用户名: 密码: 验证码:
基于选冶结合的镍钼矿提钼新工艺研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
镍钼矿是我国特有的复杂多金属矿物资源,矿中有价金属镍和钼储量巨大,具有很高的经济价值。由于矿中镍和钼的品位相对较低,造成现有冶炼工艺生产成本偏高。
     中南大学着眼于选冶结合开展工作。在选矿方面,已成功地实现了镍钼矿的浮选富集。经选矿处理后,粗精矿中有价元素钼、镍等品位约为原矿的三倍,原矿中约80%的钼主要以硫化钼形态富集在精矿中,其余部分钼则主要以氧化物形态进入尾矿中。本课题作为冶金研究部分,以浮选后的富钼粗精矿为对象,开发了一条制备钼酸铵产品的全湿法新工艺。
     主要研究内容包括富钼精矿联合浸出镍和钼、溶剂萃取法从浸出液中提钼、铵镁盐沉淀法从钼酸铵溶液除砷、离子交换法从钼酸铵溶液除镁、酸沉结晶钼酸铵产品。最终钼酸铵产品达到了GB/T3460-2007产品标准。与现有镍钼矿的处理工艺相比,该工艺具有有价金属回收率高、环境友好以及生产成本低的特点。主要研究结果如下:
     研究了富钼精矿空气氧化浸出过程的动力学。结果表明:钼浸出过程分为两个阶段,反应初期20min内,钼浸出率迅速达到20%左右,反应速度受温度及氢氧化钠浓度的影响较小;第二阶段钼浸出速度随反应温度及氢氧化钠浓度的增大而加快,且在不同的温度范围内体现出不同的动力学特征:反应温度低于60℃时,浸出过程受化学反应控制,表观活化能为62.2kJ/mol,表观反应级数为0.73;当温度大于60℃时,浸出过程受扩散和化学反应混合控制,反应表观活化能为22.3kJ/mol,表观反应级数为0.64。
     在此基础上进行了浸出工艺研究。浸出过程中空气高度弥散加强了氧的溶解以及扩散传质,强化了钼的浸出,精矿中绝大部分钼进入浸出液中。空气氧化浸出过程中,增大氢氧化钠用量、温度、浸出时间、空气流量及液固比,有利于钼和硒的浸出。针对精矿中部分晶化程度高的硫化钼难以被空气氧化浸出(渣中钼含量仍为1%左右)的问题,将这部分残留钼的提取和后续提镍过程有机结合,在氯酸钠氧化时实现同时浸出。最佳工艺条件下,镍和钼的总浸出率分别为96.7%和98.3%,硒的浸出率约为50%。
     富钼精矿浸出液钼浓度较低([Mo]=5~10g/L),且含有大量硫的低价氧化物(SO32-, S2O32-)及砷、磷等杂质离子。采用强碱性树脂或萃取剂从碱性浸出液中吸附钼时,杂质离子与钼酸根竞争吸附,树脂工作交换容量很低。根据钼的溶液化学特点,将浸出液调至弱酸性,以使钼聚合成与有机相亲和力较大的多酸离子。但研究发现钼会进一步被硫的低价氧化物还原成为钼蓝,相应采用了有利于钼蓝扩散传质的萃取工艺处理,使钼蓝优先被叔胺N-235萃取,而其他离子则留在萃余液中,实现了钼的选择性分离。当萃取剂浓度为15v%、母液pH值为3、相比O/A为1/4、母液中钼浓度为5.72gm,钼萃取率高达99.43%。负载有机相用15m%的氨水反萃,得到含钼125.8gm的钼酸铵溶液。研究还发现,浸出液酸化时,溶液中的Se032-易被硫的低价氧化物还原为单质硒而析出。当溶液中硒浓度为0.15g/L、pH值为2.5、室温下反应30分钟,硒还原率为79.6%。
     溶剂萃取时,砷与钼形成杂多蓝一起进入有机相中,导致氨水反萃得到的钼酸铵溶液中砷等杂质含量较高。针对钼的氨性溶液的特点,采用铵镁盐沉淀法从溶液中除砷。当溶液中钼浓度为96.8gm、砷浓度为8.75gm,氯化镁用量为理论量的1.2倍、室温下反应30min,溶液中残留的砷和镁的浓度分别为0.046gm和0.52g/L,钼损失率为0.34%。
     针对钼酸铵溶液除砷后残留镁,容易导致钼酸铵产品中镁含量超标的问题,采用724型阳离子树脂吸附除镁。在接触时间为30min时,1倍体积的树脂可以处理13.2倍体积的料液,树脂的工作交换容量为6.58mg/mli:湿树脂)。负镁树脂可用5倍树脂体积的2mol/L的盐酸完全解析镁。
     除杂后的钼酸铵溶液通过酸沉结晶法制备钼酸铵产品,四钼酸铵结晶率为95.6%。钼酸铵产品达到了GB/T3460-2007-MSA-2标准。酸沉结晶母液钼浓度约3g/L,可返回溶剂萃取过程回收钼。
Ni-Mo ore is a polymetallic mineral resource which is uniquely in China. Ni-Mo ore contains huge amounts of molybdenum and nickel with high economic value. Since the grades of Ni and Mo in the ore are relatively low, it causes higher costs of present metallurgical processes.
     In Central South University, scholars focused on the combined process of beneficiation and hydrometallurgy of Ni-Mo ore and realized the flotation of the ore successfully. After flotation, the grade of Mo and Ni was enriched and reached3times raw Ni-Mo ore. Besides, molybdenum oxide and molybdenum sulfide can be separated smoothly. In the Ni-Mo ore, about80%molybdenum entered into the molybdenum concentrate in the form molybdenum sulfide, while the rest of molybdenum went into talling being as molybdenum oxide. In this study, with the molybdenum concentrate as a raw material, a novel hydrometallurgical process was developed to prepare ammonium molybdate tetrahydrate.
     The research mainly focused on joint leaching of molybdenum concentrate, molybdenum extraction from the leaching solution with solvent extraction, arsenic removal from ammonium molybdate solution by chemical precipitation with magnesium salt, magnesium removal from the ammonium molybdate solution by ion exchange and crystallization of ammonium tetramolybdate by acidification. The final product meets the standard of GB/T3460-2007(ammonium polymolybdate). Compared with current treatment processes of Ni-Mo ore, this technology has lots of advantages such as higher valuable metal recovery, environmental-friendliness and lower production cost. Main results are as follows:
     Kinetics of atmospheric leaching molybdenum from the concentrate by air oxidation was studied. The results show that the leaching process consists of the following two stages. Within the initial20minutes, the leaching ratio of molybdenum reached to20%quickly. The leaching rate was not influenced obviously by temperature and the concentration of sodium hydroxide. At the second stage, the leaching rate of Molybdenum increased gradually with the increase of temperature and sodium hydroxide concentration. Moreover, different kinetic charcateristics of the leaching process was presented at different temperature ranges. When the temperature was below60℃, the leaching process was controlled by chemical reaction with the apparent activation energy of62.22kJ/mol and apparent reaction order of0.73. While the temperature was above60℃, the leaching process belongs to hybrid control with apparent activation energy of62.22kJ/mol and apparent reaction order of0.73.
     Based on the kinetic of leaching process, different condition experiments were carried out. The results show that the leaching rate of molybdenum was accelerated by means of high distribution of air to intensify dissolution of oxygen and diffusion of the leaching system, and most of molybdenum in the ore entered into the leaching solution. The results show that the increase of alkali dosage, temperature, time, gas flow rate and liquid-solid ratio is beneficial to the leaching of molybdenum and selenium in the process. As the molybdenum concentrate contains parts of high crystallized molybdenum sulfide, which is difficult to be oxidized by air, the content of molybdenum in leaching residue will exceed1%even though excessive dosage of sodium hydroxide was provided. In order to improve molybdenum recovery, the leaching residue was leached in the sulphuric solution by adding sodium chlorate to extract molybdenum and nickel simultaneously. Under optimum experimental conditions, the total leaching ratio of Mo, Ni and Se were98.3%,96.7%and50%, respectively.
     In the leaching solution of molybdenum concentrate, the content of Mo is low while it contains much low valence sulfur oxides (SO32-, S2O32-) as well as As and P. When extract molybdenum from the leaching solution with basic resin or extractant, competitive adsorption of MoO42-and impurities result in low operating exchange capacity. According to the chemical characteristic of molybdenum, by acidizing the leaching solution,Mo042-can transform into heptamolybdateand which has high affinity to organic phaseand can bereduced to molybdenum by low valence sulfur oxides. When tertiary amine N-235was used the extractant of molybdenum, molybdenum blue was extracted preferentially and other impurities remained in the raffinate, so selective separation of molybdenum was achieved. In the process of solvent extraction, the extraction efficiency of Mo was99.43%on the condition of molybdenum concentration of5.72g/L, pH3, time2min and O/A ratio1:4with15v%N-235. The loaded organic phase was stripped with15m%ammonia solution. The concentration of Mo in the strip liquor was125.82g/L. In addition, SeO32-was apt to be reduced by low valence sulphur oxide to element selenium in the acidification process of leaching solution. Under the optimum conditions:pH2.5, temperature297K, time30min, the reduction ratio of selenium reached79.6%.
     In solvent extraction process, hteropoly-molybdenum blue formed by arsenic and molybdenum entered into the organic phase, which was stripped with ammonia solution. Thus, arsenic concentration in the strip liquor was high. It was apt to remove arsenic from the ammonium molybdate solution by chemical precipitation with magnesium due to high ammonium concentration. Experimental results show that when molybdenum concentration and arsenic concentration in the ammonium molybdate solution were96.8g/L and8.75g/L, respectively, the dosage of magnesium chloride was1.2times of stoichiometric quantity, the reaction temperature was297K and time was30min, the residual arsenic concentration and magnesium concentration were0.046g/L and0.52g/L respectively, and the lost ratio of Mo was0.34%.
     Since the residual magnesium in the ammonium molybdate solution can result in magnesium content over standard in the ammonium tetramolybdate product, the excess magnesium was removed by ion exchange with cationic resin724. Experimental results show that the operating adsorption capacity of the resin was6.58mg/ml (wet resin) until the volume ratio of effluent/resin was around13.2when magnesium concentration was0.5g/L, pH value was9.2and contact time was30min. The loaded resin can be stripped with2mol/L HC1with5times the volume of loaded resin.
     Ammonium molybdate tetrahydrate was obtained by acidic precipitation and crystallization after remove impurities from ammonium molybdate solution. Its crystallization ratio is95.6%. The final product conforms to the standard of GB/T3460-2007-MSA-2. The Mo concentration in the mother liquor after acidic precipitation and crystallization is around3g/L, and the mother liquor can be return to the process of solvent extraction for Mo recovery.
引文
[1]刘军民.我国钼资源现状及对策[J].中国有色金属,2009,(4):60-61.
    [2]张启修,赵秦生.钨钼冶金学[M].北京:冶金工业出版社,2005:59-71.
    [3]吴爱详,周勃.我国钼资源现状与可持续发展[J]’中国钼业,1998,22(4):11-13.
    [4]古德生.对中国矿业可持续发展问题的思考[J].世界采矿快报,1997,(2):3-5.
    [5]张文钲,徐秋生.我国钼资源开发现状与发展趋势[J].中国钼业,2006,(9):1-4.
    [6]孙宏华.中国有色金属矿产资源的开发利用必须走可持续发展之路[J].有色金属(矿山部分),1999,(3):2-4.
    [7]许洁瑜,杨刘晓,王俊龙.中国钼资源利用与可持续发展战略研究[J].中国铝业,2005,29(4):3-9.
    [8]郭朝洪,皇文俊,崔养权,等.我国钼矿资源及开发[J].中国钼业,1997,21(2、3):40-44.
    [9]陈甲斌.国内外镍资源开发现状[J].中国金属通报,2008,(47):14-15.
    [10]陶炳昆,殷先明.我国镍资源形势及其开发对策[J].中国地质经济,1991,4(10):13-16.
    [11]金铭良.中国镍矿资源及其综合利用[J].中国矿业,1997,6(2):12-17.
    [12]袁湘沂.浅说我国镍矿产资源[J].中国金属通报,2005,(45):10-12.
    [13]张守卫,谢曙斌,徐爱东.镍的资源、生产及消费状况[J].世界有色金属,2003,(11):9-14.
    [14]余存烨.节镍不锈钢的开发与展望[J].化工设备与管道,2008,45(2):4-8.
    [15]杨长祥,辜大志,张海军,等.镍矿资源深部开采面临的技术问题及对策[J].采矿技术,2008,(4):34-36.
    [16]刘世友.镍工业资源应用与发展[J].有色矿冶,1998,14(6):54-58.
    [17]James B M, Raymond M C J, Richard I G, et al. Cyclic variations of sulfur isotopes in Cambrian stratabound Ni-Mo-(PGE-Au) ores of southern China[J]. Geochimica et Cosmochimica Acta,1994,58(7):1813-1823.
    [18]Orberger B, Vymazalova A, Wagner C, et al. Biogenic origin of intergrown Mo-sulphide-and carbonaceous matter in Lower Cambrian black shales (Zunyi Formation, southern China)[J]. Chemical Geology,2007, (238):213-231.
    [19]Jiang S Y, Yang J H, Ling H F, et al. Extreme enrichment of polymetallic Ni-Mo-PGE-Au in Lower Cambrian black shales of South China:An Os isotope and PGE geochemical investigation[J]. Palaeogeography, Palaeoclimatology, Palaeoecology,2007,254:217-228.
    [20]Kribek B, Sykorova I, Pasava I, et al. Organic geochemistry and petrology of barren and Mo-Ni-PGE mineralized marine black shales of the Lower Cambrian Niutitang Formation (Southern China) [J]. International Journal of Coal Geology,2007, (72):240-256.
    [21]Orberger B, Vymazalova A, Wagner C, et al. Biogenic origin of intergrown Mo-sulphide-and carbonaceous matter in Lower Cambrian black shales (Zunyi Formation, southern China)[J].2007, (238):213-231.
    [22]Stow D A V, Hue A Y, Bertrand P. Depositional processes of black shales in deep water[J]. Marine and Petroleum Geology,2001,18(4):491-498.
    [23]Fan D, Zhang T, Ye J, et al. Geochemistry and origin of tin-polymetallic sulfide deposits hosted by the Devonian black shale series near Dachang, Guangxi, China[J]. Ore Geology Reviews,2004, (24):103-120.
    [24]汪永清.湘西北地区下寒武统钼镍矿地质特征及找矿远景[J].西部探矿工程,2007,9:136-137.
    [25]Chen N S, Coveney R M J. Ores in metals-rich shales of Southern Ch ina[J]. U S. Geo logical Survey Circular,1989,1037:7-8.
    [26]Coveney R M J, Chen N S. Ni-Mo-PGE-A u rich o res in Chinese black shales and speculations on possible analogues in the United States[J]. Mineralium Deposita, 1991, (26):83-88.
    [27]罗卫,戴塔根.湘西北下寒武统黑色岩系中贵金属镍-钼-钒矿床的有机成矿作用[J].矿产与地质,2007,21(5):504-508.
    [28]梁有彬,朱文凤.湘西北天门山地区镍钼矿床铂族元素富集特征及成因探讨[J].地质找矿论丛,1995,10(1):55-65.
    [29]刘国忠,申旭辉.张家界地区寒武系底部钼、镍多元素富集层含矿岩系特征及成矿条件浅析[J].国土资源导刊,2007,4(4):55-56.
    [30]李有禹,陈淑珍,翟玉琛,等.湘西北地区镍钼多金属喷气沉积矿床的矿液上升通道和沉积盆地划分初探[J].湘潭矿业学院学报,1993,8(3):15-21.
    [31]范德廉,杨秀珍,王莲芳,等.某地下寒武统含镍钼多元素黑色页岩系的岩石学及地球化学特点[J].地球化学,1973,(3):144-164.
    [32]Steiner M, Wallis E, Erdtmann B D, et al. Submarine-hydrothermal exhalative ore layers in black shales from South China and associated fossils-insights into a Lower Cambrian facies and bio-evolution[J]. PALAEOS,2001,169:165-191.
    [33]Fan D, Yang R, Huang Z. The lower Cambrian black shale series and the iridium anomaly in south China[M]. In:eds. Beijing:Science Press,1984.215-224
    [34]曹双林,潘家永,马东升.湘西北早寒武世黑色岩系微量元素地球化学特征[J].矿物学报,2004,24(4):415-418.
    [35]陈兰,夏敏全,万云,等.黑色页岩与大洋缺氧事件研究进展[J].重庆科技学院学报,2007,9(4):1-4.
    [36]Berry W B N, Wilde P. Progressive Ventilation of the Ocean-An Explanation for the Distribution of the Lower Plalacozoic Black Shales[J]. Amer. Jour. Sci.,1978,278: 257-275.
    [37]Leggett J K. British Lower Palaeozoic Black Shales and Their Palaeoceanographic Significence[J]. Jour. Geol. Soc,1980,137:139-156.
    [38]Chen L, Yi H S, Zhong H, et al. The Calcareous Nannofossils Record and Its Geological Significance in the Jurassic Black Shales from the Qiangtang Basin, Northern Tibetan Plateau [J]. Progress in Natural Science,2006,16:264-271.
    [39]Twenhalef W H. Environments of Orgin of Black Shales[J]. Amer. Assoc. Petro. Geol. Bull,1939,23:1178-1198.
    [40]Jin Y G, Wang Y, Wang W. Pattern of Marine Mass Extinction Near the Permian-Triassic Boundary in South China[J]. Science,2000,289:432-436.
    [41]陈丽辉,孙际茂,鲍振襄,等.湘西北黑色岩系中镍钼钒多金属矿床[J].西部探矿工程,2008,7:145-148.
    [42]肖启云,李胜荣,蔡克勤.湘黔下寒武统黑色岩系不同矿物组合中的铂族元素特征[J].中国地质,2006,33(5):1083-1091.
    [43]吴朝东,曾凡刚,雷家锦,等.湘西黑色页岩多种形态硫的分离与同位素指示意义[J].科学通报,1999,44(6):662-665.
    [44]Passier H F, Middelburg J J, Lange G J, et al. Pyrite contents, microtextures, and sulfur isotopes in relation to formation of the youngest eastern Mediterranean sapropel[J]. Geology (Boulder),1997,25(6):519-522.
    [45]杨瑞东,赵元龙,郭庆军.贵州早寒武世早期黑色页岩中藻类及其环境意义[J].古生物学报,1999,38:145-156.
    [46]魏怀瑞,杨瑞东,鲍淼.贵州早寒武世黑色页岩地球化学特征及其意义[J].贵州大学学报,2006,23(4):356-360.
    [47]彭军,夏文杰,伊海生.湘西晚前寒武纪层状硅质岩硅氧同位素组成及成因分析[J].地质论评,1995,41(1):34-41.
    [48]林贵生.贵州遵义松林钼镍矿床地质特征及找矿标志[J].昆明冶金高等专科学校学报,2007,23(3):20-23.
    [49]罗泰义.遵义牛蹄塘组黑色岩系中多元素富集层的主要矿化特征[J].矿物岩石,2003,23(4):296-302.
    [50]张光弟,李九玲,熊群尧,等.贵州遵义黑色页岩铂族金属富集特点及富集模式[J].矿床地质,2002,21(4):377-385.
    [51]毛景文,张光弟,杜安道,等.遵义黄家湾镍钼铂族元素矿床地质、地球化学和Re-Os同位素年龄测定[J].地质学报,2001,75(2):234-242.
    [52]曾明果.遵义黄家湾下寒武统底部Mo-Ni-PGE矿中铂族元素赋存形态分析及成因意义[J].贵州地质,2007,24:147-150.
    [53]鲍振襄,万榕江,包觉敏.湘西北镍钼矿床成矿特征与成因[J].湖北地矿,2001,15(1):14-21.
    [54]鲍振襄.湖南西北部黑色岩系中的贵金属矿化[J].矿物岩石,1997,17(2):70-77.
    [55]鲍振襄.湖南黑色岩系中的钒矿床[J].矿产与地质,1992,6(4):275-279.
    [56]朱笑青,王中刚,陈南生.镍钼在黑色页岩系富集成因的实验研究[J].大地构造与成矿学,1996,20(4):368-374.
    [57]潘家永,马东升,夏菲,等.湘西北下寒武统镍-钼多金属富集层镍与钼的赋存状态[J].矿物学报,2005,25(3):283-287.
    [58]Mao J W, Lehmann B, Du A D, et al. Re-Os dating of polymetallic Ni-Mo-PGE-Au mineralization in Lower Cambrian black shales of South China and its geological significance [J]. Econ Geol,2002,97:1051-1061.
    [59]Lott D A, Coveney R M, Murowchick J B, et al. Sedimentary exhalative Nickel-Molybdenum ores in south China[J]. Econ Geol,1999,94:1051-1066.
    [60]Kao L S, Peacor D R, Coveney R M, et al. A C/MoS2 mixed-layer phase(MoSC) occurring in metalliferous black shales from southern China, and new data on jordisite[J]. American Mineralogist,2001,86:852-861.
    [61]Nijennhuis I A, Bosch H J, Damste J S, et al. Organic matter and trace element rich sapropels and black shales:a geochemical comparison[J]. Earth and planetary science letters,1999,169(3-4):277-290.
    [62]叶杰,范德廉.黑色岩系型矿床的形成作用及其在我国的产出特征[J].矿物岩石地球化学通报,2000,19(2):95-102.
    [63]Brumsack H J. The trace metal content of recent organic carbon-rich sediments: Implications for Cretaceous black shale formation[J]. Palaeogeography, Palaeoclimatology, Palaeoecology,2006,232(2-4):344-361.
    [64]Wilde P, Lyons T W, Mary S Q. Organic carbon proxies in black shales: molybdenum[J]. Chemical geology,2004,206(3-4):167-176.
    [65]陈代雄,唐美莲,薛伟,等.高碳镍钼矿可选性试验研究[J].湖南有色金属,2006,22(6):9-11.
    [66]Zhu W Y, Young L Y, Yee N, et al. Sulfide-driven arsenic mobilization from arsenopyrite and black shale pyrite[J]. Geochimica et Cosmochimica Acta,2008, 72(21):5243-5250.
    [67]Shao Y J, Zhao H X, Chen Y Q, et al. Trace and rare earth element geochemistry of phosphate nodules from the lower Cambrian black shale sequence in the Mufu Mountain of Nanjing, Jiangsu province, China[J]. Chemical Geology,2007, 244(3-4):584-604.
    [68]Bloxam T W. Uranium, thorium, potassium and carbon in some black shales from the South Wales Coalfield[J]. Geochimica et Cosmochimica Acta,1964,28(7): 1177-1185.
    [69]张爱云,伍大茂,郭丽娜,等.海相黑色页岩建造地球化学与成矿意义[M].北京:科学出版社,1987.
    [70]陈益平,潘家永,夏菲,等.华南下寒武统镍钼矿层中铜铅锌矿物的发现及意义[J].华东理工学院学报,2006,29(1):32-37.
    [71]Piper D Z, Perkins R B. A modern vs. Permian black shale—the hydrography, primary productivity, and water-column chemistry of deposition[J]. Chemical Geology,2004,206(3-4):177-197.
    [72]Helz G R, Charnock J M, Mosselmans J F W, et al. Mechanism of molybdenum removal from the sea and its concentration in black shales:EXAFS evidence[J]. Geochimica et Cosmochimica Acta,1996,60(19):3631-3642.
    [73]Brumsack H J. The trace metal content of recent organic carbon-rich sediments: Implications for Cretaceous black shale formation[J]. Palaeogeography Palaeoclimatology, Palaeoecology,2006,232(2-4):344-361.
    [74]Raiswell R, Berner R A. Pyrite Formation in Euxinic and Semi-euxinic Sediments[J]. Amer. J. Sci.,1985,285:710-724.
    [75]何旭初.一种选冶结合的镍铝矿镍、钼分离方法[P].中国专利:1134865A.1996-11-06.
    [76]夏文堂,任正德.难选镍钼矿的预处理试验研究[J].矿冶,2010,19(2):34-37.
    [77]刘建东,孙伟,苏建芳,等.Blashale promoter捕收剂浮选黑色岩系镍铝矿的试验研究[J].金属矿山,2010,1:90-98.
    [78]皮关华,徐徽,陈白珍,等.从难选镍钼矿中回收钼的研究[J].湖南有色金属,2007,23(1):9-12.
    [79]Wang M Y, Wang X W, Liu W L. A novel technology of molybdenum extraction from low grade Ni-Mo ore[J]. Hydrometallurgy,2009, (97):126-130.
    [80]秦纯.用碳酸钠转化处理黑色页岩分离钼镍的工艺[P].中国专利:1177012A.1998-03-25.
    [81]王志坚.硫酸化焙烧处理镍钼矿的工艺研究[J].湖南有色金属,2009,25(2):25-27.
    [82]伍宏培,冯光芬.钼镍矿的浓酸熟化浸出解聚溶剂萃取工艺[P].中国专利:1177012A.1989-07-12.
    [83]Hou X C, Xiao L S, Gao C J, al et. Kinetics of leaching selenium from Ni-Mo ore smelter dust using sodium chlorate in a mixture of hydrochloric and sulfuric acids[J]. Hydrometallurgy,2010, (104):76-80.
    [84]李青刚,肖连生,张贵清,等.镍钼矿生产钼酸铵全湿法生产工艺及实践[P].第五届全国稀有金属学术交流会.湖南长沙,2006:278-284.
    [85]肖朝龙,肖连生,龚柏藩,等.镍铝矿全湿法浸出工艺研究[J].稀有金属与硬质合金,2010,38(4):1-5.
    [86]邹贵田.用稀酸从钼镍共生矿提取钼和镍盐的方法[P].中国专利:1267739A,2000-09-27.
    [87]邹贵田.用弱碱从铝镍共生矿提取钼和镍盐的方法[P].中国专利:1267740A,2000-09-27.[J].
    [88]李青刚.从镍铝矿中制取钼酸铵的研究[D]:[博士学位论文].长沙:中南大学,2010:95-100.
    [89]陈家武,高从增,张启修,等.硫化叶茵对镍钼硫化矿的浸出作用[J].过程工程学报,2009,9(2):257-263.
    [90]向铁根.钼冶金[M].长沙:中南大学出版社,2002:117-123.
    [91]Boer J H D. The Dynamical Character of Adsorption[M]. London:Oxford Univ. Press,1968:214-222.
    [92]Masel R I. Principles of Adsorption and Reaction on Solid Surfaces[M]. New York:Wiley,1996:235-248.
    [93]Dullien F A L. Porous Media:Fluid Transport and Pore Structure[M]. New York: Academic Press,1979:142-149.
    [94]Sergio L C F, Heloysa M C A, Hilda C D S. Characterization and determination of the thermodynamic and kinetic properties of the adsorption of the molybdenum(Ⅵ)-calmagite complex onto active carbon[J]. Journal of Colloid and Interface Science,2004, (270):276-280.
    [95]李洪桂.离子交换技术在铝冶金中的应用[J].中国钼业,1994,18(3):1-6.
    [96]何焕杰,王永红.中国化学会第六届反应性高分子学术讨论会论文预印集[M].西安:1990:131.
    [97]杨子超,王秀山,宋瑞萍,等.离子交换提取钼[J].稀有金属,1988,12(1):6-9.
    [98]陈兴龙,肖连生,徐勃,等.从废石油催化剂中回收钒和钼的试验研究[J].矿冶工程,2004,24(3):47-49.
    [99]孙应.石煤提钒后液中钼的回收[J].有色金属(冶炼部分),2009,(3):11-12.
    [100]Zhao Z W, Li J T, Cao C F, et al. Recovery and purification of molybdenum from Ni-Mo ore by direct air oxidation in alkaline solution[J]. Hydrometallurgy,2010, (103):68-73.
    [101]Henry P, Lierde A V. Selective separation of vanadium from molybdenum by electrochemical ion exchange[J]. Hydrometallurgy,1998, (48):73-80.
    [102]张晓东,成肇安.用Swc树脂提取钼的研究[J].中国钼业,1997,21(1):26-27.
    [103]Xiao L S, Zhang Q X, Gong B F, et al. separation of molybdenum from tungsten solution by a combination of moving packed bed and fluid bed ion-exchange techniques [J]. international journal of Refractory Metals and Hare materials,2001, (19):145-148.
    [104]邹平,赵有才,杜强,等.低品位辉钼矿回收钼的新工艺[P].中国专利:02113699.8,2010-12-25.
    [105]刘红召,曹耀华,高照国.辉钼矿焙烧淋洗液中铼的富集[J].有色金属(冶炼部分),2009,(6):39-42.
    [106]朱屯.萃取与离子交换[M].北京:冶金工业出版社,2005:22-30.
    [107]Parhi P K, Park K H, Kim H I, et al. Recovery of molybdenum from the sea nodule leach liquor by solvent extraction using Alamine 304-I [J]. Hydrometallurgy, 2011,105(1-6):195-200.
    [108]周新文,刘东新,唐丽霞.Alamine304-1从酸性废水中萃取钼的研究[J].中国钼业,2007,31(5):45-47.
    [109]Chen Y, Feng Q M, Shao Y H, et al. Investigations on the extraction of molybdenum and vanadium from ammonia leaching residue of spent catalyst[J]. Int. J. Miner. Process,2006, (79):42-48.
    [110]徐徽,皮关华,陈白珍,等.用溶剂萃取法从碱浸液中回收钼的研究[J].湖南师范大学自然科学学报,2007,30(1):43-46.
    [111]唐忠阳,李洪桂,霍广生.高压氧分解-萃取法回收铜钼中矿中的钼[J].稀有金属与硬质合金,2003,31(1):1-3.
    [112]李循勋,文星照.用萃取法从酸沉母液中回收钼[J].中国钼业,1995,19(6):11-13.
    [113]Gerhardt N I, Palant A A, Dungan S R. Extraction of tungsten (Ⅵ), molybdenum (Ⅵ) and rhenium (Ⅶ) by diisododecylamine[J]. Hydrometallurgy, 2000,(55):1-15.
    [114]Nekovar P, Schrotterova D. Extraction of V(Ⅴ), Mo(Ⅵ) and W(Ⅵ) polynuclear species by primene JMT[J]. Chemical Engineering Journal,2000, (79): 229-233.
    [115]李建,刘建.磷类萃取剂萃取铝(Ⅵ)的性能研究[J].湿法冶金,2007,26(3):146-149.
    [116]Valenzuela F R, Andrade J P, Sapag J, al et. The solvent separation of molybdenum and copper from acid leach residual solution of Chilean molybdenite concentrate[J]. Minerals Engineering,1995,8(8):893-904.
    [117]Saberyan K, Maragheh M G, Ashtari P. Liquid-liquid extraction of molybdenum(Ⅵ) from acidic media with Cyanex-301[J]. Minerals Engineering,2003, 16:391-393.
    [118]Kyung H P, Kim H I, Parhia P K. Recovery of molybdenum from spent catalyst leach solutions by solvent extraction with LIX 84-I[J]. Separation and Purification Technology,2010,74:294-299.
    [119]Taichi Sato.用TBP和TOPO从酸性水溶液中液一液萃取钼(Ⅵ)[J].国外稀有金属,1989:21-27.
    [120]成宝海,肖超,肖连生.溶剂萃取法从酸性氯化浸出液中提取钼[J].中国钼业,2010,34(1):29-31.
    [121]张邦劳,张听,杨祖培.二(2-已基己基)亚砜萃取钼的机理研究[J].陕西师大学报,1995,23(2):51-54.
    [122]莫鼎成.冶金动力学[M].长沙:中南工业大学出版社,1987:283-375.
    [123]赵中伟.含金硫化矿的机械化学及其浸出工艺研究[D]:[博士学位论文].长沙:中南工业大学,1995:21-24.
    [124]李洪桂.钨矿物原料碱分解的基础理论及新工艺[M].长沙:中南工业大学出版社,1997.243-244.
    [125]Desmond T. Oxygen solubility modeling in inorganic solutions:concentration, temperature and pressure effects[J]. Hydrometallurgy,1998,50(3):279-296.
    [126]Lin T J, Tsuchiya K, Fan L S. Bubble flow characteristics in bubble columns at elevated pressure and temperature [J]. AIChE J,1998,44(3):545-560.
    [127]Marcel P, Antoine P. Potential-pH equilibrium diagrams for the system S-H2O from 25 to 150 ℃:Influence of access of oxygen in sulphide solutions[J]. Geochimica et Cosmochimica Acta,1992,56(8):3157-3178.
    [128]Dutrizac J E, Chen T T. The behaviour of phosphate during jarosite precipitation[J]. Hydrometallurgy,2010,102:55-65.
    [129]陈家镛,于淑秋,伍志春.湿法冶金中铁的分离与利用[M].北京:冶金工业出版社,1991:93-129.
    [130]Kholmogorov A G, Kononova O N, Panchenko O N. A review of the use of ion exchange for molybdenum recovery in Russia[J]. Canadian Metallurgical Quarterly, 2004,43(3):297-304.
    [131]张国维,赵桂荣,刘蓉.钼在铀湿法冶金过程中的行为-钼酸在水溶液中的状态[J].铀矿冶,1990,9(1):23-29.
    [132]刘大学.辉钼矿湿法处理新工艺研究[D]:[硕士学位论文].长沙:中南大学,2009:38-40.
    [133]聂长明,范明舫.有机同系物性质的递变规律研究[J].有机化学,2000,20(1):122-130.
    [134]Dean J A. Langep's Handbook of Chemistry[M].15th edition. New York:Me Graw-Hill professional,1999:82-116.
    [135]Warmadewanthi, Liu J C. Recovery of phosphate and ammonium as struvite from semiconductor wastewater[J]. Separation and Purification Technology,2009,64: 368-373.
    [136]林才顺.氟化钠去除钙镁工艺的影响因素分析与控制[J].湖南冶金,2003,31(4):36-38.
    [137]刘洪刚,朱国才.溶剂萃取法脱除锰矿浸出液中钙镁的研究[J].中国锰业,2008,26(1):34-37.
    [138]Huggins D K, Queneau P B, Ziegler R C, et al. Ion exchange purification of ammonium molybdate solutions[J]. Hydrometallurgy,1980,6:63-73.
    [139]赵卓,李小斌,赵清杰.树脂离子交换提取拜耳法流程中钒的动力学[J]. 过程工程学报,2009,9(3):462-467.
    [140]陶祖贻.四种常用的离子交换动力学模型及速度方程[J].离子交换与吸附,1990,6(3):232-237.
    [141]Fleming C A, Nicol M J. A comparative study of kinetic models for the extraction of uranium by strong-base anion-exchange resins [J]. J S Afr Inst Min Metall,1980,2:89-99.
    [142]赵中伟.从钨酸盐溶液中除钒的方法[P].中国专利:200910044272.0,2009-09-04.2009.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700