用户名: 密码: 验证码:
固体透氧膜法直接制备储氢合金新工艺
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
以LaNi5为代表的AB5型储氢合金具有较高的储氢容量,良好的吸放氢动力学特性,以及活化容易、平衡压力适中、吸放氢平衡压差小等优势,已成为储氢材料应用研究的重点之一。目前商用AB5型储氢合金的工业制备方法为高温熔炼法,制备工艺复杂,生产流程长、成本高、污染重,应用受到限制。因此,开发一种短流程、易操作、低能耗、少污染的新型制备方法势在必行。
     本文综述了储氢合金现有的制备工艺及研究进展,分析了各种工艺特色及优缺点,在此基础上提出了采用SOM(固体透氧膜)工艺,以混合金属氧化物为原料直接电解脱氧制备储氢合金。透氧膜的采用提高了电解电压因而提高了电解速率。论文详细研究了熔盐的性质(挥发速率、电导率),透氧膜的电导率和抗腐蚀性,烧结、粒度、成型压力、电压、温度等参数对电解过程的影响,以及反应机理和反应速率,并与FFC工艺和其它工艺进行了对比。
     对熔盐CaCl_2的研究表明,950℃CaCl_2及CaCl_2-NaCl熔盐挥发速率小于3.02×10~(-6)g·cm~(-2)·s,电导率高于3.3S·m~(-1);实验室自制的透氧膜管为8%Y_2O_3稳定的ZrO_2管,结构致密,有良好的抗腐蚀性和导电性,在950℃电导率为0.131S·m~(-1);实验采用的各种氧化物烧结片在950℃CaCl_2中的溶解度均低于0.078%。以上参数均满足实验要求。
     SOM法直接制备LaNi_5合金的研究结果表明:采用SOM法从La_2O_3-NiO混合物烧结片直接制备储氢合金LaNi_5是可行的;实验最佳的电解温度为950℃,更高的电解温度下,活性金属La会部分流失;电解产物的组成及收率表明最佳的烧结温度为1000℃,烧结片的组成为La_4Ni_3O_(10)和NiO;电解机理为La_4Ni_3O_(10)在氩气氛下的预热过程中生成La_2NiO_4,烧结片浸入熔盐后La_2NiO_4与CaCl_2迅速自发地反应生成LaOCl和NiO,随后NiO电解还原出的金属Ni与LaOCl反应生成LaNi_5;电解过程的电流效率为86.7%,能耗为3.55kWh/kgLaNi_5;实验对产物的储氢性能测试表明,SOM工艺制备的LaNi_5,最高储氢容量为1.43%,达到理论容量的90%,高于FFC和其它工艺制备的LaNi_5;产物成分均匀,因而更容易活化,其第一次活化过程吸氢量即达0.85%;吸放氢平台在0.2~0.3MPa,与理论值相符;电解产物经水洗、烘干后即表现出较高的储氢容量,与传统工艺相比,无需复杂的后续处理,进一步缩短了流程。
     SOM法直接制备CeNi_5的研究结果表明:用NiO-CeO_2烧结片直接电解制备合金CeNi_5的还原机理为NiO首先被还原为Ni,与随后生成的CeOCl反应生成CeNi_5;最优工艺条件为:球磨时间25h、制片压力15MPa、烧结温度850℃、电解温度1000℃、电解时间3h;电解电流效率为75.5%,能耗为4.03kW·h/kg。
     实验证实了直接制备LaNi_5的A侧及B侧取代,如La_xCe_(1-x)Ni_5(x=0、0.2、0.4、0.6、0.8、1.0)、LaNi_(4.6)Si_(0.4)、LaNi_4Al的可行性。混合氧化物烧结片的成分分别为NiO-La_4Ni_3O_(10)、NiO-La_(10)(SiO_4)_6O_3-La_4Ni_3O_(10)、NiO-LaAlO_3。SOM工艺的优势在于可采用较高的电解电压来提高电解速率,因此在透氧膜管可承受的范围内电解电压应尽可能地高,本实验制备的膜管可承受的最高电压为4V。在以SiO2制Si以及NiO-La_(10)(SiO_4)_6O_3-La_4Ni_3O_(10)制备的LaNi_(4.6)Si_(0.4)的研究中发现,在较高的电解电压下(3.9V),由于存在CaSiO3的分解,产物中含有大量CaSi。而在3.5V的电压下可获得较为理想的反应产物。
     根据中间产物和循环伏安曲线分析了电脱氧机理,推出了电解速率模型,影响电解速率的因素包括阴极片孔隙率、电极接触面积、电压、透氧膜电导率及厚度、熔盐电导率等,电解速率公式为:
     实验对SOM工艺和FFC工艺进行了对比,结果表明:SOM工艺电解产物为疏松的海绵状结构,有较大的比表面积,更适合用作储氢材料,而FFC工艺由于电解时间较长,电解产物经过长时间烧结后颗粒互相粘连,出现一定程度的玻璃态;SOM工艺电解过程结束电流降到背景电流值,而FFC工艺由于阳极碳棒和熔盐直接接触,碳粉剥落后引起电子电导,因而电流上升降低了电流效率;SOM工艺与FFC工艺相比,电解时间缩短3倍,电流效率提高3倍,能耗降低66~75%,有更好的应用前景。
The LaNi_5-type hydrogen storage alloy is becoming one of the emphases ofresearch in hydrogen storage materials. It possesses the excellent performanceproperties: large hydrogen storage capacity, excellent dynamic characteristics andlittle difference of balance pressure between the hydrogen absorbing and releasing. Itis easy to be activated, and also the balance pressure of it is moderate and flat. Thecommonly used preparation process is the induction melting method, which involvesthe melting of the individual metals of high purity, followed by a prolongedannealing process at elevated temperatures. Such a multistep process involves highenergy consumption and high environmental impact and results in low productionefficiency. Many efforts have been made to develop novel processes with highefficiency of production and also low cost.
     This paper summarized the current preparing processes and research progress ofAB5type of hydrogen storage alloy, analyzed the characteristic, advantage anddisadvantage of them. To solve the problems exist in present process, we propose theSOM process and directly prepared hydrogen storage alloy from oxide precursors. Ahigher voltage was used in SOM process to achieve high deoxidization rate. Thispaper was focused on the property of the molten salt, the stability and conductanceof solid oxide-ion membrane, the impact of electrolysis parameter such as sintering,ball-milled time, cathode preparing, electrolysis voltage, molten slat temperature onthe process. The experimental results were compared with FFC process.
     The investigation of the molten CaCl_2showed that the volatility was lower than3.02×10~(-6)g·cm~(-2)·s at950oC, the conductivity of it was higher than3.3S·m~(-1). Thecomposition of solid oxygen-ion membrane was8%mol Y2O3stabilized ZrO2whichwas compact and resist-eroded. The conductivity of it was0.131S m-1at950oC.
     Direct electrochemical reduction of mixed oxide precursor to LaNi_5alloy inmolten salt by SOM process was confirmed to be feasible. The optimal sintering temperature and molten salt temperature was1000and950℃respectively. La woulddissolved in molten slat if the temperature was high than1000oC or the electrolysistime was longer than3h. The composition of the sintered pellet was La4Ni3O10, itreacted with the molten CaCl_2spontaneously to form LaOCl and NiO. Theelectrodeoxidization of the sintered pellet of La2O3-NiO (actually LaOCl-NiO)consisted of two steps:(1) The NiO was reduced to metal Ni; and (2) theintermediate product LaOCl react with pre-formed Ni to form LaNi_5alloy. Thecurrent efficiency was86.7%and the energy consumption was as low as3.55kW·h/kg-LaNi_5. The test of hydrogen storage capacity of the LaNi_5product showedthat the maximum hydrogen storage capacity was1.43%under the pressure of3MPawhich was higher than the product of FFC and other process. The absorption andrelease hydrogen platform appeared in range of0.2-0.3MPa which was accordedwith theoretical value. The activation curve showed that the capacity of productreached1.35%after20activation cycles which was not far away from the maximumhydrogen storage capacity. Another one to mention was the product LaNi_5fromSOM process was only washed, milled with mortar and dried in oven, while theproduct from conventional process must be treated with a serious of follow-upprocess. So SOM process can further shorten the productive process.
     The investigation of preparing of CeNi5by SOM process showed that thereduction of NiO-CeO_2may take place in two steps: first, NiO was reduced into Niand CeO2reacted with CaCl_2to form CeOCl, then Ni reacted with CeOCl leading toform CeNi5. The optimal conditions for the electrochemical reduction are:ball-milled time25h, pellet pressure load15MPa, sintering temperature850℃,molten salt temperature1000℃, electrolysis time3h.The current efficiency was75.5%and the energy consumption was as low as4.03kW·h/kg-CeNi5.
     The experiment also demonstrate the feasibility of direct preparation of morecomplex rare earth based multi-element alloys such as La_xCe_(1-x)Ni_5(x=0.2,0.4,0.6,0.8), LaNi_(4.6)Si_(0.4), LaNi_4Al from the relative oxides. The composition of the sintered pellet was NiO-La_4Ni_3O_(10), NiO-La_(10)(SiO_4)_6O_3-La_4Ni_3O_(10), NiO-LaAlO_3respectively.The advantage of SOM process was higher electrolysis voltage to achieve highdeoxidization rate, so the voltage should be as high as impossible. But in the processof preparing Si and LaNi_(4.6)Si_(0.4), it was found that there was CaSi appeared if thevoltage was3.9V for the decomposition of CaSiO3.The result also showed that theperfect product which we wanted was achieved under the voltage of3.5V
     The reduction mechanism was investigated by the cyclic voltammetry as well asthe phase composition of the intermediate products. The electrolysis rate wasaffected by the porosity of cathode, contact area, electrolysis voltage, conductivityand thickness of SOM, conductivity of molten salt. The equation of electrolysis ratewas calculated as the equation followed:
     Comparison of the SOM and FFC process was performed, the results showed thatthe product of SOM process was better to be used as hydrogen storage materials fornormal sponginess and high porosity rate, while the product of FFC processdisplayed the conglutination of the grains and a low porosity rate, it may beattributed to the long time of sintering in molten salt. In SOM process the currentdecreased to the leakage current at the end of electrolysis, while it rose at the end ofexperiment for the electronic conductivity resulted from the carbon powderseparated from graphite rod. In comparison with FFC process, SOM process wasmore efficient and suitable for industrial application, it only needed25~33%ofenergy consumption, while it reduced3times of electrolysis time and enhanced3times of current efficiency.
引文
【1】. D. J. Cuscueta, A. A. Ghilarducci, H. R. Salva. Design, elaboration andcharacterization of a Ni-MH battery Prototype [J]. International Journal of HydrogenEnergy.2010,35(20):11315-11323
    【2】. Naoto Yasuda, Shino Sasaki, Noriyuki Okinaka, Tomohiro Akiyama. Self-ignitioncombustion synthesis of LaNi5utilizing hydrogenation heat of metallic calcium.International Journal of Hydrogen Energy [J].2010,35(20):11035-11041
    【3】. Junyoung Park, Choongnyeon Park, Chanjin Park, Jeon Choi. Effects of theball-milling with LmNi4.1Al0.25Mn0.3Co0.65alloy on the electrode characteristics ofTi0.32Cr0.43V0.25alloy for Ni-MH batteries [J]. International Journal of HydrogenEnergy,2007,32(17),4215-4219
    【4】. Hyunjai Lee, Dongcheol Yang, Chanjin Park,, Choongnyeon Park, Heejin Jang.Effects of surface modifications of the LMNi3.9Co0.6Mn0.3Al0.2alloy in a KOH/NaBH4solution upon its electrode characteristics within a Ni-MH secondary battery [J].International Journal of Hydrogen Energy,2009,34(1),481-486
    【5】. Chen G Z, Fray D J, Farthing T W. Direct Electrochemical Reduction of TitaniumDioxide to Titanium in Molten Calcium. Nature [J],2000,407(9):361-364
    【6】. Flower H M.AMoving Oxygen Story [J]. Nature,2000,407(9):305-306
    【7】.赵炳建,鲁雄刚,李重河,等.固体透氧膜法直接还原NiO-CeO2制备CeNi5合金[J].金属学报,2009,45(10):1255-1260.
    【8】. Bingjian Zhao, Xionggang Lu, Qingdong Zhong, et al. Direct ElectrochemicalPreparation of CeNi5and LaxCe1-xNi5Alloys from Mixed Oxides by SOM Process[J].Electrochimica Acta,2010,55(8):2996-3001.
    【9】. Xingli Zou, Xionggang Lu, Zhongfu Zhou, Chonghe Li, Weizhong Ding. Directselective extraction of titanium silicide Ti5Si3from multi-component Ti-bearingcompounds in molten salt by an electrochemical process[J]. Electrochimica Acta,2011,56(24):8430-8437.
    【10】. Xiao Su Ye, Xiong Gang Lu, Chong He Li, Wei Zhong Ding, Xing Li Zou, Yong HuiGao, Qing Dong Zhong. Preparation of Ti-Fe based hydrogen storage alloy by SOMmethod[J]. International Journal of Hydrogen Energy,2011,36(7):4573-4579.
    【11】. L. F. Cheng, Y. X. Wang, R. B. Wang, Z. H. Pu, X.G. Zhang, D.N. He. Microstructureand electrochemical investigations of La0.76xCexMg0.24Ni3.15Co0.245Al0.105(x=0,0.05,0.1,0.2,0.3,0.4) hydrogen storage alloys [J]. International Journal of HydrogenEnergy,2009,34(19):8073-8078
    【12】. Hongge Pan, Qinwei Jin, Mingxia Gao, Yongfeng Liu, Rui Li, Yongquan Lei, QidongWang. An electrochemical study of La0.4Ce0.3Mg0.3Ni2.975xMnxCo0.525(x=0.1~0.4)hydrogen storage alloys [J]. Journal of Alloys and Compounds,2004,376(2):196-204
    【13】. Shen Xiangqian, Chen Yungui, Tao Mingda, Wu Chaoling, Deng Gang, KangZhenzhen. The structure and233K electrochemical properties ofLa0.8-xNdxMg0.2Ni3.1Co0.25Al0.15(x=0.0-0.4) hydrogen storage alloys [J]. Internationaljournal of hydrogen energy,2009,34(6):2661-2669
    【14】. Shuai Ma, Mingxia Gao, Rui Li, Hongge Pan, Yongquan Lei. A study on the structuraland electrochemical properties of La0.7-xNdxMg0.3Ni2.45Co0.75Mn0.1Al0.2(x=0.0-3.0)hydrogen storage alloys [J]. Journal of Alloys and Compounds,2008,457(1):457-464
    【15】. Wencui Zhang, Shumin Han, Jiansheng Hao, Yuan Li, Taoyu Bai, Jingwu Zhang. Studyon kinetics and electrochemical properties of low-Co AB5-type alloys for high-powerNi/MH battery [J]. Electrochimica Acta,2009,54(4):1383-1387
    【16】. Yixin Liu, Liqin Xu, Weiqing Jiang, Guangxu Li, Wenlou Wei, Jin Guo. Effect ofsubstituting Al for Co on the hydrogen-storage performance ofLa0.7Mg0.3Ni2.6AlxCo0.5x(x=0.0~0.3) alloys [J]. International Journal of HydrogenEnergy.2009,34(7):2986-2991
    【17】. Xiangyu Zhao, Liqun Ma, Yi Ding, Xiaodong Shen. Effect of particle size on theelectrochemical properties of MmNi3.8Co0.75Mn0.4Al0.2hydrogen storage alloy[J]. International Journal of Hydrogen Energy,2009,34(8):3389-3394
    【18】. Wei-Kang Hu, Ho Lee, Dong-Myung Kim, Seok-Won Jeon, Jai-Young Lee.Electrochemical behaviors of low-Co Mm-based alloys as MH electrodes [J]. Journalof Alloys and Compounds,1998,268(1):261-265
    【19】. Jin Guo, Rui Zhang, Weiqin Jiang, Guangxu Li, Wenlou Wei. The effect of substitutionAl for Ni on the electrochemical properties of La0.7Mg0.3Ni2.75xAlxCo0.75hydrogenstorage alloys [J]. Journal of Alloys and Compounds,2007,429(1):348-351
    【20】. Shen Xiangqian, Chen Yungui, Tao Mingda, Wu Chaoling, Deng Gang, KangZhenzhen. The structure and233K electrochemical properties ofLa0.8xNdxMg0.2Ni3.1Co0.25Al0.15(x=0.0~0.4) hydrogen storage alloys [J]. InternationalJournal of Hydrogen Energy,2009,34(6):2661-2669
    【21】. Y. Q. Lei, S. K. Zhang, G. L. Lu, L. X. Chen, Q. D. Wang, F. Wu. Influence of thematerial processing on the electrochemical properties of Cobalt-free Ml (NiMnAlFe)5alloy [J]. Journal of Alloys and Compounds,2002,330(17):861–865
    【22】.罗永春,阎汝煦,张法亮,王大辉,康龙,陈剑虹. Al对无钴AB5型贮氢合金微观结构和电化学性能的影响[J].中国有色金属学报,2006,16(2):296-303
    【23】.董会,魏学东,柳永宁,朱杰武,林建雄,文英.少量Si对无钴AB5型储氢合金性能的影响[J].稀有金属材料与工程,2008,37(1):156-159
    【24】. Jianxin Ma, Hongge Pan, Changpin Chen, Qidong Wang. The electrochemicalproperties of Co-free AB5type MlNi(4.45x)Mn0.40Al0.15Snxhydride electrodealloys[J]. Journal of Alloys and Compounds,2002,343(1):164-169
    【25】. Xiangyu Zhao, Yi Ding, Meng Yang, Liqun Ma. Effect of surface treatment onelectrochemical properties of MmNi3.8Co0.75Mn0.4Al0.2hydrogen storage alloy [J].International Journal of Hydrogen Energy,2008,33(1):81-86
    【26】.单忠强.储氢合金负极表面改性及大容量镍氢电池性能研究[D].天津:天津大学,2007
    【27】.陈卫祥,陈均,潘洪革,陈长聘.贮氢合金表面处理改善N i/MH电池1C充放电性能[J].物理化学学报1998,14(8):741-745
    【28】. Xiangyu Zhao, Yi Ding, Meng Yang, Liqun Ma. Effect of surface treatment onelectrochemical properties of MmNi3.8Co0.75Mn0.4Al0.2hydrogen storage alloy [J].International Journal of Hydrogen Energy,2008,33(1):81-86
    【29】.刘向东,闫淑芳,陈伟东,黄丽宏.中国稀土学会第一届青年学术会议论文集,2005
    【30】. X. L. Wang, S. Suda. Stability and tolerance to impurities of the fluorinated surface ofhydrogen-absorbing alloys [J]. Journal of Alloys and Compounds,1995,227(1):58-62
    【31】. Xuedong Wei, Peng Zhang, Hui Dong, Yongning Liu, Jiewu Zhu, Guang Yu.Electrochemical performances of a Co-free La(NiMnAlFe)5hydrogen storage alloymodified by surface coating with Cu [J]. Journal of Alloys and Compounds,2008,458(1):583-587
    【32】. FF:林河成.金属铈的生产及应用[J].中国有色冶金.2005,3:31-33
    【33】.朱文辉,朱敏,高岩,车晓舟,李祖鑫.机械合金化Mg/MmNi5-x(CoAlMn)x复合储氢合金的组织结构与吸氢特性[J].1999,17(4):313-317
    【34】. J. Yang, M. Ciureanu, R. Roberge. Preparation and Hydrogen Storage Properties ofMg1-xNix(x=0-45wt%) Composites[J]. Journal of Alloys and Compounds,1999,287(1):251-255
    【35】. S.S Han, N. H. Goo, W. T. Jeong, K. S. Lee. Synthesis of Composite Metal HydrideAlloy of A2B and AB Type by Mechanical Alloying[J]. Journal of Power Sources,2001,92(1):157-162
    【36】.张静娴,陈文新,易守军,刘应亮.还原扩散法直接制备AB5型多元贮氢合金[J].稀土,2004,25(1):73-78
    【37】. J. Chen, D. H. Bradhurst, S. X. Dou, H. K. Liu. Properties of chemically preparedMmNi4.52Mn0.49alloy [J]. Journal of Alloys and Compounds,1997,260(1):260-264
    【38】. M. Ohtsuka, D. Y. Kim, K. Itagaki. Formation of RExNiy(RE=La, Ce, Pr or Nd)compounds by calciothermic reduction of La2O3, CeO2, Pr6O11and Nd2O3[J]. Journalof Alloys and Compounds,1995,230(1):46-52
    【39】. Chen G Z, Fray D J, Farthing T W. Direct electrochemical reduction of titaniumdioxide to titanium in molten calcium [J]. Nature,2000,407(9):361-364
    【40】. Ryosuke O. Suzuki. Calciothermic reduction of TiO2and in situ electrolysis of CaO inthe molten CaCl2[J]. Journal of Physics and Chemistry of Solids,2005,66(3):461-465
    【41】.刘美凤.二氧化钛直接电解提取钛的工艺及机理研究[D].北京:中国科学院过程工程研究所,2003.
    【42】. D. T. L. Alexander, C. Schwandt, D. J. Fray. Microstructural kinetics of phasetransformations during electrochemical reduction of titanium dioxide in moltencalcium chloride [J]. Acta Materialia,2006,54(11):2933-2944
    【43】. C. Schwandt, D.J. Fray. Determination of the kinetic pathway in the electrochemicalreduction of titanium dioxide in molten calcium chloride [J]. Electrochimica Acta,2005,51(1):66-76
    【44】. Chen G Z, Gordo E, Fray D J. Direct Electrolytic Preparation of Chromium Powder[J].Metallurgical and Materials Transactions B: Process Metallurgy and MaterialsProcessing Science,2004,35(2):223-233.
    【45】. Chen, G.Z, Fray, D.J. A morphological study of the FFC chromium and titaniumpowders[J]. Transactions of the Institutions of Mining and Metallurgy,2006,115(1):49-54.
    【46】. Fray D. J, Chen G. Z. Reduction of titanium and other metal oxides usingelectrodeoxidation[J]. Materials Science and Technology,2004,20(3):295-300.
    【47】. Gibilaro M, Pivato J, Cassayre L, Massot L, Chamelot P, Taxil P. Directelectroreduction of oxides in molten fluoride salts[J]. Electrochimica Acta,2011,56(15):5410-5415.
    【48】. Nagesh C R, Ramachandran, C S. Electrochemical process of titanium extraction[J].2007,17(2):429-433.
    【49】. Ma Meng, Wang Dihua, Wang Wenguang, Hu Xiaohong, Jin Xianbo, Chen G Z.Extraction of titanium from different titania precursors by the FFC Cambridgeprocess[J].2006,421(1):37-35
    【50】. Dring K, Dashwood R, Inman D. Voltammetry of titanium dioxide in molten calciumchloride at900℃[J]. J Electrochem Soc,2005,152(3): E104-E113
    【51】. Chen G Z, Fray D J. Voltammetric studies of the oxygen-titanium binary system inmolten calcium chloride [J]. J Electrochem Soc,2002,149(11): E455-E467
    【52】. Pritish Kar, James W. Evans. A model for the electrochemical reduction of metaloxides in molten salt electrolytes [J]. Electrochimica Acta,2008,54(2):835-843
    【53】. Wang S L, Li Y J. Reaction mechanism of direct electro-reduction of titanium dioxidein molten calcium chloride [J]. J Electroanaly Chem,2004,571(1):37-42
    【54】. Meng Ma, Dihua Wang, Wenguang Wang, Xiaohong Hu, Xianbo Jin, George Z. Chen.Extraction of titanium from different titania precursors by the FFC Cambridge process[J]. Journal of Alloys and Compounds,2006,420(1):37-45
    【55】. Qiushi Song, Qian Xu, Xue Kang, Jihong Du, Zhengping Xi. Mechanistic insight ofelectrochemical reduction of Ta2O5to tantalum in a eutectic CaCl2-NaCl molten salt [J].Journal of Alloys and Compounds,2010,490(1):241-246
    【56】. Qian Xu, Liqin Deng, Yan Wu, Tao Ma. A study of cathode improvement forelectro-deoxidation of Nb2O5in a eutectic CaCl2-NaCl melt at1073K [J]. Journal ofAlloys and Compounds,2005,396(1):288-294
    【57】. QIU Guohong, WANG Dihua, JIN Xianbo, Chen G Z. A direct electrochemical routefrom oxide precursors to the terbium-nickel intermetallic compound TbNi5[J]. Electro-chimica Acta,2006,51(26):5785-5793
    【58】.朱用,马猛,汪的华,蒋凯,胡晓宏,金先波,陈政.熔盐电还原固态混合氧化物低能耗制备TiNi合金[J].科学通报,2006,51(16):1966-1970
    【59】. Guohong Qiu, Dihua Wang, Meng Ma, Jin Xianbo, Chen G Z. Electrolytic synthesis ofTbFe2from Tb4O7and Fe2O3powders in molten CaCl2[J]. Journal of ElectroanalyticalChemistry,2006,589(1):139-147
    【60】. Kouji Yasuda, Toshiyuki Nohira, Rika Hagiwara, Yukio H. Ogata. Direct electrolyticreduction of solid SiO2in molten CaCl2for the production of solar grade silicon [J].Electrochimica Acta,2007,53(1):106-110
    【61】. Wei Xiao, Xianbo Jin, Yuan Deng, Dihua Wang, George Z. Chen. Rationalisation andoptimisation of solid state electro-reduction of SiO2to Si in molten CaCl2inaccordance with dynamic three-phase interlines based voltammetry [J]. Journal ofElectroanalytical Chemistry,2010,639(1):130-140
    【62】. Emre Ergul, Ishak Karakaya, Metehan Erdogan. Electrochemical decomposition ofSiO2pellets to form silicon in molten salts [J]. Journal of Alloys and Compounds,2011,509(3):899-903
    【63】. Kouji Yasuda, Toshiyuki Nohira, Yasuhiko Ito. Effect of electrolysis potential onreduction of solid silicon dioxide in molten CaCl2[J]. Journal of Physics andChemistry of Solids,2005,66(2):443-447
    【64】. D. J. S. Hyslop, A. M. Abdelkader, A. Cox, D. J. Fray. Electrochemical synthesis of abiomedically important Co-Cr alloy[J]. Acta Materialia,2010,58(8):3124-3130
    【65】. Guoming Li, Xianbo Jin, Dihua Wang, George Z Chen. Affordable electrolyticferrotitanium alloys with marine engineering potentials [J]. Journal of Alloys andCompounds,2009,482(1):320-327
    【66】. Serdar Tan, Taylan Ors, M. Kadri Aydinol, Tayfur Ozturk, Ishak Karakaya. Synthesisof FeTi from mixed oxide precursors [J]. Journal of Alloys and Compounds,2009,475(1):368-372
    【67】. B. A. Glowacki, D. J. Fray, X Y. Yan, G. Chen. Superconducting Nb3Sn intermetallicsmade by electrochemical reduction of Nb2O5-SnO2oxides [J]. Physica C,2003,387(1):242-246
    【68】. Ryosuke O, Suzuki. Calciothermic reduction of TiO2and in situ electrolysis of CaO inthe molten CaCl2[J]. Journal of Physics and Chemistry of Solids,2005,66(2):461-465
    【69】. Toru H Okabe, Takashi Oda, Yoshitaka Mitsuda. Titanium powder production bypreform reduction process (PRP)[J]. Journal of Alloys and Compounds,2004,364(1):156-163
    【70】. Toru H Okabe, Park K T, Jacob, Yoshio Waseda. Production of niobium powder byelectronically mediated reaction (EMR) using calcium as a reductant [J]. Journal ofAlloys and Compounds,1999,288(1):200-210
    【71】. Park, Toru H Okabe, Yoshio Waseda. Tantalum powder production bymagnesiothermic reduction of TaCl5through an electronically mediated reaction (EMR)[J]. Journal of Alloys and Compounds,1998,280(1):265-272
    【72】. Park, Takashi Abiko, Toru H Okabe. Production of titanium powder directly from TiO2in CaCl2through an electronically mediated reaction (EMR)[J]. Journal of Physics andChemistry of Solids,2005,66(2):410-413
    【73】. Tetsuya Uda, Toru H Okabe, Yoshio Waseda, K T Jacob. Phase equilibria andthermodynamics of the system Dy-Mg-Cl at1073K [J]. Journal of Alloys andCompounds,1999,284(1):282-288
    【74】. Sang Mun Jeong, Hui Yong Yoo, Jin-Mok Hur, Chung Seok Seo. Preparation ofmetallic niobium from niobium pentoxide by an indirect electrochemical reduction in aLiCl-Li2O molten salt [J]. Journal of Alloys and Compounds,2008,452(1):27-31
    【75】. Y. S. Lin, K. J. Vries, H. W. Brinkman, A. J. Burggraaf. Oxygen semipermeable solidoxide membrane composites prepared by electrochemical vapor deposition[J]. Journal of Membrane Science,1992,66(2):211-226
    【76】. Minyao Zhou, Huiming Deng, Benjamin Abeles. Transport in mixed ionic electronicconductor solid oxide membranes with porous electrodes: Large pressure gradient [J].Solid State Ionics,1996,93(1):133-138
    【77】. Joonho Kim, Youngsun Park, Dae Jin Sung, Sangjin Moon, Ki Bong Lee, Suk-In Hong.Preparation of thin film YSZ electrolyte by using electrostatic spray deposition [J].International Journal of Refractory Metals and Hard Materials,2009,27(6):985-990
    【78】. Tahereh Talebi, Babak Raissi, Mohsen Haji, Amir Maghsoudipour. The role ofelectrical conductivity of substrate on the YSZ film formed by EPD for solid oxide fuelcell applications [J]. International Journal of Hydrogen Energy,2010,35(17):9405-9410
    【79】. Tahereh Talebi, Babak Raissi, Amir Maghsoudipour. The role of addition of water tonon-aqueous suspensions in electrophoretically deposited YSZ films for SOFCs [J].International Journal of Hydrogen Energy,2010,35(17):9434-9439
    【80】. Takehisa Fukui, Satoshi Ohara, Makio Naito, Kiyoshi Nogi. Performance and stabilityof SOFC anode fabricated from NiO/YSZ composite particles [J]. Journal of theEuropean Ceramic Society,2003,23(15):2963-2967
    【81】. Xia ChaoYang, Lu XuChen, Yan Yan, Wang TiZhuang, Zhang ZhiMin, Yang SuPing.Preparation of nano-structured Pt-YSZ composite and its application in oxygenpotentiometric sensor [J]. Applied Surface Science,2011,257(18):7952-7958
    【82】. T. Priyatham, Ranjit Bauri. Synthesis and characterization of nanocrystalline Ni–YSZcermet anode for SOFC [J]. Materials Characterization,2010,61(1):54-58
    【83】. Tahereh Talebi, Mohsen Haji, Babak Raissi, Amir Maghsoudipour. YSZ electrolytecoating on NiO-YSZ composite by electrophoretic deposition for solid oxide fuel cells(SOFCs)[J]. International Journal of Hydrogen Energy,2010,35(17):9455-9459
    【84】. Weitao Bao, Qibing Chang, Guangyao Meng. Effect of NiO/YSZ compositions on theco-sintering process of anode-supported fuel cell [J]. Journal of Membrane Science,2005,259(1):103-109
    【85】. Lan Zhang, San Ping Jiang, Hong Quan He, Xinbing Chen, Jan Ma, Xiao Chao Song.A comparative study of H2S poisoning on electrode behavior of Ni/YSZ and Ni/GDCanodes of solid oxide fuel cells [J]. International Journal of Hydrogen Energy,2010,35(22):12359-12368
    【86】. Oh Hyun Kwon, Gyeong Man Choi. Electrical conductivity of thick film YSZ [J].Solid State Ionics,2006,177(35):3057-3062
    【87】. Minfang HAN, Xiuling TANG, Suping PENG. Research on sintering process of YSZelectrolyte [J]. Rare Metals,2006,25(6):209-212
    【88】. Mingfei Liu, Jianfeng Gao, Dehua Dong, Xingqin Liu, Guangyao Meng. Comparativestudy on the performance of tubular and button cells with YSZ membrane fabricatedby a refined particle suspension coating technique [J]. International Journal ofHydrogen Energy,2010,35(19):10489-10494
    【89】. Mohsen Saremi, Abbas Afrasiabi, Akira Kobayashi. Microstructural analysis of YSZand YSZ/Al2O3plasma sprayed thermal barrier coatings after high temperatureoxidation [J]. Surface and Coatings Technology,2008,202(14):3233-3238
    【90】. F. Rousseau, S. Awamat, M. Nikravech, D. Morvan, J. Amouroux. Deposit of denseYSZ electrolyte and porous NiO-YSZ anode for SOFC device by a low pressureplasma process [J]. Surface and Coatings Technology,2007,202(4-7):1226-1230
    【91】. Fengli Liang, Wei Zhou, Bo Chi, Jian Pu, San Ping Jiang, Li Jian. Pd-YSZ compositecathodes for oxygen reduction reaction of intermediate-temperature solid oxide fuelcells [J]. International Journal of Hydrogen Energy,2011,36(13):7670-7676
    【92】. Sungkyu Lee, Kyoung-Hoon Kang, Hyun Seon Hong, Yongseung Yun, Jae-Hwan Ahn.Interfacial morphologies between NiO-YSZ fuel electrode/316stainless steel as theinterconnect material and B-Ni3brazing alloy in a solid oxide fuel cell system [J].Journal of Alloys and Compounds,2009,488(1):1-5
    【93】. Hu Yuan, Peng Zhou, Dequn Zhou. What is Low-Carbon Development? A ConceptualAnalysis [J]. Energy Procedia,2011,5:1706-1712
    【94】. Jing Luo, Mu Zhang. Route Choice of low-carbon industry for global climatechange:an issue of China tourism reform [J]. Energy Procedia,2011,5:2283-2288
    【95】. Changbo Shi, Jingjing Peng. Construction of Low-carbon Tourist Attractions Based onLow-carbon [J]. Economy Energy Procedia,2011,5:759-762
    【96】. Pal. Uday B. The use of solid-oxide-membrane technology for electrometallurgy[J].Powell IV, Adam C,2007,59(5):44-49
    【97】. Roan Alexander, Pati Soobhankar, Basu Soumerdra, Uday Pal. Solid oxide membraneprocess for solar grade silicon production directly from silicon dioxide[J]. TMS AnnualMeeting,2011,(1):717-721
    【98】. Xingli Zou, Xionggang Lu, Zhongfu Zhou, Chonghe Li, Weizhong Ding. Directselective extraction of titanium silicide Ti5Si3from multi-component Ti-bearingcompounds in molten salt by an electrochemical process[J]. Electrochimica Acta,2011,56(24):8430-8437
    【99】. Bingjian Zhao, Xionggang Lu, Qingdong Zhong, Chonghe Li, Shuanglin Chen.Direct Electrochemical Preparation of CeNi5and LaxCe1-xNi5Alloys from MixedOxides by SOM Process[J]. Electrochimica Acta,2010,55(8):2996-3001.
    【100】. Ajay Krishnan, Xiong Gang Lu, Uday Bhanu Pal. Solid Oxide Membrane (SOM)technology for environmentally sound production of tantalum metal and alloys fromtheir oxide sources[J]. Scandinavian Journal of Metallurgy,2005,34:293-301
    【101】. Ajay Krishnan, Xiong Gang Lu and Uday Bhanu Pal. Solid Oxide Membrane (SOM)technology for environmentally sound production of tantalum metal and alloys fromtheir oxide sources [J]. Scandinavian Journal of Metallurgy,2005,34:293-301
    【102】. Minyao Zhou, Huiming Deng, Benjamin Abeles. Transport in mixed ionic electronicconductor solid oxide membranes with porous electrodes: Large pressuregradient. Solid State Ionics [J],1996,93(1):133-138
    【103】.韩敏芳,彭苏萍,王玉倩,杨翠柏.纳米粉体制备8YSZ电解质工艺性能研究[J].功能材料与器件学报,2003,9(3):257-261
    【104】.韩敏芳,王玉倩,李伯涛,彭苏萍.流延成型制备8YSZ电解质薄片及其性能研究[J].北京科技大学学报,2005,27(2):209-212
    【105】.尧巍华,唐子龙,罗绍华,张中太.相转移分离法制备氧化钇稳定的氧化锆超细粉末[J].稀有金属材料与工程2003,32(8):666-669
    【106】.吕振刚,郭瑞松,姚排,代凤英.复合掺杂对YSZ电解质材料烧结性与电性能的影响[J].稀有金属材料与工程,2005,34(12):1961-1964
    【107】.沈耀春,王林,陆祖宏,韦钰.多孔电极的制备与表征材料研究学报[J].1995,9(1):81-83
    【108】.徐献芝,朱梅,苏润,梁振辉,许友生.多孔电极三相界面形态的研究[J].化学通报,2004,10:768-770
    【109】.朱梅,徐献芝,杨基明.气体多孔电极反应微观机理及宏观现象的研究[J].中国工程科学,2005,7(5):79-83
    【110】.徐献芝,朱梅,杨基明.考虑多孔电极内气液分布的数学模型[J],中国工程科学,2005(7):36-40
    【111】.叶大伦,胡建华.实用无机物热力学数据手册[M].北京:冶金工业出版社,2002.
    【112】.吴广新.镁基储氢合金吸放氢热力学和动力学研究[D].上海:上海大学,2007.
    【113】.何理,鲁雄刚,陈朝轶,李谦,李重河,钟庆东.固体透氧膜法制备金属铌[J].中国有色金属学报,2008,18(7):1336-1341.
    【114】.陈朝轶,鲁雄刚,李谦,程红伟.利用SOM法制备金属钽[J].稀有金属材料与工程,2007,36(11):1991-1995.
    【115】.陈朝轶,鲁雄刚.固体透氧膜法与熔盐电解法制备金属铬的对比[J].金属学报,2008,44(2):145-149
    【116】.黄有国,赖延清,田忠良,李庆余.高温熔盐电导率测试方法[J].轻金属2007,10:33-37
    【117】.厉英,王淑兰,白玉霞,姜茂发.在NaCl-KCl熔盐中合成BaTiO3时体系电导率的变化[J].东北大学学报,2002,23(11):1086-1088
    【118】.杨进全,黄义祥,伍瑞亮.氯化钠氯化锌二元熔盐的电导率和组成及温度的关系式[J].湖南大学学报,1991,18(3):91-94
    【119】.陈金钟,刘江宁,李冰,汪谨,宋兴福,于建国. MgCl2-NaCl-KCl-CaCl2熔盐体系电导率估算与测定[J].轻金属,2006,8:56-61
    【120】.孟彬,孙跃,赫晓东,李明伟. EB-PVD制备YSZ涂层的氧空位和晶体学织构表征[J].材料科学与工艺,2007,15(6):770-773
    【121】.孟昕,孟宪芹,姜雪宁,庞胜利,李向楠,张庆瑜.调制比对GDC/YSZ多层氧离子导体薄膜结构与电学性能的影响[J].功能材料,2010,7(41):1120-1123
    【122】.黄英才,刘毅,劳令耳,袁望治.纳米ZnO掺杂对ZrO2(8mol%Y2O3稳定)电性能的影响研究[J].材料科学与工程学报,2005,21(1):91-95
    【123】. Kazuyoshi Sato, Go Okamoto, Makio Naito, Hiroya Abe. NiO/YSZ nanocompositeparticles synthesized via co-precipitation method for electrochemically active Ni/YSZanode [J]. Journal of Power Sources,2009,193(1):185-188
    【124】. John N. Kuhn, Nandita Lakshminarayanan, Umit S. Ozkan. Effect of hydrogen sulfideon the catalytic activity of Ni-YSZ cermets [J]. Journal of Molecular Catalysis A:Chemical,2008,282(1):9-21
    【125】.任继文.平板式氧化锆汽车氧传感器技术基础研究[D].武汉:华中科技大学,2007.
    【126】.华纬,鲁雄刚,李重河,钟庆东,丁伟中.氧化锆固体电解质高温电子电导的研究[J].功能材料,2009,40(12):1980-1983
    【127】. Yong Zhu, Dihua Wang, Meng Ma, Xiaohong Hu, Xianbo Jin, George Z. Chen. Moreaffordable electrolytic LaNi5-type hydrogen storage powders[J]. Chemicalcommunications,2007,24:2515-2517
    【128】. Elena Gordo, George Z.Chen, Dered J.Fray. Toward Optimisation of ElectrolyticReduction of Solid Chromium Oxide to Chromium Powder in Molten Chloride Salts[J],Electrochimica Acta,2004,49:2195-2208
    【129】. G. J. Janz. Molten Salts Handbook[M].Academic Press, London,1967:149.
    【130】.姜晶,王佳.气/液/固三相线界面区的性质在金属腐蚀阴极过程中的作用[J].腐蚀科学与防护技术,2009,21(2):79-81
    【131】.陈朝轶,鲁雄刚,李重和,钟庆东.三相界面反应机制在SOM法制备金属钽中的应用[J].中国有色金属学报,2009,19(3):583-588
    【132】.杜继红,奚正平,李晴宇,李争显,唐勇,电化学还原TiO2制备金属钛及反应过程的研究[J],稀有金属材料与工程,2006,35(7):1045-1049
    【133】.胡小峰,许茜. CaCl2-NaCl熔盐电脱氧法制备金属Ta.金属学报.2006,42(3):285-289
    【134】.戴磊,赵炳建,王岭,崔广华,朱立光,李丽娜.熔盐电脱氧法制备锂离子电池负极材料Ni3Sn2合金的研究.功能材料,2008,39(3):453-459
    【135】.廖先杰,谢宏伟,翟玉春,许国强,张懿.低温熔盐电解制备NiTi合金[J].轻金属2009,2:53-57
    【136】.王淑兰,薛艳,杨莹,范路安.五氧化二妮电脱氧制备金属的反应动力学[J].材料研究学报,2006,20(2):166-170
    【137】. Qingshan Zhu, Baoan Fan. Low temperature sintering of8YSZ electrolyte film forintermediate temperature solid oxide fuel cells [J]. Solid State Ionics,2005,176(9):889-894
    【138】. Lise Donzel, Steve G. Roberts. Microstructure and mechanical properties of cubiczirconia (8YSZ)/SiC nanocomposites [J]. Journal of the European Ceramic Society,2000,20(15):2457-2462
    【139】. W. G. Coors, J. R. O Brien, J. T. White. Conductivity degradation of NiO-containing8YSZ and10YSZ electrolyte during reduction [J]. Solid State Ionics,2009,180(2):146-251
    【140】. S. T. Aruna, K. S. Rajam. A study on the electrophoretic deposition of8YSZ coatingusing mixture of acetone and ethanol solvents [J]. Materials Chemistry and Physics,2008,111(1):131-1366
    【141】. A. A. Bukaemskiy, D. Barrier, G. Modolo. Thermal and crystallization behaviour of8YSZ-CeO2system [J]. Journal of Alloys and Compounds,2009,472(1):286-293
    【142】. A. A. Bukaemskiy, D. Barrier, G. Modolo. Compressibility and sinterability ofCeO2-8YSZ powders synthesized by a wet chemical method [J]. Journal of theEuropean Ceramic Society,2009,29(10):1947-1954
    【143】. Anita Muller, Achim Zern, Peter Gerstel, Joachim Bill, Fritz Aldinger. Boron-modifiedpoly (propenylsilazane)-derived Si–B–C–N ceramics: preparation and hightemperature properties[J]. Journal of the European Ceramic Society,2002,22(9):1631-1643
    【144】. Bo Ren, Zhongxia Liu, Rui-feng Zhao, Tianqing Zhang, Zhiyong Liu, Mingxing Wang,Yonggang Weng. Effect of Sb on microstructure and mechanical properties ofMg2Si/Al-Si composites[J]. Transactions of Nonferrous Metals Society of China,2010,20(8):1367-1373
    【145】. L. G. Hou, C. Cui, J. S. Zhang. Optimizing microstructures of hypereutectic Al-Sialloys with high Fe content via spray forming technique[J]. Materials Science andEngineering,2010,527(23):6400-6412
    【146】. H. K. Feng, S. R. Yu, Y. L. Li, L. Y. Gong. Effect of ultrasonic treatment onmicrostructures of hypereutectic Al-Si alloy[J]. Journal of Materials ProcessingTechnology,2008,208(1):330-335
    【147】. Julien Godet, Alfredo Pasquarello. Protons at the Si-SiO2interface: a first principleinvestigation[J]. Microelectronic Engineering,2007,84(10):2035-2038
    【148】. Young Pil Kim, Si Kying Choi, Yong Ho Ha, Sehun Kim, Hyun Kyong Kim, Dae WonMoon. A medium energy ion scattering analysis of the Si-SiO2interface formed by ionbeam oxidation of silicon[J]. Applied Surface Science,1997,117(2):207-211
    【149】. Dehong Lu, Yehua Jiang, Guisheng Guan, Rongfeng Zhou, Zhenhua Li, Rong Zhou.Refinement of primary Si in hypereutectic Al-Si alloy by electromagnetic stirring[J].Journal of Materials Processing Technology,2007,189(3):13-18
    【150】. K. Hirose, H. Nohira, K. Azuma, T. Hattori. Photoelectron spectroscopy studies ofSiO2/Si interfaces[J]. Progress in Surface Science,2007,82(1):43-54
    【151】. F Bensliman, N Mizuta, M Matsumura. Anodic current transient for n-Si/SiO2electrodes in HF solution: the relationship between the current and the interfacestructure[J]. Journal of Electroanalytical Chemistry,2004,568:353-363
    【152】. Sumita Srivastava, S. S. Sai Raman, B. K. Singh, O. N. Srivastava. On the synthesisand characterization of some new AB5type MmNi4.3Al0.3Mn0.4, LaNi5-xSix(x=0.1,0.3,0.5) and Mg-x wt%CFMmNi5-y wt%Si hydrogen storage materials[J]. InternationalJournal of Hydrogen Energy,2000,25(5):431-440.
    【153】. Sumita Srivastava, O. N. Srivastava. Investigations on synthesis, characterization andhydrogenation behaviour of the spin-and thermal-melted versions of LaNi5xSix(x=0.1,0.3,0.5) hydrogen storage materials[J]. Journal of Alloys and Compounds,1998,267(1):240-245.
    【154】. Yang-huan Zhang, Xiao-ping Dong, Guo-qing Wang, Shi-hai Guo, Xin-lin Wang.Effect of substituting Mm with La on the electrochemical performances of Co-freeLaxMm1x(NiMnSiAlFe)4.9(x=0-1) electrode alloys prepared by casting and rapidquenching[J]. Journal of Power Sources,2005,140(2):381-387
    【155】. Xuedong Wei, Hui Dong, Yongning Liu, Peng Zhang, Jiewu Zhu, Guang Yu. The effectof partial substitution of Si for Ni on the electrochemical properties of cobalt-freeLaNi4.2xAl0.35Mn0.45Six(x=0–0.35) alloys[J]. Journal of Alloys and Compounds,2009,481(1):687-691.
    【156】. K. Manimaran, M. V. Ananth, M. Raju, N. G. Renganathan, M. Ganesan, G. Nithya.Electrochemical investigations on cobalt-microencapsulatedMmNi2.38Al0.82Co0.66Si0.77Fe0.13Mn0.24hydrogen storage alloys for Ni-MHbatteries[J]. International Journal of Hydrogen Energy,2010,35(10):4630-4637
    【157】. Kouji Y, Toshiyuki N, Yasuhiko I. Effect of electrolysis potential on reduction of solidsilicon dioxide in molten CaCl2[J]. Journal of Physics and Chemistry of Solids,2005,66:443-447.
    【158】. A. Kowalczyk, V.H. Tran, T. Tolinski, W. Miiller. Electrical resistivity andthermoelectric power of the Kondo lattice CeNiAl4Solid State Communications[J],2007,144(5):185-188
    【159】. Qing Han, Kuiren Liu, Jianshe Chen, Xujun Wei. Preparation of the compositeLaNi3.7Al1.3/Ni-S-Co alloy film and its HER activity in alkaline medium[J].International Journal of Hydrogen Energy,34(1):71-76
    【160】. Jun Liu, Yifu Yang, Yan Li, Peng Yu, Yonghao He, Huixiao Shao. Comparative studyof LaNi4.7M0.3(M=Ni, Co, Mn, Al) by powder microelectrode technique[J].International Journal of Hydrogen Energy,2007,32(12):1905-1910
    【161】. R. J. Shih, Y. Oliver Su, T. P. Perng. Self-supported electrodes made ofLaNi4.25Al0.15Co0.5V0.1and Ag or Ni for hydrogenation[J]. International Journal ofHydrogen Energy,2006,31(12):1716-1720
    【162】. Jin Kyeong Kim, Il Seok Park, Kwang J. Kim, Keith Gawlik. A hydrogen-compressionsystem using porous metal hydride pellets of LaNi5-xAlx[J]. International Journal ofHydrogen Energy,2008,33(2):870-877
    【163】. He Miao, Yongfeng Liu, Yan Lin, Dan Zhu, Lei Jiang, Hongge Pan. A study on themicrostructures and electrochemical properties of La0.7Mg0.3Ni2.45-xCrxCo0.75Mn0.1Al0.2(x=0.00-0.20) hydrogen storage electrode alloys[J]. International Journal of HydrogenEnergy,2008,33(1):134-140
    【164】. He Miao, Hongge Pan, Shengcai Zhang, Ni Chen, Rui Li, Mingxia Gao. Influences ofCo substitution and annealing treatment on the structure and electrochemical propertiesof hydrogen storage alloys La0.7Mg0.3Ni2.45-xCo0.75+xMn0.1Al0.2(x=0.00,0.15,0.30)[J].International Journal of Hydrogen Energy,2007,32(15):3387-3397
    【165】. Hongge Pan, Shuai Ma, Jia Shen, Junjun Tan, Jilu Deng, Mingxia Gao. Effect of thesubstitution of PR for La on the microstructure and electrochemical properties ofLa0.7-xPrxMg0.3Ni2.45Co0.75Mn0.1Al0.2(x=0.0-0.3) hydrogen storage electrode alloys[J].International Journal of Hydrogen Energy,2007,32(14):2949-2956
    【166】.钱存富,杜昊,王洪祥. LaNi5型储氢材料最大储氢量的讨论[J].稀有金属材料与工程2000,29(1):25-27
    【167】.王宏,刘祖岩. LaNi5最大储氢量的晶体结构分析[J].稀有金属材料与工程,2004,33(3):239-241
    【168】. Rajesh Kumar Singh, Bipin Kumar Gupta, M. V. Lototsky, O. N. Srivastava. On thesynthesis and hydrogenation behaviour of MmNi5-xFexalloys and computer simulationof their P-C-T curves[J]. Journal of Alloys and Compounds,2004,373(1):208-213
    【169】. Chunping Hou, Minshou Zhao, Jia Li, Liang Huang, Yanzhi Wang, Min Yue. Enthalpychange (ΔH0) and entropy change (ΔS0) measurement of CeMn1-xAl1-xNi2x(x=0.00,0.25,0.50and0.75) hydrides by electrochemical P-C-T curve[J]. International Journalof Hydrogen Energy,2008,33(14):3762-3766.
    【170】. Sudipta Roy, B.K. Singh, M.V. Lototsky, O.N. Srivastava. On the structural,hydrogenation behaviour and computer simulation studies of P-C-T ofZr1-2xMmxTixFe1.4Cr0.6(x=0.03,0.05,0.07,0.09) alloys[J]. Journal of Alloys andCompounds,2005,397(1):140-148140-148
    【171】. Seijirau Suda, Miki Imai, Masaki Uchida, Yoshio Komazaki, Eiji Higuchi. DynamicP-C-T relations of the La-incorporated/fluorinated AB2hydriding alloys[J]. Journal ofAlloys and Compounds,1999,293(20):391-395.
    【172】. Z. P. Li, S. Suda. Effects of hydriding-dehydriding cycling on P-C-T andelectrochemical properties of La-Ca-Ni-Al alloys[J]. Journal of Alloys and Compounds,1995,231(1):594-597
    【173】. J. Paya, M. Linder, E. Laurien, J.M. Corberan. Mathematical models for the P-C-Tcharacterization of hydrogen absorbing alloys[J]. Journal of Alloys and Compounds,2009,484(1):190-195.
    【174】.魏范松. La-Ni-Sn系AB5+x型无Co贮氢电极合金的研究[D].杭州:浙江大学,2006
    【175】.黄红霞. Mg基和AB5型储氢合金的制备、改性及电化学性能研究[D].长沙:中南大学,2010
    【176】.刘刚.快速凝固La1-xCex(NiMnFeAl)5.6无钴储氢合金的电化学性能研究[D].兰州:兰州理工大学,2009
    【177】.阙骥. LaNi5-xAlx合金吸放氢特性研究[D].北京:中国原子能科学研究院,2006
    【178】. G D Adzic, J R Johnson, J J Reilly, etal. Cerium content and cycle life ofmulticomponent AB5hydride electrodes [J].Journal of The Electrochemical Society,1995,142(10):3429-3433
    【179】.原鲜霞,马紫锋,刘汉三,等.稀土组成对贮氢合金La0.8(1-x)Ce0.8x(PrNd)0.2B5性能的影响[J].稀有金属材料与工程,2004,7(33):696-700.
    【180】. Ted. B. Flanagan. Hydrides for energy storage[M].1978:139-150
    【181】. G. Liang, J. Huot, R. Schulz. Hydrogen storage properties of the mechanically alloyedLaNi5-based materials [J]. Journal of Alloys and Compounds,2001,320:133-139
    【182】.刘红,李荣德.热处理对AB5型快淬态储氢合金组织结构及电化学性能的影响[J].材料科学与工艺2006,14(1):91-94
    【183】.马志鸿,雷永泉,陈立新,顾巍.热处理对Ml(NiCoMnAl)4.76合金的电化学性能的影响[J].稀有金属材料与工程,2000,29(4):255-257
    【184】.吴建民,杨素媛,李蓉,周少雄.退火对富铈Mm(NiCoMnAl)5储氢合金电化学性能的影响[J].中国稀土学报,2003,21(6):725-728
    【185】.马志鸿,陈立新,顾巍,雷永泉.热处理对低Co贮氢合金Ml(NiCoMnAlFe)5电化学性能的影响[J].中国有色金属学报,2000,10(1):220-222
    【186】.邓安强,樊静波,钱克农,罗永春.热处理对La4MgNi19储氢电极合金结构和性能的影响[J].物理化学学报,2011,27(1):103-107
    【187】.潘崇超,杨白, Javed Iqbal,于荣海.退火热处理对Nd0.75Mg0.25(Ni0.8Co0.2)3.5储氢合金结构和性能的影响[J].稀有金属材料与工程,40(2):367-371
    【188】. B. F. Nazarov, E. V. Larionova, A. G. Stromberg, I. S. Antipenko. Theory of thereversible electrode process in case of cyclic voltammetry at finite thickness filmelectrode [J]. Electrochemistry Communications,2007,9(8):1936-1977
    【189】. Edyta Madej, Peter Wardman. Pulse radiolysis and cyclic voltammetry studies of redoxproperties of phenothiazine radicals [J]. Radiation Physics and Chemistry,2006,75(9):990-1000
    【190】. Waleed Ahmed El Said, Cheol Heon Yea, Hyunhee Kim, Byung Keun Oh, Jeong WooChoi. Cell-based chip for the detection of anticancer effect on HeLa cells using cyclicvoltammetry [J]. Biosensors and Bioelectronics,2009,24(5):1259-1265
    【191】. Claus Jacob, Alexander Y. Safronov, Sonia Wilson, H.Allen O. Hill, Tim F. Booth.Investigations of a novel ferrocene-containing lipid by cyclic voltammetry andcryogenic transmission electron microscopy [J]. Journal of Electroanalytical Chemistry,1997,431(1):7-10
    【192】. Inmaculada Prieto, Maria Teresa Martin, Eulogia Mu oz, J.J. Ruiz, Luis Camacho.Study of non-faradaic2D phase transitions by use of cyclic voltammetry andcapacitance potential curves [J]. Journal of Electroanalytical Chemistry,1997,424(1):113-119
    【193】. G. Laputkova, J. Sabo. Cyclic voltammetry study of glucose and insulin interactionswith supported lipid membrane [J]. Bioelectrochemistry,2002,56(1):185-188
    【194】. S. Prakash, C. Sivakumar, V. Rajendran, T. Vasudevan, A. Gopalan, Ten Chin Wen.Growth behavior of poly(o-toluidine-co-p-fluoroaniline) deposition by cyclicvoltammetry[J]. Materials Chemistry and Physics,2002,74(1):74-82
    【195】. Chen G Z, Gordo E, Fray D J. Direct electrolytic preparation of chromium powder [J].Metallurgical and Materials Transactions B: Process Metallurgy and MaterialsProcessing Science,2004,35(2):223-233
    【196】. Chen G Z, Fray D J. Understanding the electro-reduction of metal oxides in moltensalts. Light Metals2004-Proceedings of the Technical Sessions,133rd Technical TMSAnnual Meeting.
    【197】. Gordo E, Chen G Z, Fray D J. Electro-deoxidation of solid chromium oxide in moltenchloride salts. Proceedings of sessions and symposia sponsored by the extraction andprocessing division of the minerals, metals and materials society TMS annual meeting,2005.
    【198】. Yuan Deng, Dihua Wang, Wei Xiao, Xianbo Jin, Xiaohong Hu, George Z Chen.Electrochemistry at Conductor/Insulator/Electrolyte Three-Phase Interlines: A ThinLayer Model, J. Phys. Chem. B2005(109):14043-14051
    【199】. Pritish Kar, James W Evans. Determination of kinetic parameters by modeling ofvoltammograms for electrochemical reduction of titanium dioxide[J]. ElectrochemistryCommunications,2006,8(8):1397-1403
    【200】. Kamal Tripuraneni Kilby, Shuqiang Jiao, D J. Fray. Current efficiency studies forgraphite and SnO2-based anodes for the electro-deoxidation of metal oxides [J].Electrochimica Acta,2010,55(23):7126-7133
    【201】. Benoit Claux, Jerome Serp, Jacques Fouletier. Electrochemical reduction of ceriumoxide into metal [J]. Electrochimica Acta,2011,56(7):2771-2780
    【202】. Kuo Chih Chou, Kuangdi Xu. A new model for hydriding and dehydriding reactions inintermetallics [J]. Intermetallics,2007,15(5):767-777

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700