用户名: 密码: 验证码:
高效软性磨粒流精密加工方法及其测控系统
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
模具是工业产品生产用的重要工艺装备,其使用量大,影响面广,是高新技术产业发展的重要保证。在现代工业生产中,超过60%的工业产品需要使用模具。结构化表面模具限制了传统抛光工具与被加工表面的接触。磨粒流加工方法由于强粘度磨粒流的强阻力会破坏结构化表面,磨粒的往复运动加工形式无法做到随机的磨削,限制了其用于镜面级表面粗糙度的超精密加工。软性磨粒流加工方法可利用湍流的随机性引导磨粒进行随机磨削。为了提高软性磨粒流加工方法的效率,必须设计高效加工方法及测控系统,采用分离高压驱动方法,并对精密加工的全过程进行监控。
     研究了软性磨粒流加工方法,并对对液体和磨粒的运动情况做出了模拟和分析。液体运动形态具有两个作用。一方面,对壁面施加法向应力和切向应力;另一方面,液体运动形态也是磨粒运动的主要能量来源,决定了磨粒的运动形态。磨粒对多相流的影响程度可用颗粒质量载荷率、颗粒动量载荷率和颗粒体积分数三个概念确定,其中10%和50%是不同性质磨粒流的分界线。机油具有较大壁面压力和剪切力,更容易造成壁面结构破坏,适用于光整加工的粗加工阶段,用以大量去除材料,水则适用于光整加工的细加工阶段。大直径磨粒获得的速度较大,适用于光整加工的粗加工阶段,直径较小的磨粒能在较长距离保持速度,有利于与工件表面突起进行连续接触,适用于细加工阶段。壁面处湍动能不为零,可引导磨粒做随机切削,提高表面粗糙度。磨粒的材料去除和粗糙度的提高需依靠不同直径的磨粒。小直径磨粒对于液体流动的跟随性较好,利用液体的湍流运动的随机性,可以进行随机的微力微量的切削,加工的随机性有利于粗糙度的提高。大直径磨粒能和壁面长时间的刮擦,碰撞的次数也多于小直径磨粒,可以带来更好的材料去除率。
     对软性磨粒流高效加工方法及测控系统进行了全面分析。讨论了软性磨粒流的各种高效加工方法,并对分离送料方法及装置做了详细的说明。对测控系统的嵌入式操作系统的实时性和任务切换做了具体说明。固液分离方式比固液混合方式更高效,可减少泵压力的浪费和泵体的损坏,可提高输出压力到20MPa以上,分离式送料方法和装置使磨粒浓度可控,提高了加工效率。采用CAN总线和嵌入式实时操作系统可以保证测控任务的实时性。采用模糊控制系统,做到了液体和磨料的输出流量稳定,可将输出流量稳定在6%。采用自律控制方法后,系统的可靠性大幅提高。液体流量和磨粒浓度按工段自动调节,满足了实际加工需求。
     对软性磨粒流的实验环节进行了研究。建立了电源和液源的一致性关系式,对液压、液流和液功推导了应用关系式。工作流道的能量需求属于高压高速小流量类型。在输送液体介质方面适合的泵有离心泵和齿轮泵,输送固体介质方面,隔膜泵满足要求。实验表明,软性磨粒流加工粗糙度目前可以达到0.06μm。通过连续摄像验证了颗粒运动的轨迹及随机性。实验表明,采用高效加工方法及测控系统后加工效率可以提高40%。
The mold is an important equipment for industrial production, which is an importantguarantee for the development of the high-tech industry for large quantity use and wide influence.In modern industrial production, more than60%industrial products require the use of the mold.The structural surface mold limits the contact of traditional polishing tool and the machiningsurface. Abrasive flow machining method will destroy the structural surface because of thestrong resistance of strong viscosity. Abrasive reciprocating motion can not do random grinding,limiting its application for mirror level surface roughness in ultra precision machining. Softabrasive flow machining method can utilize the turbulent random guiding abrasive randomgrinding. In order to improve the efficiency of soft abrasive flow machining, it is necessary toput forward an efficient method and measurement and control system, with separation, highpressure driving method, and the whole process monitoring.
     The soft abrasive flow processing method was studied. Liquid and particle motionsimulation and analysis were made. The movement form of liquid has two functions. On onehand, normal stress and tangential stress is applied on the wall surface; on the other hand, themovement of liquid motion is also a major energy source to determine the particle movement.Abrasive particle influences multiphase flow with particle mass loading rate, particle momentumload rate and the particle volume fraction of which10%and50%are boundaries for differentabrasive flow. Oil has great wall pressure and shearing force, more likely to cause damage ofwall structure, is suitable for the finishing of rough machining stage for a large number ofmaterial removal. Water is suitable for the finishing of fine processing stages. Large diameterabrasive speed gain is larger, suitable for the finishing of rough machining phase. The smallerdiameter abrasive can maintain speed in longer distance, which is conducive to the continuouscontact with workpiece surface protrusions for fine processing stages. Wall turbulence kineticenergy is not zero, which can guide the abrasive doing random cutting and improve the surfaceroughness. Abrasive material removal and surface roughness increase depend on differentdiameter of the abrasive grain. Small diameter abrasive follow liquid flow better with random micro cutting in favor of roughness improve. Large diameter abrasive long time scraping on wall,with collision frequency more than small diameter abrasive, can lead to better material removalrate.
     Comprehensive analysis of soft abrasive flow processing method and measurement andcontrol system was undertaken. Discussion of soft abrasive flow of all sorts of efficientprocessing methods, and the separation feeding method and device were described in detail.Embedded real-time operating system and task switching of measurement and control systemwere illustrated in detail. Solid-liquid separation is more efficient than solid-liquid mixing way,which can reduce the pressure waste and the pump body damage and improve the outputpressure to above of20MPa. Separate feeding method enables particle concentration control, toimprove the efficiency of processing. Using CAN bus and embedded real-time operating systemcan guarantee the real-time of control tasks. By using the fuzzy control, the output flow is stableat6%. With autonomous control method, the reliability of the system is greatly improved. Liquidflow volume and particle concentration are automatically adjusted by section, meeting theprocessing needs.
     The soft abrasive flow experiments were studied. Power source and the fluid sourcecoherence relation were established. The application relationship of fluid pressure, flow volumeand power were derived. Energy demand of work flow channel is high pressure, high speed andsmall flow types. During the delivery of liquid medium, centrifugal pump and gear pump arebetter. Transportation of solid medium needs the diaphragm pump to meet the requirements.Experimental results show that, the soft abrasive flow machining roughness can now reach0.06μm. Through continuous imaging particle motion trajectory and randomness are proved.Experimental results show that, using an efficient processing method and measurement andcontrol system the efficiency is increased by40%.
引文
[1] Ciampini D, Papini M. A cellular automata and particle-tracking simulation of abrasive jetmicromachining that accounts for particle spatial hindering and second strikes [J]. Journal ofMicromechanics and Microengineering,2010,20(4):22-26.
    [2] Zhang SJ, Li XH, Gu YL. Air flow exploration of abrasive feed tube [J]. Acta Mechanica Sinica,2009,25(6):761-768.
    [3] Ghobeity A, Ciampini D, Papini M. An analytical model of the effect of particle size distribution on thesurface profile evolution in abrasive jet micromachining [J]. Journal of Micromechanics andMicroengineering,2009,209(20):6067-6077.
    [4] Li HZ, Wang J, Fan JM. Analysis and modelling of particle velocities in micro-abrasive air jet [J].International Journal of Machine Tools&Manufacture,2009,49(11):850-858.
    [5] Shafiei N, Getu H, Sadeghian A, et al. Computer simulation of developing abrasive jet machinedprofiles including particle interference [J]. Journal of Materials Processing Technology,2009,209(9):4366-4378.
    [6] Ohashi K, Wang R, Hasegawa H. Fundamental Study on the Precision Abrasive Machining Using aCavitation in Reversing Suction Flow [J]. Advances in Abrasive Technology XI,2009,389-390(1):223-228.
    [7] Ivantsiv V, Spelt J.K, Papini M. Mass flow rate measurement in abrasive jets using acoustic emission [J].Measurement Science and Technology,2009,20(9):95-98.
    [8] Ahmadi Brooghani SY, Hassanzadeh H. Modeling of single-particle impact in abrasive water jetmachining [C]//Ardil C. Proceedings of World Academy of Science Engineering and Technology Vol.26. Canakkale: WorldAcad Sci, Eng&Tech-waset,2007:720-725.
    [9] Hou RG, Huang CZ. Numerical simulation and experimental investigation of the gas-liquid-solidthree-phase flow outside of the abrasive water jet nozzle [J]. Key Engineering Materials,2010,431-432(1):90-93.
    [10] Ruan HY, Liu HX. Numerical simulation of liquid-solid two-phase flows on internal and outside flowfield in high pressure abrasive water jet cutting nozzle [J]. Key Engineering Materials,2009,392-394(1):565-569.
    [11] Nie BS, Meng JQ, Ji ZF. Numerical simulation on flow field of pre-mixed abrasive water jet nozzle [C]//IEEE.7th International Conference on System Simulation and Scientific Computing Asia SimulationConference Vol.1-3. NewYork: IEEE,2008:247-251.
    [12] Wang J. Particle velocity models for ultra-high pressure abrasive waterjets [J]. Journal of MaterialsProcessing Technology,2009,209(9):4573-4577.
    [13] Hou RG, Huang CZ, Li L. Simulation of the gas-liquid-solid three-phase flow velocity field outside theabrasive water jet(AWJ) rectangle nozzle and ellipse nozzle [J]. Key Engineering Materials,2008,359-360:470-473.
    [14] Fowler G, Pashby IR. The effect of particle hardness and shape when abrasive water jet millingtitanium alloy Ti6Al4V [J]. Wear,2009,266(7-8):613-620.
    [15]李全来.微磨料气射流切割单晶硅冲蚀率及切割质量研究[D].济南:山东大学,2009.
    [16]吉春和.前混合磨料水射流喷丸强化技术的射流参数[J].煤矿机电,2009,(1):82-84.
    [17]高娜.基于SPH方法的磨料水射流加工数值仿真研究[D].济南:山东大学,2010.
    [18]焦佳能,费群星,白凤民,等.钛合金表面磨粒流加工工艺研究[J].金刚石与磨料磨具工程,2010,30(1):42-45.
    [19]谭援强,李艺, Sheng Yong.磨粒流加工的固液两相流模型及压力特性模拟[J].中国机械工程,2008,19(4):439-441.
    [20]郭瑞,刘洪美,于天彪,等.磁流变液-SiC自由磨粒流加工深孔研究[C]//中国颗粒学会颗粒制备与处理专业委员会.第九届全国颗粒制备与处理研讨会论文集.威海:中国颗粒学会颗粒制备与处理专业委员会,2009:100-106.
    [21]李纯.共轨管磨粒流超精密抛光技术研究[D].长春:长春理工大学,2009.
    [22]周毅.满足欧III以上排放喷油嘴的喷孔加工技术研究[D].上海:上海交通大学,2009.
    [23] Das M, Jain VK. Analysis of magnetorheological abrasive flow finishing (MRAFF) process [J].International Journal ofAdvanced Manufacturing Technology,2008,38(5-6):613-621.
    [24] Visan A, Ionescu N, Avramescu V. Design and manufacturing an abrasive flow machining equipment[C]//Nedelcu D, Slatineanu L, Mazuru S. Proceedings of the13th International Conference ModernTechnologies, Quality and Innovation: Modtech2009-New Face of Tmcr. Romania: Univ TechGheorgheAsachi Iasi,2009:687-690.
    [25] Song GZ, Li YZ. Temperature dependence and effect on surface roughness in abrasive flow machining[J]. Advanced Materials Research,2008,53-54:375-380.
    [26] Sankar MR, Jain VK. Rotational abrasive flow finishing (R-AFF) process and its effects on finishedsurface topography [J]. International Journal Of Machine Tools&Manufacture,2010,50(7):637-650.
    [27] Kim DW, Cho MW, Seo TI. Experimental study on the effects of alumina abrasive particle behavior inMR polishing for MEMS applications [J]. Sensors,2008,8(1):222-235.
    [28] Wan, Yee Ming. Abrasive flow machining apparatus, method and system: Singapore, WO2009/105043A1[P].2009-08-27.
    [29] Kamiti M, Popadowski S. Advances in the characterization of particle size distributions of abrasiveparticles used in CMP [C]//Zwicker G. Materials Research Society Symposium Proceedings Vol.991.Warrendale: Materials Research Society,2007:119-124.
    [30] Li JY, Liu WN, Yang LF, et al. Design and simulation for mico-hole abrasive flow machining [C]//Pan YH, Sun SQ.2009IEEE10th International Conference on Computer-Aided Industrial Design&Conceptual Design Vols1-3-E-Business, Creative Design, Manufacturing. New York: IEEE,2009:815-820.
    [31] Walia RS, Shan HS. Determining dynamically active abrasive particles in the media used in centrifugalforce assisted abrasive flow machining process [J]. International Journal of Advanced ManufacturingTechnology,2008,38(11-12):1157-1164.
    [32] Sankar MR, Ramkumar J, Jain VK. Experimental investigation and mechanism of material removal innano finishing of MMCs using abrasive flow finishing (AFF) process [J]. Wear,2009,266(7-8):688-698.
    [33]朱春锋.喷油嘴磨粒流超精密抛光技术研究[D].长春:长春理工大学,2008.
    [34]李富长.液压产品去毛刺加工工艺技术研究[D].南京:南京理工大学,2008.
    [35]张晓阳.磨粒流加工技术及其在航天产品中的应用[C]//中国机械工程学会特种加工分会.第13届全国特种加工学术会议论文集.南昌:中国机械工程学会特种加工分会,2009:26-30.
    [36]费群星,焦佳能,白凤民,等.薄壁金属型面磨粒流加工工艺研究[C]//中国机械工程学会特种加工分会.第13届全国特种加工学术会议论文集.南昌:中国机械工程学会特种加工分会,2009:66-70.
    [37] Wang AC, Tsai L. Uniform surface polished method of complex holes in abrasive flow machining [J].Transactions of Nonferrous Metals Society of China,2009,19(1): S250-S257.
    [38] Walia RS, Shan HS. Modelling of centrifugal-force-assisted abrasive flow machining [J]. Proceedingsof The Institution of Mechanical Engineers Part E-Journal of Process Mechanical Engineering,2009,223(E4):195-204.
    [39] Wang YG, Zhao YW. Modeling effects of abrasive particle size and concentration on material removalat molecular scale in chemical mechanical polishing [J]. Applied Surface Science,2010,257(1):249-253.
    [40] Sankar MR, Jain VK. Experimental investigations into rotating workpiece abrasive flow finishing [J].Wear,2009,267(1-4):43-51.
    [41] Singh S, Shan HS. Experimental studies on mechanism of material removal in abrasive flowmachining process [J]. Materials and Manufacturing Processes,2008,23(7):714-718.
    [42] Das M, Jain VK. Fluid flow analysis of magnetorheological abrasive flow finishing (MRAFF) process[J]. International Journal of Machine Tools&Manufacture,2008,48(3-4):415-426.
    [43] Jain VK. Investigations into abrasive flow finishing of complex workpieces using FEM [J] Wear,2009,267(1-4):71-80.
    [44] Das M. Parametric study of process parameters and characterization of surface texture using rotational-magnetorheological abrasive flow finishing (R-MRAFF) process [C]//ASME. Proceedings of theASME International Manufacturing Science and Engineering Conference Vol2. New York: ASME,2009:251-260.
    [45] Fang L. Temperature as sensitive monitor for efficiency of work in abrasive flow machining [J].Wear,2009,266(7-8):678-687.
    [46] Avramescu V, Grejdanescu R. Technology and equipment for complex surfaces nanofinishing byabrasive flow machining with reopectic work mediums [C]//Bulucea CA. Proceedings of the8thWseas International Conference on Computational Intelligence, Man-Machine Systems andCybernetics. Athens: World Scientific and EngineeringAcad and Soc,2009:15-18.
    [47] Fang L1, Zhao J. Movement patterns of ellipsoidal particle in abrasive flow machining [J]. Journal ofMaterials Processing Technology,2009,209(20):6048-6056.
    [48] Walia RS. Morphology and integrity of surfaces finished by centrifugal force assisted abrasive flowmachining [J]. International Journal of Advanced Manufacturing Technology,2008,39(11-12):1171-1179.
    [49] Uhlmann E, Mihotovic V. Modelling the abrasive flow machining process on advanced ceramicmaterials [J]. Journal of Materials Processing Technology,2009,209(20):6062-6066.
    [50] Zhang SR. Study on abrasive flow ultra-precision polishing technology of small hole [C]//IEEE.2009IEEE International Conference on Mechatronics and Automation, Vols1-7, Conference Proceedings.NewYork: IEEE,2009:4305-4309.
    [51] Tkachenko GV. Similarity criteria in the erosion theory of brittle materials in abrasive particle flow [J].Powder Metallurgy and Metal Ceramics,2008,47(9-10):572-576.
    [52] Kar KK. Preferential media for abrasive flow machining [J]. Journal of Manufacturing Science andEngineering-Transactions of theASME,2009,131(1):100-105.
    [53] Delo DP, Greenslet JM. Improved microhole precision and performance by MicroFlow (TM) abrasiveflow machining [C]//Rajurkar KP. Proceedings of the15th International Symposium onElectromachining. Lincoln: Univ Nebraska-Lincoln,2007:399-403.
    [54]计时鸣,唐波,谭大鹏,等.结构化表面软性磨粒流精密光整加工方法及其磨粒流动力学数值分析[J].机械工程学报,2010,46(15):178-184.
    [55] Ji Shiming, Weng Xiaoxing, Tan Dapeng. Research on the precision processing method for softnessabrasive two-phase flow based on LSM [C]//IEEE.2010International Conference on Networking,Sensing and Control. Chicago: IEEE Computer Society,2010:53-57.
    [56] Ji SM, Gong B, Tan DP, et al. Research on liquid-solid two phase abrasive, flow based on the unifiedsecond-moment [J]. Advanced Materials Research,2010,102-104:489-494.
    [57] Ji SM, Xiao FQ, Tan DP. Anew ultraprecision machining method with softness abrasive flow based ondiscrete phase model [J].Advanced Materials Research,2010,97-101:3055-3059.
    [58] Ji SM, Xiao FQ, Tan DP. Analytical method for softness abrasive flow field based on discrete phasemodel [J]. Science China-Technological Sciences,2010,53(10):2867-2877.
    [59] Ji SM, Xu JL, Zhang L. Motion Model and Numerical Simulation of Fluid and Abrasive Particle inNear Wall Region [J]. Materials Science Forum,2009,626-627:237-242.
    [60] Ji SM, Gong B, Yuan QL, et al. Mould machining of structural surface based on liquid-solid two phaseabrasive flow [J].Advanced Materials Research,2009,69-70:198-202.
    [61]计时鸣,晓风清,谭大鹏.基于离散相模型的软性磨粒流超精密加工两相流监测方法:中国,201010158872.2[P].2010-09-15.
    [62]计时鸣,晓风清,谭大鹏.基于水平集的软性磨粒流流场测试方法:中国,201010159603.8[P].2010-08-25.
    [63]计时鸣,许京雷,谭大鹏.一种电控螺杆式磨粒流分离送料方法及其专用装置:中国,201010159343.4[P].2010-09-15.
    [64]计时鸣,李琛,谭大鹏.一种软性磨粒流自动搅拌系统:中国,201010122313.6[P].2010-08-04.
    [65]计时鸣,张生昌,张宪,等.研磨抛光用磨粒流循环系统外置式专用搅拌分离器:中国,200810061117.5[P].2010-08-13.
    [66]潘艳.基于“软性”液-固两相磨粒流的模具结构化表面光整加工的工艺研究[D].杭州:浙江工业大学,2009.
    [67]吴燕,吴允平,李汪彪,等.灯塔分布式测控终端系统的设计与实现[J].测控自动化,2011,27(5):55-57.
    [68]陶冉,张辉.基于C8051F020的水泵综合参数测控系统[J].计量测试与检定,2011,21(2):37-39.
    [69]蒋永年,冯平,肖玮.基于LPC2294和μCOS-Ⅱ的储油罐区测控系统智能节点[J].仪表技术与传感器,2011,(3):107-110.
    [70]赵新华,潘国锋,李艳洁,等.基于组件式结构的测控系统研制[J].化工自动化及仪表,2011,38(5):562-564.
    [71]肖勇,邵世煌,朱祥和.基于最小故障感知器的分布式测控网络诊断[J].控制工程,2011,18(1):152-155.
    [72]吴海涛,唐振民. PG数字式保护测控装置的设计[J].计算机工程与设计,2011,32(10):3356-3359.
    [73]张吉,宋斌,唐成虹.保护测控装置嵌入式采样新平台的研制[J].电力系统自动化,2011,35(2):89-92.
    [74]李桂岩,魏宾,谷秀明.单片机测控系统的抗干扰措施[J]. PLC&FA,2011,(1):79-81.
    [75]李万军,王航宇.基于WinAC的高压防爆开关保护测控系统设计[J].电子设计工程,2011,19(5):16-18.
    [76]吴兴纯.计算机测控系统的故障分析以及抗干扰技术研究[J].自动化与仪器仪表,2011,(5):26-29.
    [77]周连佺.液压支架试验自动测控系统的研制[J].液压与气动,2011,(9):90-92.
    [78]蒲亮亮.光导AGV智能循迹测控系统的建模与仿真[J].测控技术,2011,30(5):85-88.
    [79]刘海明,吴永锦,黄双根.基于模糊PID的禽蛋抓取测控系统步进电机的研究[J].湖北农业科学,2011,50(21):4473-4476.
    [80]李大铭,赵新良,林永杰.基于模糊神经网络的短时公交到站时间预测[J].东北大学学报(自然科学版),2011,32(3):443-446.
    [81]李慨,张庭.基于视觉传感器的移动焊接机器人测控系统[J].中南大学学报(自然科学版),2011,42(4):1050-1055.
    [82]牛培峰,张密哲,陈贵林,等.自适应模糊神经网络控制在锅炉过热汽温控制中的应用[J].动力工程学报,2011,31(2):115-119.
    [83]舒红宇,丁鹏,廖达平,等.基于CAMV架构的上下位机模式测控系统的开发[J].微计算机信息,2011,27(4):1-2.
    [84]黄茫茫,周晓军,魏燕定.基于INtime的六自由度运动平台实时测控系统[J].计算机应用,2011,31(10):2858-2860.
    [85]冯炳灿,孔德仁,商飞.反射内存网络在实时测控系统中的应用[J].计算机测量与控制,2011,19(1):60-62.
    [86]陈源,王元钦,刘莹.基于通用计算机平台的航天测控系统研究[J].测控技术,2011,30(4):8-12.
    [87]翟茹玲,柴毅,张可.火箭飞行测控数据野值处理及其无迹Kalman滤波[J].计算机工程与应用,2011,47(3):233-236.
    [88]李权,周兴社.基于测控数据挖掘的航天器故障诊断技术研究[J].计算机测量与控制,2011,19(3):500-502.
    [89]苏思,姜礼平,邹明.基于最小二乘支持向量机的测控数据融合[J].火力与指挥控制,2011,36(3):98-100.
    [90]黄成玉,任学军,李学哲,等.基于CAN总线的地层测试评价仪液压泵驱动电机测控系统的研究[J].电机与控制应用,2011,38(1):60-63.
    [91]陈程.基于CAN总线的分布式远程测控系统设计[J].计算机测量与控制,2011,19(4):782-784.
    [92]胡兵,刘希军,张小龙.基于CAN总线通信网络的温度测控系统[J].西华大学学报(自然科学版),2011,30(4):76-78.
    [93]孙康岭.基于CAN总线与以太网的粮情测控系统[J].农机化研究,2011,(9):201-204.
    [94]孙书咏,范九伦.公路监测中的一种远程测控终端[J].西安邮电学院学报,2011,16(4):33-36.
    [95]王磊,庹先国,成毅,等.基于Nios II+CAN总线的远程测控网设计[J].核电子学与探测技术,2011,31(5):584-587.
    [96]周钦河,刘桂雄,洪晓斌.基于SIP测控网络与IPv6网络融合研究[J].机电工程技术,2011,40(7):13-16.
    [97]梅各各,靳斌,付晖.具有自监视技术的广域测控网络研究与实现[J].西华大学学报(自然科学版),2011,30(5):85-87.
    [98]郑亮,敖以全.数控机床远程网络测控系统设计[J].工业控制计算机,2011,24(1):45-46.
    [99]魏来,王海宽,费敏锐.异构网络测控系统集成设计及发电实验应用[J].自动化仪表,2011,32(5):6-10.
    [100]陈兴良.运载火箭推进剂利用地面测控系统的设计与实现[J].计算机测量与控制,2011,19(3):535-538.
    [101]陈宏钧,鲁思兆,姜生元,等.管道机器人三轴差速器性能测控系统[J].控制工程,2011,18(1):123-127.
    [102]陈峰,韩晓英.基于ARM的3G无线射频测控平台设计与应用[J].电子设计工程,2011,19(15):108-110.
    [103]姜文涛,刘万军.基于ARM与图像仿真的无线测控终端[J].计算机工程,2011,37(1):244-248.
    [104]曾磊,张海峰,侯维岩.基于WiFi的无线测控系统设计与实现[J].电测与仪表,2011,48(7):81-83.
    [105]蔡雪佳,李旭,邓枫.基于无线传感网的嵌入式远程测控系统研究[J].现代电子技术,2011,34(16):96-99.
    [106]黄豪彩,杨灿军,陈道,等.基于LabVIEW的深海气密采水器测控系统[J].仪器仪表学报,2011,32(1):40-44.
    [107]王恒宜,齐蓉.基于LabWindows/CVI的单轴稳定平台测控系统[J].测控技术,2011,30(9):17-20.
    [108]王恒升,彭宏道,匡洋.基于USB的球杆测控系统开发[J].控制工程,2011,18(1):109-112.
    [109]任世锦,赵恒青,郑恩辉,等.网络化虚拟测控系统的设计[J].电子设计工程,2011,19(12):56-59.
    [110]王皖君,张为公,杨帆,等.变速器试验台测控系统设计[J].测控技术,2011,30(9):38-42.
    [111]王斌.基于先进组态技术的PLC测控系统监控平台设计[J].电源技术,2011,35(10):1278-1280.
    [112] V. Yakho, S. A. Orszag. Renormalization Group Analysis of Turbulence[J]. Journal of ScientificComputing,1986,1(1):1-51.
    [113] T. H. Shih, W. W. Liou, A. Shabbir. A New Eddy-Viscosity Model for High Reynolds NumberTurbulent Flows [J]. Computers Fluids,1995,24(3):227-238.
    [114] M. M. Gibson, B. E. Launder. Ground Effects on Pressure Fluctuations in the Atmospheric BoundaryLayer [J]. J. Fluid Mech.,1978,86:491-511.
    [115] F. R. Menter. Two-Equation Eddy-Viscosity Turbulence Models for Engineering Applications [J].AIAAJournal,1994,32(8):1598-1605.
    [116] S. A. Morsi, A. J. Alexander. An Investigation of Particle Trajectories in Two-Phase Flow Systems [J].J.Fluid Mech.,1972,55(2):193-208.
    [117] A. Haider, O. Levenspiel. Drag Coefficient and Terminal Velocity of Spherical and NonsphericalParticles [J]. Powder Technology,1989,58:63-70.
    [118] P. G. Saffman. The Lift on a Small Sphere in a Slow Shear Flow [J]. J. Fluid Mech.,1965,22:385-400.
    [119]程鹏,卢国杰,韦雅君.有限自动机在自动柜员机测控程序设计中的应用[J].中小企业管理与科技,2011,(7):282.
    [120]关超,蒋建中,郭军利.一种基于反向有限自动机的多模式匹配算法[J].计算机工程,2010,36(1):208-210.
    [121]黄飞丹,蒙春凤,邓培民,等.由单个状态生成的有限自动机的一些性质[J].工程数学学报,2011,28(1):55-59.
    [122]左金平.有限自动机在模式匹配中的应用与研究[J].晋中学院学报,2011,28(3):64-66.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700