slopes[J].Transactions of American Society of Agricultural Engineers,37,1835-1840.
    Lu W J, Wang H T.2008. Role of rural solid waste management in non-point source pollutioncontrol of Dianchi Lake catchments, China[J]. Front. Environ. Sci. Engin. China,2(1):15-23.
    Mackay D, Paterson S.1991. Evaluating the multimedia fate of organic chemicals: a level IIIfugacity model[J]. Envir. Sci. Technol.,25(3),427-436.
    Mackay D, Paterson S, Schroeder W H.1986. Model describing the rates of transfer processes oforganic chemicals between atmosphere and water[J]. Envir. Sci. Technol.,20(8),810-816.
    Maeda E E, Pellikka P K E, Siljander M, Clark B J F.2010. Potential impacts of agriculturalexpansion and climate change on soil erosion in the Eastern Arc Mountains of Kenya[J].Geomorphology,123,279-289.
    Mark A. Marek P E.2009. Hydraulic Design Manual—hydrology[M].Texas Department ofTransportation, Design Division (DES),USA, pp5-(31-39).
    McCool D K, Foster G R, Mutchler C K.1989. Revised slope length factor in the universal soil lossequation[J]. Transactions of American Society of Agricultural Engineers,32,1571-1576.
    Menager M, Pilichowski J F, Sarakha M.2010. Reaction Pathways for the Photodegradation of theOrganophosphorus Cyanophos in Aqueous Solutions[J].Photochemistry and Photobiology,86:247-254.
    Mishra S K, Singh V P.2003. Soil Conservation Service Curve Number (SCS-CN)Methodology[M]. Kluwer Academic Publishers, Netherlands.
    Morgan R P C, Quinton J N, Smith R E, Govers G, Poesen J W A, Auerswald K, Chisci G, Torri D,Styczen M E.1998. The European Soil Erosion Model (EUROSEM): a dynamic approach forpredicting sediment transport from fields and small catchments[J]. Earth Surface Processes andLandforms,23,527-544.
    Mullins J A, Carsel R F, Scarbrough J E, Ivery A M.1993. PRZM-2, A Model for PredictingPesticide Fate in the Crop Root and Unsaturated Soil Zones: Users Manual for Release2.0[M].U.S. Environmental Protection Agency.
    Nash J E, Sutcliffe J V.1970. River flow forecasting through conceptual models part I-a discussionof principles [J]. Journal of Hydrology,10(3):282-290.
    Ning S K, Chang N B, Jeng K Y, et al.2006. Soil erosion and non-point source pollution impactsassessment with the aid of multi-temporal remote sensing images[J].Journal of EnvironmentalManagement,79,88-101
    Novotny V.1999. Diffuse pollution from agriculture—a worldwide outlook[J].Water Science andTechnology,39(3):1-13.
    Novotny V, Chester G.1981. Hand of Nonpoint Pollution:Source and Management[M].VanNostrand Reinhold compand.
    Novotny V, Olem H.1993. Water quality, Prevention, Identification and Management of DiffusePollution[M]. New York: Van Nostrand Reinhold Company,(2):26.
    Oldeman L R.1994. The global extent of soil degradation[M]. In: Greenland D J, Szabolcs I, editors.Soil resilience and sustainable land use. Wallingford: CAB International, p.99-118.
    Parsons A J, Stromberg S G L.1998. Experimental analysis of size and distance of travel ofunconstrained particles in interrill flow[J]. Water Resources Research,(34):2377-2381.
    Poiger T, Kari F G, Giger W.1999. Fate of fluorescent whitening agents in the river Glatt[J].Environ. Sci. Technol.,33(4),533-539.
    Polyakov V, Fares A, Kubo D, et al.2007. Evaluation of a non-point source pollution model,AnnAGNPS, in a tropical watershed[J].Environmental Modeling&Software,22:1617-1627.
    Ponce V M, Hawkins R H.1996. Runoff curve number: Has it reached maturity?[J]. Journal ofhydrologic engineering,1(1):11-18.
    Prosser I P, Rustomji P.2000. Sediment transport capacity relations for overland flow[J]. Progress inPhysical Geography,24,179-193.
    Pullar D, Springer D.2000. Towards integrating GIS and catchment models[J].EnvironmentalModelling&Software,15:451-459.
    Renard K G, Foster G R, Weesies G A, et al.1997. Predicting soil erosion by water:a guide toconservation planning with the Revised Universal Soil Loss Equation (RUSLE)[M].Washington: USDAHandbook,537.
    Richardson C W, Foster G R, Wright D A.1983. Estimation of erosion index from daily rainfallamount[J].Trans of ASAE,26:153-157.
    Sankararamakrishnan N, Sharma A K, Sanghi R.2005. Organochlorine and organophosphorouspesticide residues in ground water and surface waters of Kanpur, Uttar Pradesh, India[J].Environ. Int.,31(1),113-120.
    Schwarzenbach R P, Gschwend P M, Imboden D M.1993. Environmental Organic Chemistry[M].Wiley-Interscience, New York.
    Scherr S.1999. Soil degradation: a threat to developing country food security by2020[C]. IFRIFood, Agric. and Environment Discussion Paper27, Washington, DC,63pp.
    SCS national engineering handbook.1985.“Section4: hydrology, chapter4”[R]. Soil conservationservice, USDA, Washington, D.C.
    Sharpley A N.1996. Availability of residual phosphorus in manured soils[J].Soil Science Society ofAmerica Journal,60:1459-66.
    Sharpley A N, Williams J R.1990.‘EPIC-Erosion/Productivity Impact Calculator’[R].USDA,Agricultural Research Service,Technical Bulletin No.1768, Washington, D. C., pp.235pp.
    Silva R G, Holub S M, Jorgenson E E, et al.2005. Indicators of nitrate leaching loss under differentland use of clayey and sandy soils in southeastern Oklahoma[J].Agriculture Ecosystems andEnvirnment,109:346-359.
    Soil Conservation Service.1964.“Hydrology”[M]. SCS National Engineering Handbook. Section4,Chapter10, U S Department of Agriculture, Washington, D C.
    Spalding R F, Exner M E.1993. Occurrence of nitrate in groundwater-a review[J].Journal ofEnvironment Quality,22:392-402.
    Spanner M A, Pierce L L, Running S W, et al.1990. The seasonality of AVHRR data of temperateconiferous forests: Relationship with leaf area index[J]. Rem. Sens. Envt,33:97-112.
    Spittlehouse D L.1989. Estimating evapotranspiration from land surfaces in British Columbia[C]. In:Estimation of Areal Evapotranspiration, LAHS Publication No.177,245-253.
    Spurlock F.1998. Evaluation of current simulation models to predict pesticide movement to groundand surface water under California conditions[R],Study#177,Department of PesticideRegulation, Sacramento,CA.
    Takashi I, Keiya I, Takeshi H, Nobusuke I, Atsushi Y, Takashi N.2010. Behavior of paddypesticides and major metabolites in the Sakura River, Ibaraki, Japan[J]. J. Pestic. Sci.,35(2),114-123.
    Thompson S A.1999. Hydrology for Water Management[M]. Rotterdam, Netherlands andBrookfield, Vermont, USA: A. A. Balkema International Publishers,362.
    UNEP.1986. Sands of change: why land becomes desert and what can be done about it[M]. UNEPBrief#2, United Nations Environment Programme, Nairobi, Kenya,8pp.
    USEPA.1995. National water quality inventory[R]. Report to Congress Executive Summary.Washington DC: USEPA,497.
    USDA.1986. Urban Hydrology for Small Watersheds[M]. Technical Release55(TR-55). NaturalResources Conservation Services.
    Van Dam J C, Groenendijk P, Hendriks R F A, Kroes J G.2008. Advances of modeling water flowin variably saturated soils with SWAP[J]. Vadose Zone J., Vol.7, No.2.
    Van Dam J C, Huygen J, Wesseling J G, Feddes R A, Kabat P, van Walsum P E V, Groenendijk P,van Diepen C A.1997. Theory of SWAP version2.0. Simulation of water flow, solutetransport and plant growth in the Soil-Water-Atmosphere-Plant environment[R]. Report71,Subdep.Water Resources,Wageningen University,Technical document45,Alterra Green WorldResearch, Wageningen.
    Verhoef A, Feddes R A.1991. Preliminary review of revised FAO radiation and temperaturemethods[R]. Report16, Landbouwuniversiteit Wageningen.
    Vladimir N.1995. Non Point Pollution and Urban Stormwater Management, Volume IX (WaterQuality Management Library,V.9)[M].Western Hemisphere,USA:Technomic PublishingCompany, Inc.
    Wagenet R J, Hutson J L.1989. LEACHM: leaching estimation and chemistry model[M]. Version2.In: Continuum, vol.2. Water Resources Inst., Cornell Univ., Ithaca, NY.
    Walling D E.1983. The sediment delivery problem[J].Journal of Hydrology,65:209-237.
    Wei O Y, Hao F H, Wang X L, et al.2008. Nonpoint Source Pollution Responses Simulation forConversion Cropland to Forest in Mountains by SWAT in China[J].EnvironmentalManagement,41:79-89.
    Williams J R.1975. Sediment yield prediction with universal equation using runoff energy factor.ARS-S-40[M]. In: Present and Prospective Technology for Predicting Sediment Yields andSources. U.S. Department of Agriculture, Washington, DC, pp.244-252.
    Williams J R.1995. The EPIC model[M]. In: Singh, V.P.(Ed.), Computer Models of WatershedHydrology. Water Resources Publications, Littleton, CO, pp.909-1000(Chapter25).
    Wischmeier W, Smith D.1965. Predicting rainfall-erosion losses from cropland east of the RockyMountatins[M].USDA Agriculture Handbook.
    Wischemier W H, Smith D D.1978. Predicting Rainfall Erosion Losses-a Guide to Conservationplanning[M].Washington D C,USDA:US Department of Agriculture, Science and EducationAdministration,Agricultural Handbook,537-539.
    Wu L, Long T Y, Cooper W J.2012. Temporal and Spatial Simulation of Adsorbed Nitrogen andPhosphorus Non-point Source Pollution load in Xiao Jiang Watershed of Three GorgesReservoir Area,China[J].Environmental Engineering Science,29(4):238-247.
    Wu L, Long T Y, Cooper W J.2012. Simulation of Temporal and Spatial Distribution on DissolvedNon-point Source Nitrogen and Phosphorus Load in Jialing River Watershed, China[J].Environmental Earth Sciences,65(6),1795-1806.
    Wu L, Long T Y, Li C M.2010. The Simulation Research of Dissolved Nitrogen and Phosphorusnon-point source Pollution in Xiao-Jiang Watershed of Three Gorges Reservoir Area[J]. WaterScience and Technology,61(6),1601-1616.
    Yong R A, Onstad C A, Bosch D D, et al.1989. AGNAPS: A Nonpoint source model for evaluatingAgricultural watersheds[J].Journal Soil and Water Conservation,44:168-173.
    Young R A, Onstad C A, Bosch D D, Anderson W P.1989.‘AGNPS: A Non-Point-Source PollutionModel for Evaluating Agricultural Watersheds’[J].Journal of Soil and WaterConservation,44:168-173.
    Zwiener C.2007. Occurrence and analysis of pharmaceuticals and their transformation products indrinking water treatment[J].Anal. Bioanal. Chem.,387(4),1159-1162.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700