用户名: 密码: 验证码:
转炉高效提钒相关技术基础研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
钒是重要的战略物资,被称为“现代工业的味精”,广泛应用于钢铁工业、化学工业、航空航天工业、轻纺工业和医学等领域。钒在自然界中主要赋存在钒铁磁铁矿中,我国攀枝花地区拥有丰富的钒钛磁铁矿资源。而从钒铁磁铁矿中回收钒资源的常用工艺是还原钒铁磁铁矿获得含钒铁水,接着含钒铁水中的钒氧化进入渣中,之后通过湿法工艺从钒渣中提取V_2O_5。从含钒铁水中提取钒的方法有摇包法、铁水包、雾化法、转炉法。我国和俄罗斯都采用转炉提钒工艺。经过多年努力,攀钢在钒资源的开发和利用方面取得了不错的成绩,但现工艺流程下钒的回收率小于其它国家,钒渣品位、钒氧化率等均有待提高。另外,针对铁水中[V]含量约为0.3%的转炉提钒研究报道较少。因此有必要摸清低钒铁水提钒机理及影响因素。自动控制模型在转炉炼钢上已经成功应用,但是由于冶炼时间短,提钒转炉没有副枪、烟气检测设备,转炉提钒控制处于静态控制状态。而我国的提钒操作仍采用人工手动操作,完全凭借操作工人的经验来控制,这导致半钢、钒渣质量不稳定。因此开发一款适用于我国特色的提钒控制模型是适应时代要求的。针对我国转炉提钒工艺上存在的问题,开展了基础研究,得到以下结论:
     ①转炉提钒热力学研究,发现铁水中的钒主要被氧化成V~(3+),也有少部分被氧化成V~(2+);钒渣中的铁有Fe~(2+)、Fe~(3+)两种形式。渣中FeO的活度和活度系数随渣中MnO、FeO含量的增加而增加,随渣中V_2O_3、SiO_2、TiO_2含量的增加而减小,其值分别在10~(-1)和100的数量级上,而渣中V_2O_3的活度及活度系数在同样条件下的变化趋势则与FeO相反,其值分别在10~(-2)和10~(-1)的数量级。
     ②转炉提钒动力学研究,发现铁水中Si对C和V的氧化均由较强的抑制作用,铁水初始Si含量升高将使得铁水中C和V的氧化速率明显降低,并导致终点铁水V含量高;铁水初始V含量增加将使其自身被氧化减少的速率加快,同时对铁水中C的氧化有微小的抑制作用使其减少速率减慢,并且终点铁水V含量将升高;温度升高使得C被氧化的速率大幅度加快,同时使铁水中V被氧化速率明显减缓;出渣中FeO的快速生成可以促进C、V氧化。
     ③提钒用冷却剂的冷却效率研究发现采用DSC来研究固体高温时的比热是可行的,且结果比较准确。冷却剂的冷却能力顺序为:冷固球团>绝废渣>钒渣>生铁。冷却剂在不同终点温度下的冷却效应可以为转炉提钒工艺的优化提供指导。
     ④无烟煤的理论分析研究指出,无烟煤加入时间不同具有不同的功用:前期加入可以提高半钢温度,同时达到增碳的目的;后期加入无烟煤则可以改善钒渣TFe含量。但是两种加入方式都会使得半钢残V含量略高。数据统计分析发现,1t脱硫铁中加入1kg无烟煤可以增碳0.03%,提温7.35℃;而普通铁则可以增碳0.025%,提温4.83℃。
     ⑤提钒转炉物料平衡与热平衡研究指出,物料平衡测定结果误差为-0.86%~2.88%,热平衡测定结果误差为-3.12%~3.94%。研究发现留渣操作对提钒的影响很大,随着留渣次数的增加,吹炼损失减少。
     ⑥采用神经网络法,结合前面对提钒工艺相关参数的研究,构建了转炉提钒控制模型,包括冷却剂模型、供氧模型、终点预测模型三个字模型。模型编程语言是C++。最后建立了仿真模型,模型训练结果说明该模型基本满足提钒冶炼控制要求。
Vanadium is an important strategic materials, known as the "modern industrialMSG”, which is widely used in iron and steel industry, chemical industry, aerospaceindustry, textile industry and medical fields. Vanadium Fu exist in nature mainlyvanadium iron magnetite in the Panzhihua region in China has rich resources ofvanadium and titanium magnetite.Vanadium resources commonly used process is torestore the vanadium iron magnetite containing vanadium hot metal recovery from theferro-vanadium magnetite, and then containing vanadium oxide in vanadium hot metalinto the slag in the extraction of V_2O_5from vanadium slag, followed by the wet process.China and Russia have adopted converter vanadium process. After years of efforts,Panzhihua Iron and vanadium resources development and utilization achieved goodresults, but now process the vanadium recovery rate of less than others’, the grade ofvanadium slag, vanadium oxidation rate and so needs to be improved. In addition, forthe molten iron content of about0.3%[V] of the converter vanadium few studies.Therefore it is necessary to find out the low vanadium hot metal mention vanadiummechanism and influencing factors. Automatic control model has been successfullyapplied on a BOF steelmaking, but due to the short duration of heat, to mentionvanadium converter Vice-gun, smoke detection equipment, the converter vanadiumcontrol in a static control. China's vanadium extraction operation still use the manualoperation, by virtue of the experience of operating workers control, which led to thesemi-steel, vanadium slag unstable quality. Develop a Chinese characteristics vanadiumcontrol model to meet the requirements of the times. Problems in our country convertervanadium process to carry out basic research, the following conclusions:
     ①Converter vanadium thermodynamic study found that the hot metal vanadiumis oxidized to V~(3+), a small part is oxidized to V~(2+); vanadium slag in the iron Fe~(2+)andFe~(3+)in two forms. Activity and the activity coefficient of FeO in the slag with the slag,MnO, FeO content increases with increasing, with the residue with V_2O_3, SiO_2and TiO_2content increases and decreases, and its value, respectively,10~(-1) and100orders ofmagnitude, the trend of the activity and the activity coefficient of V_2O_3in the slag underthe same conditions and FeO values were10~(-2)and10~(-1)of magnitude.
     ②Converter vanadium kinetic studies, found that the molten iron of Si by astrong inhibitory effect on the oxidation of C and V, the molten iron initial Si content increases will allow the molten iron in the oxidation rate of C and V significantlyreduced, and lead tothe end of V content in hot metal; molten iron initial V content willmake it itself is oxidized to reduce the rate to speed up a slight inhibition of it, while Cin the molten iron oxide reduction rate slows down, and the end of V content in hotmetal will rise; temperature C is oxidation rate to accelerate substantially the same timeso that V is oxidized in hot metal rate has slowed down significantly; rapid generationof FeO in the slag can contribute to C, V-oxidation。
     ③The vanadium extraction with the cooling efficiency of the coolant found byDSC to study the solid high-temperature specific heat is feasible, and the results aremore accurate. The cooling capacity of the coolant following order: cold pellets> neverresidue> vanadium slag of pig iron. Coolant in the cooling effect of different endpointtemperature can provide guidance for the optimization of the converter vanadiumprocess.
     ④Theoretical analysis on anthracite pointed out that the the anthracite joined atdifferent times with different functions: pre-join can increase the temperature of thesemi-steel, while increasing carbon; late to join the anthracite can improve VanadiumSlag TFe content. But the two join the way will make the semi-steel residue V content isslightly higher. The statistical analysis of data, add1kg of anthracite coal the1tdesulfurization of iron by carbon0.03percent, to mention the temperature of7.35°C;ordinary iron can increase the carbon0.025%, to mention a temperature4.83°C.
     ⑤Research on material balance and heat balance show that, material balancedetermination of the results of error of-0.86%2.88%-3.12%3.94%error ofdetermination of thermal equilibrium results. The study found that leaving residueoperation of Vanadium, blowing to reduce the losses with the increase in the numberleaving residue.
     ⑥The neural network method, combined with previous research on VanadiumExtraction parameters, is used to build a vanadium exreaction control model, includingthe model of coolant, oxygen model, the end of prediction model words model. Modelprogramming language is C++. Finally established a simulation model, model trainingresults indicated that this model can basically meet the control requirements ofvanadium extraction smelting.
引文
[1]杨守志.2010.钒冶金[M].北京:冶金工业出版社.
    [2]黄道鑫.2000.提钒炼钢[M].北京:冶金工业出版社.
    [3]廖世明,柏谈论.1985.国外钒冶金[M].北京:冶金工业出版社.
    [4] http://www.mining120.com/html/0905/20090511_14894.asp.[cited.
    [5] Ye, G. Z.2006. Recovery of vanadium from LD-slag, a state of the art report, Part1-factsand metallurgy of vanadium. In Internet MEFOS report.
    [6]谭若斌.国内外钒资源的开发利用[J].钒钛,1994,5:4-11.
    [7]任学佑.金属钒的应用现状及市场前景[J].世界有色金属,2004,2:34-36.
    [8]蒋凯琦,郭朝晖,肖细元.中国钒矿资源的区域分布与石煤中钒的提取工艺[J].湿法冶金,2010,29(4):216-219,224.
    [9]段炼,田庆华,郭学益.我国钒资源的生产及应用研究进展[J].湖南有色金属,2006,6:17-20.
    [10]任学佑.稀有金属钒的应用现状及市场前景[J].稀有金属,2003,27(6):809-812.
    [11]张玲,李青,夏作理等.钒的医学应用研究进展[J].中国药物和临床,2006,6(11):843-845.
    [12] Heyliger, C. E., A.G. Tahiliani, J. H. McNeill. Effect of vanadate on elevated blood glucoseand depressed cardiac performance of diabetic rats[J]. Science,1985,227:1474-1477.
    [13]文喆.国内外钒资源与钒产品的市场前景分析[J].世界有色金属,2001,11:7-8.
    [14]刘大凡,李晓磊,郭西凤.全钒氧化还原液流电池的发展现状[J].无机盐工业,2010,42(8):4-6.
    [15]文友.钒的资源、应用、开发与展望[J].稀有金属与硬质合金,1996,43:52~53.
    [16] Taylor, P. R., S. A. Shuey, E. E. Vidal, J. C. Gomez. Extractive metallurgy of vanadiumcontaining titaniferous magnetite ores: a review[J]. Minerals and Metallurgical Processing,2006,23(2):80-86.
    [17] http://www.lgmi.com/index/infodetail.asp?infoNo=1155093.
    [18]付自碧.钒钛磁铁矿提钒工艺发展历程及趋势[J].中国有色冶金,2011,06:29-33.
    [19]姬云波,童雄,叶国华.提钒技术的现状和进展[J].国外金属矿选矿,2007,5:10~14.
    [20] http://hi.baidu.com/crsv2o5/blog/item/d262f053173ace3443a75be3.html.
    [21] Lindvall, Mikael. Selective oxidation of vanadium prior to iron and phosphorus[D]. Lule,Sweden: Lule University of Technology,2006.
    [22]魏明义,傅金明.承钢提钒工艺回顾[J].承钢技术,2005,1:1-4.
    [23]杜益厚.俄罗斯钒工业及其发展前景[J].钢铁钒钛,2001,22(1):50~56.
    [24]陈勇,张大德.转炉提钒工艺的开发与优化[J].中国冶金,2003,1:36-38.
    [25]戈文荪,张玉东,黎建.攀钢转炉提钒工艺的技术变革与展望[J].钢铁钒钛,2001,22(3):11.
    [26]王金超,陈厚生,李瑰生,谢乾林,邓孝伯.攀钢转炉钒渣生产V2O5工艺研究[J].钢铁钒钛,1998,19(4):41-46.
    [27]史玲,王娟,谢建宏.钠化法提钒工艺条件的研究[J].矿冶工程,2008,28(1):58-61.
    [28] Bradbury, D. S.2002. The production of vanadium pentoxide. In Vanadium, Geology,Processing and Applications, Proceedings of the International Symposium on Vanadium.Canada,115-130.
    [29]李新生.高钙低品位钒渣焙烧-浸出反应过程机理研究[D].重庆:重庆大学,2011.
    [30]陈厚生.钒渣石灰焙烧法提取V2O5工艺研究[J].钢铁钒钛,1992,6:1-9.
    [31]张中豪.钙化焙烧冶炼V2O5新工艺研究[J].新技术新工艺,1999,3:23-24.
    [32]张德芳.无污染提钒工艺试验研究[J].湖南有色金属,2005,21(6):16-17.
    [33]陈襄武.1990.钢铁冶金物理化学[M].北京:冶金工业出版社.
    [34]李祖树,徐楚韶.氧顶吹炼低钒铁水时钒氧化的动力学[J].钒钛,1992,(4):6-11.
    [35]黄希祜.2002.钢铁冶金原理[M]:冶金工业出版社.
    [36]叶翔飞,张玉东.提高钒渣品位的途径[J].攀钢技术,2001,(5):37-41.
    [37] Mittelstadt, Rainer, Klaus Schwerdtfeger. The dependence of the oxidation state of vanadiumon the oxygen pressure in melts of VOx, Na2O-VOx, and CaO-SiO2-VOx[J]. Metallurgicaland Materials Transactions B,1990,21(1):111-120.
    [38] Chaudary, H., M. P. Brungs, D. M. Miller, G. R. Belton.1997. In V International Conferenceon MoltenSlags, Fluxes and Salts. Sydney, Austrilia,493.
    [39] INOUE, Ryo, Hideaki SUITO. Distribution of Vanadium between Liquid Iron and MgOSaturated Slags of the System CaO-MgO-FeOx-SiO2[J]. Transactions of the Iron and SteelInstitute of Japan,1982,22(9):705-714.
    [40] TSUKIHASHI, Fumitaka, Atsuko TAGAYA, Nobuo SANO. Effect of Na2O Addition onthe Partition of Vanadium, Niobium, Manganese and Titanium between CaO-CaF2-SiO2Melts And Carbon Saturated Iron[J]. Transactions of the Iron and Steel Institute of Japan,1988,28(3):164-171.
    [41] Strom, Werme A. Journal of Met.,1985,15(6):273-282.
    [42] Dodd, K. M., R. A. Mackay. International Textbook Company London,1981:206.
    [43] Howard, R., S. Richards, B. Welch, J. Moore. Vanadium distribution in melts intermediate toferroalloy production from vanadiferous slag[J]. Metallurgical and Materials Transactions B,1994,25(1):27-32.
    [44] Kruger, J., in O. Winkler, R. Bakish.1971. Vacuum Metallurgy. London: Elsevier.
    [45]周剑波,薛向欣,段培宁. CaO-SiO2-A12O3-MgO-V2O5炉渣中非化学计量物VOx的热力学[J].中国有色金属学报,1998,(8(增刊2)):492-494.
    [46]孙伟莹,谭秉和. X射线荧光光谱法测定钒的原子价平均值[J].岩矿测试,1998,17(3):193-196.
    [47]陈东辉,杨树德.钒渣化学形成理论研究[J].河北冶金,1993,(5):32-41.
    [48]杨素波,罗泽中,蔡开科,姜钧普,宋波.钒在铁液和转炉渣间分配的热力学研究[J].钢铁,2006,(3):36-38.
    [49]朱燕,贺慧琴,邓方.钒渣中钒的浸出特性[J].环境科学与技术,2006,29(12):16-17.
    [50]高剑辉.转炉提钒工艺对钒渣质量的影响[J].金属世界,2008,4:8-11.
    [51]张国平.钒渣物相结构和化学成分对焙烧转化率的影响[J].铁合金,1991,5:17-19.
    [52]陈东辉,杨树德.钒渣质量的系统评价[J].河北冶金,1993,1:11-15.
    [53]杜益厚.俄罗斯工业及其发展前景[J].钢铁钒钛,2001,22(1):50-56.
    [54]余亮,董元箎.含钒钢渣添加SiO2后的钒富积相与钒富集行为[J].材料与冶金学报,2007,6(2):94-98.
    [55]野板康雄编著,舒诒湘译.1982.钢铁工业中的计算机控制[M]:上海科学技术出版社.
    [56]刘浏.转炉全自动吹炼技术[J].冶金自动化,1999,23(4):1.
    [57]丁容,刘浏.转炉炼钢过程人工智能静态控制模型[J].钢铁,1997,32(1):22.
    [58]刘东.基于人工神经网络的转炉炼钢终点预测模型研究[D].南京理工大学,2007.
    [59]孙凯.基于神经网络的转炉炼钢终点控制模型的研究[D].沈阳工业大学,2006.
    [60]王立龙.基于神经网络的转炉冶炼静态控制模型[D].河北理工学院,2003.
    [61]张琳.基于GA_BP混合算法的转炉终点优化控制模型[D].重庆:重庆大学,2004.
    [62] http://www.chinabaike.com/z/yj/gt/792455.html.
    [63]史战东.转炉终点控制模型的比较分析和改进研究[D].重庆大学,2008.
    [64]钟志强.基于径向基神经网络和遗传算法建立转炉提钒终点预报模型的研究[D].重庆大学,2002.
    [65]黄金侠.转炉炼钢终点静态控制预测模型[D].天津大学,2005.
    [66]孔祥瑞.转炉炼钢终点优化控制模型的研究[D].杭州电子科技大学,2009.
    [67]杨超,吴龙,李士琦,迟桂友,周学禹.转炉提钒工艺模型的研究[J].河南冶金,2009,17(6):4-5,41.
    [68]陈才,梁协雄,黄颖松,曹长修. RBF神经网络在转炉提钒预报中的应用[J].计算机仿真,2003,20(11):55-57.
    [69]杨旗.转炉提钒静态模型研究[D].重庆:重庆大学,2002.
    [70]任江洪.基于免疫的混合学习算法在转炉提钒静态模型中的应用研究[D].重庆大学,2004.
    [71]梅彬.转炉提钒智能控制模型的研究与应用[D].重庆大学,2002.
    [72]王华秋,曹长修,李梁.基于并行核径向基神经网络的软测量与控制模型[J].仪器仪表学报,2006,10:1218-1223.
    [73]王华秋,曹长修.一种并行核径向基神经网络预测模型[J].重庆大学学报,2006,29(3):80-83.
    [74]梁协雄,王华秋,曹长修.增量式遗传RBF算法在转炉提钒中的应用[J].重庆大学学报,2003,26(12):74-76,87.
    [75]尹锡军.转炉提钒静态模型及应用[J].四川冶金,2006,28(2):8-11.
    [76] Rogers, D.B., R.J. Arnott, A. Wold, J.B. Goodenough. The preparation and properties ofsome vanadium spinels[J]. Journal of Physics and Chemistry of Solids,1963,24(3):347-360.
    [77]张鉴.关于炉渣结构的共存理论[J].北京钢铁学院学报,1984,(01):21-29.
    [78]张鉴.炉渣结构的共存理论在多元渣系上的应用[J].有色金属,1993,(01):14-20.
    [79]王俭,等译.1989.渣图集[M].北京:冶金工业出版社.
    [80] Roth, Robert S. Phase Diagrams for Ceramists[J]. American Ohio: The American CeramicSociety,1995,11:285.
    [81]张鉴.1998.冶金熔体的计算热力学[M].北京:冶金工业出版社.
    [82]郭培民,赵沛.四元渣系CaO-FeO-SiO2-V2O3的活度模型及应用[J].钢铁钒钛,2005,26(3):1-6.
    [83]梁英教,车荫昌, eds.1993.无机物热力学数据手册:东北大学出版社.
    [84]华一新.2004.冶金过程动力学导论[M].北京:冶金工业出版社.
    [85]许允元,钟良才.铁水预处理过程耦合反应的动力学解析[J].炼钢,1987,(04):63-68.
    [86]许允元,詹庆林,王文军,王志荣,蒋锡麟.钠盐预处理含钒铁水过程氧位研究——动力学初探[J].钢铁钒钛,1986,(02):16-23.
    [87]董元篪,蒋海涛,柴毅忠.铁水同时脱硫脱磷反应的动力学[J].华东冶金学院学报,1993,10(02):7-12.
    [88]冯聚和.2005.炼钢设计原理[M]:化学工业出版社.
    [89]高泽平.2006.炼钢工艺学[M]:冶金工业出版社.
    [90]李文波,薛锋,程镕时.差示扫描量热仪测定比热容方法的改进[J].高等学校化学学报,2005,26:2310-2313.
    [91]郑新仪,张宁.动态法测定固体比热容[J].物理实验,1998,18(4):10-11.
    [92]简玉琼.对用混合法测固体比热容实验方法的改进[J].江西师范大学学报(自然科学版),1988,12(4):67-70.
    [93]康健,赵明鹏,赵阳升.高温下花岗岩热物理特性数值试验研究[J].太原理工大学学报,2004,35(4):396-399.
    [94]闭剑锋,韦金明,易其顺,陈列春.固体比热容测定实验的改进[J].中国现代教育装备,2006,(4):49-51.
    [95]张道清,肖世发.固体比热容测定温度修正的改进[J].重庆文理学院学报(自然科学版),2008,27(4):46-48.
    [96]陈文武,刘振东,李剑锋,孙建军,桑凤亭,李国卿.化学激光辐照铜锌合金熔池温度场的数值模拟[J].机械工程材料,2009,33(1):90-93.
    [97]王瑾璐,蔡会武,江照洋.基于脉冲平面热源法测定保温涂料导热系数[J].化工自动化及仪表,2009,36(2):43-46.
    [98]王东,孙晓红,赵维平,李明飞.激光闪射法测试耐火材料导热系数的原理与方法[J].计量与测试技术,2009,36(3):38-42.
    [99]姜任秋,刘顺隆,于庆连,陈跃进.计时法快速测定材料导热系数_比热容和热扩散率[J].应用科技,1996,(1):11-15.
    [100]罗质华,李华刚.金属比热容测量方法的研究[J].广东教育学院学报,2009,29(5):68-71.
    [101]张佳丽,刘全润,张如意.煤焦高温比热容的实验研究[J].中国煤炭,2005,(2):55-56.
    [102]郭广文,马惠霞,张健.铸铁的热物性测定及其与显微组织的关系[J].理化检验-物理分册,2005,41:13-16.
    [103]厉学武,徐抗震,郭军刚,常春然,宋纪蓉.微量热法测定二钼酸铵比热容[J].中国钼业,2007,31(4):35-37.
    [104]陈维钧,陈建中.用DSC法测定BBO_LBO和CLBO晶体的恒压比热容[J].人工晶体学报,2003,32(2):152-155.
    [105]朱国安,郑吉民.用DSC直接法测量POM晶体的比热容[J].应用化学,1993,10(5):97-98.
    [106] SUN, Cui-na, Xiao-jing QIAO, Tong-lai ZHANG, Wen-guang YU. Determination ofspecific heat capacity of energetic compounds by DSC[J].,.(),[J]. Chinese Journal ofEnergetic Materials,2006,14(3):181-183,207.
    [107]赵小明,陆世豪,顾兆林,刘志刚.准稳态理论测量融解热及比热容的实验研究[J].西安交通大学学报,2005,39(9):958-961.
    [108]吕善成.用固态合成渣炉外处理时钢液附加温降的计算方法[J].河北冶金,1990,2:31-36.
    [109] Barin, Ihsan, Gregor Platzki, eds.1995. Thermochemical Data of Pure Substances,3rdEdition, Publisher.3rd ed: Wiley-VCH Verlag GmbH.
    [110]雷亚,杨治立,任正德,孙亚琴,周书才, eds.2010.炼钢学:冶金工业出版社.
    [111]陈德鹏,钱春香,王辉,刘加华.水泥基材料比热容测定及计算方法的研究[J].建筑材料学报,2007,2:127-131.
    [112]李远洲.底吹氧气转炉吹钒工艺的热力学分析之二[J].马鞍山钢铁学院学报,1984,2:15-23.
    [113]古隆建,许立志,刘南平.转炉以煤代焦吹炼半钢的试验研究[J].钢铁钒铁,1990,11(3):7-10.
    [114]潘兆明,丁炳文.煅烧无烟煤作炼钢增碳剂的研究[J].鞍钢技术,1989,(3):
    [115]郭田.无烟煤煅烧焦作炼钢增碳剂的试验研究[J].鞍钢技术,1990,(2):32-33.
    [116]薛逊,叶翔飞,严学模,卓钧.降低转炉提钒钒渣TFe的试验研究[J].中国稀土学报,2002,20:531-533.
    [117]田雨波, ed.2009.混合神经网络技术:科学出版社.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700