用户名: 密码: 验证码:
船舶结构噪声截断模型数值预报方法研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
为保障船舶具有良好的水下安静性,在船舶设计及建造阶段开展船舶结构水下噪声特性预报评估,及时发现船舶结构噪声设计存在的问题就变得十分重要;为此,国外海军强国投入大量人力物力开展船舶结构水下噪声预报、评估的相关研究,形成了船舶结构水下噪声预报评估的系列方法,如解析法、工程估算法、数值计算方法等。解析法适用于简单结构(如圆柱壳等)的水下噪声预报,当结构稍复杂时解析法将很难胜任;工程估算法可用于相似船型的水下噪声预报,但当预报船舶与母型船存在较大差异时,工程估算法将导致较大误差;数值计算方法,特别是有限元法、边界元法、FEM/BEM法、统计能量法数值计算方法的出现,为船舶结构水下噪声预报提供了丰富的研究手段,但由于船舶结构水下声辐射的复杂性,船舶结构噪声数值预报,特别是船舶结构水下中低频噪声预报仍存在诸多基础性、机理性问题需要解决。
     为此,本文首先对船舶结构水下噪声预报研究现状进行综述,系统阐述了船舶结构噪声预报技术发展概况,分析了船舶结构水下噪声预报存在的基础性问题及船舶结构噪声预报的难点。分析表明:由于船舶结构水下声辐射涉及流固声耦合、固液声气耦合等多种作用,其噪声预报异常困难,现有船舶结构噪声数值预报在船舶结构噪声数值分析方法、设备对船体的激励载荷计算方法、船舶结构噪声数值预报模型的简化方法等研究方面仍存在一定不足。针对上述问题,本文以船舶结构噪声数值预报工程需求为牵引,对船舶结构水下中低频噪声数值预报方法进行研究,重点讨论了船舶结构噪声数值预报的截断模型预报原理、设备对船体的激励载荷、船舶结构声学舱段截断模型的简化、船舶结构噪声分析的时频综合预报法及无限元法等基础性问题;在此基础上,初步形成了船舶结构噪声截断模型预报的系统化方法,并结合水面船舶及水下航行器噪声预报实际,探索了船舶结构噪声截断模型预报方法的可行性,初步分析了水面船舶及水下航行器结构的水下声辐射特性,旨在为船舶结构噪声定量预报及相关研究提供方法依据。
     针对船舶结构噪声预报存在计算规模大、求解效率低、预报频段窄等弊端,从链式结构动力学原理出发,提出船舶结构动力分析的截断模型方法,简化船舶结构的建模工作;结合结构噪声预报原理,给出船舶结构噪声预报的流场截断方法;在此基础上,提出船舶结构噪声截断模型的数值计算方法,以减小船舶结构噪声预报的计算规模,提高其求解效率及预报频率;舱段结构水下辐射噪射预报算例表明:模型截断预报方法可有效降低船舶结构噪声预报的计算规模,避免因设备建模等因素导致的数值计算误差,提高船舶结构噪声数值预报的频率,特别是在含有大量设备的船舶结构水下中低频噪声预报方面具有较大应用潜力,截断模型计算方法可有效降低船舶结构噪声预报的计算规模、提高其预报频率及求解效率。
     针对船舶结构噪声预报的输入—设备激励载荷—进行研究,重点分析了设备对船体激励载荷的计算方法。基于设备内源特性不变及参数识别理论,提出设备内源特性台架试验识别方法,由此建立设备台架试验到实船设备激励载荷的转换方法;基于设备与船体结构耦合振动机理,提出设备对船体结构激励力的简便计算方法;基于力边界与运动边界的统一性原理,提出运动边界相似法,解决设备激励载荷为振动加速度级形式不易在数值计算中施加的困难,并经算例验证,证明了运动边界相似法的有效性,解决船舶结构噪声截断模型预报的载荷输入问题。
     在船舶结构噪声预报模型简化方面,基于结构动力分析及声辐射理论,提出以局部舱段模型代替整船模型进行船舶结构噪声预报的船舶结构噪声舱段截断模型方法—行波法,并对其适用条件进行分析,实现了船舶结构噪声截断模型预报的进一步简化;通过圆板结构水下声辐射截断模型,验证了船舶结构噪声舱段截断模型方法的有效性,解决了以局部舱段代替整船模型进行船舶结构噪声预报的困难。
     针对现有船舶结构噪声预报存在求解效率低、无法考虑非线性因素、不能计及船舶结构低频振动与高频波动耦合影响因素的困难,提出船舶结构噪声预报的时频综合预报法,并进行相应的数值验证;研究表明:时频综合预报法不仅可解决现有船舶结构噪声预报存在的上述困难,还可针对关心频点噪声进行详细分析,以确定关心频点船舶结构噪声主导传递分量及主导传递途径,可为船舶结构噪声预报、评估及噪声治理提供快速支持。针对船舶结构噪声预报模型外流场域截断及域外远场声辐射存在的问题,提出声学无限元法应用于船舶结构噪声预报模型,以降低模型计算规模、提高其计算精度,实现域外远场声辐射的快速预报。
     最后,在前述研究基础上,归纳总结,初步形成船舶结构噪声截断模型预报的系统化方法,规范船舶结构噪声截断模型预报流程;并结合水面船舶及水下航行器结构噪声预报实际,给出船舶结构噪声截断模型预报方法实际应用的具体方法、流程,对水面船舶及水下航行器结构水下声辐射特性进行初步分析,旨在为船舶结构噪声截断模型预报方法工程应用提供分析依据。
To ensure that a ship has good underwater quiet performance, it is utterly important tocarry out prediction evaluations of ship’s underwater noise characteristics in the stages ofdesigning and constructing to discover problems in the acoustic design of the ship. Therefore,foreign powerful navy countries have invested massive human and material resources in theunderwater noise prediction and evaluation of ship structures, forming a series of methods ofassessment of ship’s underwater noise prediction, such as analytical method, engineeringestimation method and numerical methods. Analytical method is suitable for the underwaternoise prediction of simple structure (such as cylindrical shell), while it is not competent whenthe structure is slightly complex. Engineering estimation method can be used for theunderwater noise prediction of ships with similar forms; however, significant error will occurif gaps between the predicted ship and motherboard are huge. Numerical methods, especiallythe presence of Finite Element Method (FEM), Boundary Element Method (BEM),FEM/BEM, and Statistic Energy Analysis method, have provided abundant approaches forunderwater noise prediction of ships. However, due to the complexity of underwater acousticradiation of ship structure, there are still many basic and fundamental problems requires to besolved in the numerical noise prediction, especially the underwater noise prediction with lowand middle frequencies.
     The present situation of studies on the underwater prediction of ship structural bornenoise are overviewed firstly in this paper, and then the general situation of the development ofship structural borne noise prediction are represented systematically. Fundamental problemsand difficulties in the underwater acoustic prediction of ship structural borne noise areanalyzed. Analysis shows that underwater noise prediction of ship structural borne noise isvery difficult due to the involving of the coupling of fluid-structure-sound andstructure-fluid-sound-air. For the numerical prediction of ship structure available, there arestill various shortages in the research of numerical method of ship structural borne noiseprediction, determination of equipment exciting loads to ship hulls, model simplification ofnumerical prediction model of ship structural borne noise. With problems above, based onengineering requirements on numerical prediction of ship structural borne noise, this paperexamines the underwater noise prediction method with low and middle frequencies of shipstructure. Study lays special emphasis on the discussions of predicting principles of truncatedmodel of ship structural borne noise prediction, exciting loads from equipment to ship hulls,model simplification of ship structural borne noise, time-frequency integrated predictionmethod and infinite element method. Based on discussion above, a systematical truncatedmodel method of ship structural borne noise prediction is proposed. Combining with the reality of noise prediction of a ship and an underwater vehicle, the paper explores feasibilitiesof t truncated model prediction method of ship structural borne noise. Characteristics ofunderwater sound radiation of the ship and the underwater vehicle is preliminarily analyzed inthe hope of providing references for ship’s acoustic quantative prediction and relatedresearches.
     Aiming at overcome shortages of ship structural borne noise prediction, such as largescales of calculation, low solving efficiency, narrow bands of forecasting, this paper proposesa truncated model method to analyze ship structural dynamics based on the analyzing chainstructural dynamics. Combining underwater noise radiation theory, this paper gives outtruncated method of fluid domain of ship structural noise prediction model. On that basis, thepaper proposes truncated model method of ship structural borne noise prediction, which canreduce the scale of calculation, and increase the solving efficiency and forecast frequencybands. Examples of underwater acoustic radiation prediction of cabin structure shows that thetruncated model method can effectively reduce the scale of calculations, avoid numericalcalculation error caused by factors such as modeling of equipment, and increase predictionfrequency bands of ship structural borne noise. This method has large potential applications inlow and middle frequency prediction of ship structural noise especially when there arenumbers of equipment, which can reduce the scale of calculations effectively, increaseforecast frequency bands and solving efficiency.
     This paper also carries out research on the input of ship structural borne prediction-exciting loads from equipment to ship. The determination of excitation load from equipmentto ship hulls is analyzed. Based on the equipment endogenous characteristics and parameteridentification theory, the paper proposes the identification method for equipment endogenouscharacteristics with the bench test, and thereby establishes the excitation load transformingmethod from bench tests to ship hulls. Based on the coupled vibration mechanism ofequipment and hull structures, the paper proposes a simplified calculating method for theexcitation from equipment to hull structures. Based on the unitary theory of force boundaryand motion boundary, the analogical method of motion boundary is proposed to solvedifficulties that equipment excitation loads of vibration acceleration is not easy to exert innumerical computing. Examples have proved the effectiveness of moving boundaryanalogical method, which solves problems of providing input loads for noise prediction ofships.
     In the aspects of model simplifying of ship structural noise predicting, based on structurepower analysis and acoustic radiation theory, this paper proposes the traveling-wave methodthat can use local cabin model instead of the entire ship model for ship structural borne noiseprediction. The applicable conditions, further simplifications of the prediction model of shipstructural noise are discussed. Through underwater acoustic radiation truncated model ofcircular structure, the paper verifies the validity of cabin truncated model of ship structuralborne noise, and solves the difficulties of using local cabin instead of the entire whole shipmodel in the prediction of ship structural borne noise.
     For the problems in the prediction available of ship structural noise, such as lowefficiency, the disability to consider non-linear factors and take into account of low-frequencyvibration and high-frequency wave coupling factors of ship structure, the paper proposes thetime-frequency integrated prediction method of ship structural noise, and carries out thecorresponding numerical verification. The research shows that time-frequency combinedmethod can not only smooth difficulties in the prediction of ship structural noise, but alsoanalyze the interested noise frequency in detail to determine the dominant pass componentand dominant pathway of ship structural noise of the concerning frequency, which providesrapid support for the prediction, assessment and noise control of ship structural noise. For theproblems existing in external fluid field truncation and extraterritorial far-field acousticradiation of ship structural noise, the paper proposes the application of acoustic infiniteelement method in ship structural noise prediction model, in the hope of reducing the modelsize and improving the calculation accuracy, and further realizing the fast prediction ofextraterritorial far-field acoustic radiation
     Finally, a systematic truncated model method of ship structural borne noise prediction isproposed to standardize the flow of ship structural borne noise prediction based on thesummarization of studies above in this paper. Combining with the demands of ship structuralborne noise prediction of ships and underwater vehicles, this paper gives out specific stepsand flows of the application of truncated model method of ship structural borne noiseprediction. The underwater acoustic radiation characteristics of a ship and underwater vehicleis analyzed, with respects to provide method supports for engineering applications oftruncated model method of ship structural borne noise prediction
引文
[1]何祚镛.水下噪声及其控制技术进展和展望[J],声学技术,2002,21(1):26~34
    [2]何祚镛,赵玉芳.声学理论基础[M].北京:国防工业出版社.1981
    [3]林立,俞孟萨,伏同先.国外水面舰艇声隐身设计及控制技术概况[J],舰船科学技术,2005,27(2):92~96
    [4]朱锡,孙雪荣,石勇.船舶水下结构噪声数值计算方法研究概况[J],船舶工程,2004,26(1):9~12
    [5]伍先俊,朱石坚.统计能量法及其在船舶声振预测中的应用综述[J].武汉理工大学学报,2004,28(2):24~29
    [6]王路才,周其斗,纪刚,谢志勇,莫登沉.以舱段模型代替整艇模型进行噪声估算的可行性探讨[C].第十二届船舶水下噪声学术讨论会论文集,2009,308~317
    [7] R.J.Astley; J.P.Coyette. The performance of spheroidal infinite elements[J], InternationalJournal of Numerical Method Engineering2001,52:1379~1396.
    [8] Rayleigh J. The theory of Sound [M]. New York: Dover Publications,1945
    [9] Leissa A W, Iyer K M. Modal response of circular cylindrical shells with structuraldamping [J]. Journal of Sound and Vibration,1981,77(1):1~10
    [10]Galletly G D. On the in-vacuo vibrations of simply supported ring-stiffened cylindricalshell [C]. Proceedings of the second U.S.A. national congress of applied mechanics,1954
    [11]John L. Sewall, Robert R. Clary, Sumner A. Leadbetter. An experimental and analyticalvibration study of ring-stiffened cylindrical shell structure with various supportconditions [R]. NASA TN D-2398,1964:52
    [12]Martin M Mikulas, Jr, John A McElman. On free vibrations of eccentrically stiffenedcylindrical shells and flat plates [R]. NASA TN D-3010,1965
    [13]骆东平,张玉红.环肋增强柱壳振动特性分析[J],中国造船.1989,104(1):64~74
    [14]陈美霞,骆东平,陈小宁,沈瑞喜.复杂双层壳体声辐射性能分析[J].声学学报,2004,29(3):209~215
    [15]骆东平,徐治平.环肋柱壳在流场中振动特性分析[J].中国造船,1991(4):67~79
    [16]Junger M C. Radiation loading of cylindrical and spherical surfaces[J]. Journal of theAcoustical Society of America,1952,24:288~289
    [17]Junger M C. Vibrations of elastic shells in a fluid medium and the associatedradiation of sound [J]. Journal of Applied Mechanics,1952,74:439~445
    [18]Scott J F M. The free modes of propagation of an infinite fluid-loaded thin cylindricalshell[J]. Journal of Sound and Vibration,1988,125(2):241~280
    [19]Guo Y P. Sound scattering from cylindrical shells with internal elastic plates[J]. Journalof the Acoustical Society of America,1993,93(4):1936~1946
    [20]Guo Y P. Sound scattering by bulkheads in cylindrical shells[J]. Journal of the AcousticalSociety of America,1994,95(5):2550~2559
    [21]Guo Y P. Acoustic radiation from cylindrical shells due to internal forcing[J]. Journal ofthe Acoustical Society of America,1996,99(3):1495~1505
    [22]Guo Y P. Acoustic scattering from cylindrical shells with deck-type internal plate atoblique incidence[J]. Journal of the Acoustical Society of America,1996,99(5):2701~2713
    [23]汤渭霖,何兵蓉.水中有限长加肋圆柱壳体振动和声辐射近似解析解[J].声学学报,2001,26(1):1~5
    [24]陈越澎,骆东平,陈晓宁等.流场中双层壳体结构振动特性研究[J].华中理工大学学报,1999,27(1):72~73
    [25]陈美霞,骆东平,周锋,王祖华.阻尼材料敷设方式对双层壳体声辐射性能的影响[J].声学学报,2005,30(4):296~302
    [26]胡家雄,伏同先.2l世纪常规潜艇声隐身技术发展动态[J].舰船科学技术.2001,4:2~5
    [27]仇远旺,王国治,胡玉超,丁志龙.舰船振动噪声的快速预报技术[J].舰船科学技术.2011,33(11):89~93
    [28]仇远旺,王国治,胡玉超.基于振动传递分析的舰船辐射噪声特性研究[J].江苏科技大学学报(自然科学版).2011,25(2):110~114
    [29]吴方良,杨向晖,陈锐.基于BP神经网络与L-M算法的潜艇声纳自噪声预报[J].中国造船.2006,47(3):45~50
    [30]朱英富,张国良.舰船隐身技术[M].哈尔滨:哈尔滨工程大学出版社,2003
    [31]阿.斯.尼基福罗夫著,谢信,王珂等译.船体结构声学设计[M].北京:国防工业出版社,1998
    [32]俞孟萨,林立,林鹤雄.水下航行体机械噪声的工程预报方法[J].中国造船,2001,42(2):82~89
    [33]R. H. Lyon. Statistical energy analysis of dynamical systems: theory and applications[M].Cambridge, Massachusetts: MIT Press,1975
    [34]姚德源,王其政.统计能量分析原理及其应用[M].北京:北京工业大学出版,1995
    [35]Everstine G C. Finite element formulations of structural acoustics problems[J].Computers&Structures,1997,65(3):307~321
    [36]R. H. Lyon, R. G. De Jong, Theory and application of statistical energy analysis,2nd ed
    [M], Butterworth Heinemann, Boston,1995
    [37]L. Maxit, J. L. Guy ader. Estimation of coupling loss factors using a dual formulation andFEM modal information, part I: theory [J]. Journal of Sound and Vibration.2001,239(5):907~930
    [38]J. A. Steel. The prediction of structural vibration transmission through a motor vehicleusing statistical energy analysis [J]. Journal of Sound and Vibration,1996,193(3):691~703
    [39]F.J. Fany. An alternative to the SEA coupling loss factor: rationale and method forexperimental determination [J]. Journal of Sound and Vibration,1998,214(2):261~267
    [40]韩增尧,曲广吉.统计能量分析在太阳翼噪声分析上的应用[J].中国空间科学技术,2001,(1):52~56
    [41]叶武平,易明,斩晓雄,丁玉兰.运用统计能量分析法进行轿车内室噪声的仿真[J].同济大学学报,2001,29(9):1066~1072
    [42]李天匀,刘敬喜,李强,肖明康.潜艇声呐腔自噪声预报平台[J].船舶工程,2004,26(1):49~51
    [43]刘凯,朱石坚,丁少春.基于Auto SEA的鱼雷结构辐射噪声预报方法[J].鱼雷技术,2010,18(2):91~94
    [44]童宗鹏,王国治,张志谊等.水下航行器声振特性的统计能量法研究[J].噪声与振动控制,2005,(1):47~49
    [45]B Laulaget, J L Guyader. Sound radiation from finite cylindrical shells, partially coveredwith longitudinal strips of compliant layer[J]. Journal of Sound and Vibration,1995,186(5):723~742
    [46]B Laulaget, J L Guyader. Sound radiation from finite cylindrical shells by means ofasymptotic expansion of three-dimensional equations for coating[J]. Journal ofAcoustical Society of America,1994,96(1):277~286
    [47]缪旭弘,庞福振.声学覆盖层对锥柱组合结构水下振动噪声的影响[J].中国造船,2011,52(S1),59~67
    [48]PANG Fuzhen, PANG Fubin, YAO Xiong. Influence of acoustic coating on theunderwater sound radiation of a double hull cylindrical shell structure[J], AdvancedMaterials Research.2011, Vol (338):406~410
    [49]盛美萍.复杂耦合系统的统计能量分析及其应用[J].中国工程科学,2002,4(6):112~116.
    [50]施引,朱石坚,何琳.船舶动力机械噪声及其控制[M].北京:国防工业出版社,1990
    [51]肖明康,李强,李天匀.复杂结构-声场耦合系统的响应和声辐射预测[J].船海工程,2001, S1:88~90
    [52]刘见华,金咸定.结构声传递数值计算方法的研究进展[J].振动与冲击,2002,21(4):44~49
    [53]俞孟萨,叶剑平,吴有生等.船舶声纳部位自噪声的预报方法及其控制技术[J].船舶力学,2002,6(5):80~93
    [54]刘忠文,李天匀,骆东平.某潜艇综合声纳声腔自噪声的统计能量方法分析[J].舰船科学技术,2000,(3):61~64
    [55]秦晓辉,尹韶平.统计能量分析在鱼雷结构振动及声辐射研究中的应用[J].鱼雷技术,2006,14(1):24~29.
    [56]程广利,伍先俊,朱石坚.基于Auto SEA的船舶噪声统计能量分析仿真[J].海军工程大学学报,2005,17(3):70~73
    [57]程广利,伍先俊,朱石坚.统计能量分析法及其损耗因子确定方法综述[J].船舶工程,2004,26(4):10~15
    [58]张晶,王宪成,索文超,徐大平.基于统计能量分析法的船艇机舱舱室噪声仿真[J].装甲兵工程学院学报,2006,20(01):58~62
    [59]LAIM L, SOON A. Prediction of transient vibration envelopes using statistical energyanalysis techniques [J]. Journal of Vibration and Acoustics,1990,112:127~137
    [60]B.R.Maee. sound radiation from a Plate reinforced by two sets of Parallel stiffeners [J].Journal of Sound and Vibration, Volume71,1980
    [61]B.R.Maee. sound radiation from fluid loaded orthogonally stiffened Plates [J]. Journal ofSound and Vibration, Volume79,1981
    [62]吴刚,杨德庆.大型集装箱船振动及噪声数值计算建模方法研究[J].振动与冲击,2008,27(5):68~73
    [63]R.J.Astley, W.Eversman. Finite elements formulations for acoustical radiation [J]. Journalof Sound and Vibration Research,1983,88(1):47-64
    [64]刘晓明,王晓宇,陈慈慧.流固耦合船舶舱室中低频噪声数值分析[J].船舶力学,2008,12(5):812~818
    [65]谢志勇,周其斗,纪刚.双层柱壳的流固耦合模态计算与试验研究[J].海军工程大学学报,2009,21(2):97~101
    [66]缪旭弘,钱德进.基于ABAQUS声固耦合法的水下结构声辐射研究[J].船舶力学,2009,13(2):319~323
    [67]PANG Fuzhen, JIN Yeqing, YAO Xiongliang. APDL Based Vibration Optimization of aShip Foundation [J]. Advanced Materials Research.2011,Volume(338):525~529
    [68]金叶青,姚熊亮,尹绪超,庞福振.复杂锥柱结构声辐射数值计算研究[C].第十三届全国水下噪声会议论文集,2010,127~133
    [69]R.J. Astley, G.J. Macaulay and J.P. Coyette. Mapped wave envelope elements foracoustical radiation and scattering [J]. Journal of Sound and Vibration,1994,170(l):97~118
    [70]P. Bettess, Infinite Elements [M], Penshaw, Sunderland, U.K,1992
    [71]D.S.Burnett, A three-dimensional acoustic Infinite Element based on a prolate spheroidalmultipole expansion[J], Journal of the Acoustical Society of America,96,5
    [72]D.S.Burnett, Richard L.Holford. Prolate and oblate spheroidal acoustic infinite element.Comput.Methods.Appl.Mech.Engrg [J]. Journal of Vibration and Acoustics1998,158:117~141
    [73]Semyon V.Tsynkov, Numerical solution of problems on unbounded domains[J]. AppliedNumerical Mathematics,1998,27:465~532
    [74]L.Cremers and K.R Fyfe, On the use of variable order infinite wave envelope elementsfor acoustic radiation and scattering[J]. Journal of the Acoustical Society of America.1995,97(4):2028~2040
    [75]K.Gerdes. A summary of infinite Element formulations for exterior Helmholtz problems[J]. Computer Methods in Applied Mechanics and Engineering,1998,164:95~105
    [76]K.Gerdes and L. Demkowicz. Solutions of3D-Laplace and Helmholtz equations inexterior domains using hp Infinite Elements [J]. Computer Methods in AppliedMechanics and Engineering,1996,137:239~273.
    [77]K.Gerdes. Solution of the3D Helmholtz equation in exterior domains of arbitrary shapeusing hp.finite infinite elements[J]. Finite Elements in Analysis and Design,1998,29:1~20
    [78]K.Gerdes. The conjugated vs. the unconjugated infinite element method for theHehnholtz equation in exterior domains [J]. Computer Methods in Applied Mechanicsand Engineering,1998,152:125~145
    [79]D.GiVolumei and J.B.Keller, Special finite elements for use with high-order boundaryconditions, Comput[J]. Computer Methods in Applied Mechanics and Engineering,1994,119:199~213
    [80]Kirsch and P. Monk. An analysis of the coupling of finite element and Nystrom methodsin acoustic scattering [J]. IMA Journal of numberical analysis.1994,14:523~544,
    [81]Joseph, J.Shirron and Ivo Babuska. A comparison of approximate boundary conditionsand infinite element methods for exterior Helmholtz problems [J]. Computer Methods inApplied Mechanics and Engineering,1998,164:123~139
    [82]R.J.Astley, W.Eversman. A note on the utility of a wave envelope approach in finiteelement duct transmission studies[J]. Journal of sound and vibration,1981,76(4):595~601
    [83]R.J.Astley. Wave envelope and infinite elements for acoustical radiation[J]. InternationalJournal for Numerical Methods in Fluids,1983,3:507~526
    [84]R.J.Astley. A finite element wave envelope formulation for acoustical radiation in movingflows[J]. Journal Of Sound and Vibration,1985,103:471~485
    [85]R.J.Astley, W.Eversman. Wave envelope elements for acoustical radiation ininhomogeneous media[J]. Computers and Structures,1988,30(4):801~810
    [86]R.J.Astley and G.J.Macaulay. Mapped wave envelope for acoustical radiation andscattering[J]. Journal of Sound and Vibration,1994,170(1):97~118
    [87]R.J.Astley, J.P. Coyette, L.Cremers. Three-dimensional wave-envelope elements ofvariable order for acoustic radiation and scattering in the frequency domain[J]. Journal ofthe Acoustical Society of America,1998,103(1):49~63
    [88]R.J.Astley, J.P. Coyette, L.Cremers. Three-dimensional wave-envelope elements ofvariable order for acoustic radiation and scattering Part II Formulation in the timedomain[J]. Journal of the Acoustical Society of America.1998,103(1):64~72
    [89]Chen L H,Schweikert D G. Sound radiation from an arbitrary body[J]. Journal of theAcoustical Society of America,1963,35:1626~1632
    [90]Schenck H A. Improved integral formulation for acoustic radiation problems[J]. Journalof the Acoustical Society of America,1968,44:41~58
    [91]纪刚,张纬康,周其斗.静水压力作用的水下结构振动及声辐射[J].中国造船,2006,47(3):37~44
    [92]周其斗.细长壳体水声辐射问题的有限元结合边界元解法[J].海军工程学院学报,1996,75(2):35~44
    [93]Zhou Q, Joseph P F. A numerical method for the calculation of dynamic response andacoustic radiation from an underwater structure[J], Journal of Sound and Vibration,2005,283:853~873
    [94]张敬东,何祚镛.传递矩阵-边界元方法预报水下旋转薄壳振动和声辐射[J].哈尔滨船舶工程学院学报,1989,10(4):435~444
    [95]夏侯命胜,张玉奎,刘晓明.油船舱室噪声预报[J].船舶,2011,22(2):31~37
    [96]杨德庆,王德禹,刘洪林,郑靖明.某型艇近场噪声和自噪声数值计算[J].声学学报,2003,28(5):421~424
    [97]侯国祥,翁章卓,祝玉梅,吴崇健.充液双层壳的振动与声辐射计算[J].华中科技大学学报,2005,33(10):16~18
    [98]商德江,何祚镛.加肋双层圆柱壳振动声辐射数值计算分析[J].声学学报,2001,26(3):193~201
    [99]童宗鹏,王国治.舰艇结构水下振动和声辐射特性研究[J].华东船舶工业学院学报(自然科学版),2003,17(2):18~22。
    [100]王国治,童宗鹏.鱼雷动力机械水下噪声预报研究[J].鱼雷技术,2002,10(4):18~21
    [101]倪樵,艾国庆.深水中复合材料椭圆柱壳声辐射的数值分析[J].华中科技大学学报,2006,34(12):77~79
    [102]邹春平,陈端石,华宏星.船舶水下辐射噪声特性研究[J].船舶力学,2004,8(1):112~124
    [103]曹贻鹏,张文平.轴系纵振对双层圆柱壳体水下声辐射的影响研究[J].船舶力学,2007,11(2):293~299
    [104]徐张明,沈荣瀛,华宏星.利用FEM/IBEM计算流体介质中的壳体的结构声耦合问题[J].振动工程学报,2002,15(3):363~367
    [105]黎胜,赵德有.用有限元/边界元方法进行结构声辐射的模态分析[J].声学学报,2001,26(2):174~179
    [106]黎胜,赵德有.平面声波由空气经加肋板向水中传输的数值计算研究[J].声学学报,2002,27(2):112~116
    [107]黎胜,赵德有.用耦合有限元/边界元方法研究加筋板的声传输[J].振动工程学报,2001,14(3):364~367
    [108]谭林森,骆东平,吴崇健等.潜水器动力舱振动与声辐射[J].华中理工大学学报,1999,27(11):7~9
    [109]徐张明,汪玉,华宏星等.船舶结构的建模及水下振动和辐射噪声的FEM/BEM计算[J].船舶力学,2002,6(4):89~95
    [110]郭兆璞,陈浩然,项晨等.空间复合材料加筋板流固耦合振动分析[J].中国造船,1994,35(3):50~59
    [111]张少雄,吴秀恒,杨永谦等.薄壁梁型船舶结构的水弹性自由振动[J].武汉交通科技大学学报,1996,20(6):739~744
    [112]柯兵,谭林森.用有限元/边界元方法计算结构体振动辐射声场[J].船海工程,2001,增刊:97~99
    [113]柴油机汽缸爆炸冲击引起的船体振动和水下噪声的有限元/边界元分析[J].国外舰船工程,2002,(3):32~37
    [114] W.M. Johnson, K.A. Cunefare. Structural acoustic optimization of a compositecylindrical shell using FEM/BEM[J]. Journal of Vibration and Acoustics,2002,124:410~413
    [115] Everstine G C.Henderson F M. Coupled finite element/boundary element approachfor fluid-structure interaction analysis[J]. Journal of Acoustic Society of America1990,87(5):1938~1947
    [116] Vlahopoulos N., Garza-Rios L. O., Mollo C. Numerical implementation, validationand marine applications of an energy finite element formulation[J]. Journal of ShipResearch,1999,43(3)143~156
    [117] Desmet W. Mid-frequency Vibro-acoustic modeling: challenges and potentialsolutions [C].Proceedings of ISMA2002, Leuven,2002:835~862
    [118] Langley R S,Bremner P. A Hybrid method for the vibration analysis of complexstructural acoustic systems[J]. Journal of the Acoustical Society of America,1999,105(3):1657~1671
    [119] Cotoni V,Shorter P J,Langley R S.Numerical and experimental validation of ahybrid finite element-statistical energy analysis method[J]. Journal of the AcousticalSociety of America,2007,122(1):259~270
    [120] Langley R S,Shorter P J,Cotoni V.A hybrid FE-SEA method for the analysis ofcomplex vibro-acoustic systems [C].Proceedings of NOVEM2005. St.Raphael,2005
    [121] Shorter P J,Langley R S.On the reciprocity relation-ship between direct fieldradiation and diffuse reverberant loading[J].Journal of the Acoustical Society ofAmerica,2005,117(1):85~95
    [122] Shorter P J,Langley R S.Vibro-acoustic analysis of complex systems[J]. Journal ofSound and Vibration,2005,288(3):669~699
    [123]庞福振,康逢辉,孙龙泉等.复杂锥柱结构中频水下声辐射特性研究[J].哈尔滨工业大学学报,2011,43(S1):42~46
    [124]姚熊亮,王献忠,孙龙泉,庞福振.复杂结构中频声振问题的方法研究[J].振动工程学报.2011,24(4):444~449
    [125] Zheng H,et al. FEM/BEM analysis of Diesel piston-slap induced ship hull vibrationand underwater noise[J]. Applied Acoustics,2001,62:341~358
    [126]缪旭弘,王雪仁,贾地,靳国永,庞福振.大型复杂圆柱壳中高频振动噪声仿真计算方法研究[J].计算力学学报,2012,29(1):124~128
    [127]中国船级社.船上振动控制指南[S].北京:人民交通出版社,2000
    [128] Breeuwer R, Tukker J C. Resilient mounting systems in building[J]. AppliedAcoustics,1976,9:77~101
    [129] Juha Plunt. The use of experimental structure-borne sound source data forprediction[C] Proc. International Conference of Noise Control Engineering, United States,1982,2:445~448
    [130] Mondot J M, Petersson B. Characterization of structure-borne sound sources: Thesource descriptor and the coupling function [J]. Journal of Sound and Vibration,1987,114(3):507~518
    [131] Petersson B A T, Gibbs B M. Use of source descriptor concept in studies of multi-point and multi-directional sources[J]. Journal of Sound and Vibration,1993,168(1):157~176
    [132] Fulford R A, Gibbs B M. Structure-borne sound power and source characterization inmulti-point-connected system part I: Case studies for assured force distributions [J].Journal of Sound and Vibration,1997,204(4):659~677
    [133] Fulford R A, Gibbs B M. Structure-borne sound power and source characterization inmulti-point-connected system part II: About mobility function and free velocities [J].Journal of Sound and Vibration,1997,220(2):203~224
    [134] Petersson B A T, Gibbs B M. Towards a structure-borne sound sourcecharacterization [J]. Applied Acoustics,2000,61:325~343
    [135]严斌,吴文伟,刘忠族.机械设备振动源特性研究[J].船舶力学,2010,14(10):1180~1188
    [136]原春晖,朱显明.舰艇机械设备噪声振动特性的测试方法[J].舰船科学技术,2006,2:30~33
    [137]原春晖.机械设备振动源特性测试方法研究[D].武汉:华中科技大学,2006
    [138]梁军.不同环境下机械设备振动激励特性的转换关系研究[J].中国舰船研究,2007,2(2):52~56.
    [139] G. Desanghere, R. Snoeys. Indirect identification of excitation forces by modalcoordinates transformation [J]. Mechanical Systems and Signal Processing,1985:685~690
    [140] J.M. Starkey, G.L. Merrill. On the ill-conditioned nature of indirect forcemeasurements techniques [J]. International Journal of Analytical and Experimental ModalAnalysis,1990,8:18~23
    [141] Moorhouse A T. On the characteristic power of structure-borne sound sources [J].Journal of Sound and Vibration,2001,248(3):441~459
    [142] Elliott, Moorhouse, Pavic. Characterization of structure-borne sound source usingindependent and in-situ measurement[C].19th International Congress on Acoustics,Madrid,2007
    [143] Elliott, Moorhouse. Characterization of structure-borne sound sources from usingmeasurement in-situ[C]. Euronoise, Paris,2008
    [144]杨德庆,戴浪涛.浮式生产储油船振动噪声混合数值预报[J].海洋工程,2006,24(1):1~8
    [145]朱锡,胡忠平,石勇.预报基座结构噪声的有限元方法研究[J].海军工程大学学报,2003,15(6):33~36
    [146]石勇,朱锡,胡忠平.方钢刚性减振结构对组合板振动影响的计算分析[J].海军工程大学学报,2003,15(2):45~49
    [147] Zheng H,et al. FEM/BEM analysis of Diesel piston-slap induced ship hull vibrationand underwater noise[J]. Applied Acoustics,2001,62:341~358
    [148]王国治,仇远旺,胡玉超.激励载荷的模拟与舰船机械噪声预报[J].江苏科技大学学报(自然科学版),2011,25(4):315~319
    [149]郑兆昌,丁奎元.机械振动(上册)[M].北京:机械工业出版社,1986
    [150]朱正道,俞孟萨,苗金林.舰船机械设备振动激励特性测试方法研究[J].舰船科学技术,2006,28(Z2):34~39
    [151] Fulford R A, Gibbs B M. Structure-borne sound power and source characterization inmulti-point-connected systems Part I: Case studies for assumed force distribution [J].Journal of Sound and Vibration,1997,204(4):659~677
    [152] Petersson B A T, Gibbs B M. Towards a structure-borne sound sourcecharacterization [J]. Applied Acoustics,2000.61:325~343
    [153] Moorhouse A T. On the characteristics power of structure-borne sound sources [J].Journal of Sound and Vibration,2001.248(3):441~459
    [154] Janssen M H A. The use of an equivalent forces method for the experimentalquantification of structural sound transmission in ship [J]. Journal of Sound and Vibration,1999.226(2):305~328
    [155]魏强,谢伟,朱祥.船舶机电设备基座面导纳及其应用[C].2005年船舶结构力学学术会议,2005.9:490~495
    [156] Hammer P, Peterssion B. Strip excitation, Part I: Strip mobility [J]. Journal of Soundand Vibration,1989,129(1):119~132
    [157] Dai J, Lai J C S. Vibration power transmission over a rectangular area of an infiniteplate subject to uniform cophase velocity excitation [J]. Journal of Sound and Vibration,2002,257(2):265~282
    [158] Futford R A, Gibbs B M. Structure-borne sound power and source characterization inmulti-point-connected systems, part II: About Mobility functions and free velocities [J].Journal of Sound and Vibration,1999,220(2):203~224
    [159] J.B.Casimir, S.Kevorkian, T.Vinh. The dynamic stiffness matrix of two-dimensionalelements: application to Kirchhoff’s plate continuous elements [J]. Journal of Sound andVibration,2005,287:571~589
    [160] J.R.Banerjee, H.Su. Dynamic stiffness formulation and free vibration analysis of aspinning composite beam [J]. Computers and Structures,2006,84:1208~1214
    [161]沈建平,周璞.隔振器机械阻抗测量方法[J].舰船科学技术,2006,28(S2):98~106
    [162]王锁泉,朱忠,周庆云,尹志勇.加载对隔振器机械阻抗参数的影响[C].第十一届船舶水下噪声学术讨论会论文集,2007,198~203
    [163]吴文伟,沈荣流,沈顺根.设备基座输入机械阻抗工程估算方法[J].振动工程学报,2004,17(S):694~697
    [164]原春晖,朱显明,汪浩.设备安装对基座导纳测量的影响研究[J].中国造船,2005,46(3):41~46
    [165]韩增尧.复杂航天器声振力学环境预示技术研究[D].北京:中国空间技术研究院,2000
    [166]庞福振,姚熊亮,朱理.船舶结构高阶动力分析的模型简化方法研究[J],船舶力学.2010.11,14(11),1263~1275
    [167] J.R.Banerjee, H.Su. Dynamic stiffness formulation and free vibration analysis of aspinning composite beam [J]. Journal of Sound and Vibration,2006,84:1208~1214
    [168]陈陆平.动态系统的模型简化方法[J].力学进展,1994,24(1):88~97
    [169]郑淑飞,丁桦.基于变形修正的局部刚体化动力模型简化方法[J].力学与实践,2008,30(6):31~34
    [170] Qu ZQ,Jung Y,Selvam RP.Model condensation for non-classically dampedsystems-part I: static condensation [J]. Mechanical Systems and Signal Processing,2003,17(5):1003~1016
    [171]夏益霖.有效载荷/运载火箭耦合分析的子结构模态综合法[J].强度与环境,1996(4):46~52
    [172]夏益霖.时域和频域子结构试验模态综合方法的统一性[J].强度与环境,1996(3):39~45
    [173]楼梦麟.结构动力分析的子结构方法[M].上海:同济大学出版社,1997
    [174] Irons B. Structural eigen value problems: elimination of unwanted variables [J].Journal of Nanjing University of Aeronautics&Astronautics,1965,3(5):961~962
    [175] Robert J. Guyan reduction of stiffness and mass matrices [J]. Journal of NanjingUniversity of Aeronautics&Astronautics,1965,3(2):680
    [176] Edward J Kuhar, Clyde V Stahle. Dynamic transformation method for modalsynthesis [J]. Journal of Nanjing University of Aeronautics&Astronautics,1974,12(5):672~678
    [177] O’Callahan JC. A procedure for an improved reduced system (IRs) model [C].Proceedings of the7th International Model Analysis Conference,Las Vegas,January1989:17~21
    [178]张德文,魏阜旋.模型修正与破损诊断[M].北京:科学出版社,1999
    [179]程守洙,江之永等.普通物理学[M].北京:高等教育出版社,2000
    [180]庞福振,姚熊亮.声学覆盖层对潜艇抗水下爆炸能力的影响研究[J].振动与冲击,2011,30(4):103~108
    [181]庞福振,于博天,于丹竹,姚熊亮.显式分析法在舰船振动特性研究中的应用研究[J].船舶工程.2011,33(S2):36~40
    [182]朱理,庞福振.螺旋桨激励力下的舰船振动特性分析[J].中国造船.2011,52(2):8~15
    [183]王后裕,朱可善,言志信.三维双向及三向映射无限元[J].工程力学,2002,19(3):95~98
    [184]杨瑞梁,汪鸿振.声无限元进展[J].机械工程学报,2003,39(11):82~87
    [185]杨瑞梁,汪鸿振.用长旋转椭球函数重构声场[J].噪声与振动控制,2003,5:15~17
    [186]杨瑞梁,范晓伟.使用有限元和无限元耦合求解声辐射问题[J].振动工程学报,2004,17:1007~1009
    [187]李录贤,国松直,王爱琴.无限元方法及其应用[J].力学进展,2007,37:161~173
    [188]应隆安.无限元方法[M].北京:北京大学出版社,1992
    [189]章青,周资斌,卓家寿.分区界面元有限元无限元混合模型[J].计算力学学报,2005,22:9~12
    [190]王之程,于渢,陈宗岐,刘文帅.舰船噪声测量与分析[M].北京:国防工业出版社,2004

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700