用户名: 密码: 验证码:
氧化物弥散强化铁基高温合金的制备及强化机理研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
氧化物弥散强化铁基高温合金由于具备低肿胀、抗辐射、抗氧化、抗腐蚀及高的蠕变强度等综合性能,被认为是下一代核裂变/聚变反应堆第一壁等关键结构用材料,在国际上得到了大量研究者关注。本论文在国家自然科学基金重点项目资助下,对Fe-(12-14)Cr-3W-(0.3-0.4)Ti-(0.3-0.4)Y2O3-(1Cu)(wt.%)合金体系中的显微组织演化和力学性能开展了系统的研究工作。首先,系统研究了氧引入方式的新工艺,并对氧的存在方式及演化形式对纳米弥散相形成的作用进行了解释;同时通过对该合金体系中空位的形成及演化机制的研究和空位生成焓的测定,阐述了空位和Y-Ti-O纳米结构相的作用。其次,采用HRTEM、HAADF-STEM、TEM-EDX等分析手段对合金中的5nm左右的Y-Ti-O、铜沉淀等进行了深入的研究,阐明了其相成分组成、结构、与基体的位相关系及演化机制;最后,通过制备具有双晶尺寸分布的氧化物弥散强化铁素体钢,改善合金的韧性,同时通过微合金化过程对合金体系进行了组织改性,提高了合金的综合力学性能。主要得到的结论如下:
     (1)通过紧耦合雾化过程引入氧元素,粉末氧含量与雾化介质中氧含量成线性增长关系,粉末中氧的分布由内而外依次增多,氧可部分固溶于粉末中。粉末表面的氧在热固结过程中形成由氧化物组成的原始颗粒边界,在热机械处理后,原始颗粒边界破碎,氧元素重新向基体中扩散,在基体中形成弥散分布的氧化物。合金在1400℃退火1h,空冷后的力学性能最优,室温抗拉强度和断后延伸率分别为940MPa,7%。
     (2)在Fe-Cr-W-Ti-Y预合金粉末中添加1wt.%Fe203纳米颗粒,能够促进热挤压—热轧制过程中多种复合氧化物颗粒的形成。除了纳米Y2Ti2O7相,合金中还形成了微米级的Cr1.3Fe0.7O3、(Cr0.88Ti0.12)2O3和Y3Fe5O12相。微米级颗粒的形成与Fe2O3粉末在热挤压过程中团聚成型和Fe203与亲氧能力强的原子(Y、Ti、Cr)发生置换反应有关。添加少量Fe203粉末能够明显提高热挤压—热轧制粉末冶金铁基合金的显微硬度和室温、中温(550℃)抗拉强度。合金室温抗拉强度为1257MPa,比未添加Fe203粉末的合金增加了50.7%,但延伸率从13%降低至6.5%。
     (3)在过饱和铁素体基体中,不共格的富Cr、Ti氧化物相与共格的Y-Ti-O纳米相共同沉淀,延长机械合金化时间可以将Cr、Ti元素回溶于基体中,有利于形成细小的均匀弥散的Y-Ti-O纳米颗粒。
     (4)在14YWT和14FWT两种铁素体钢中,发现至少存在两种不同晶体学取向的Y-Ti-O纳米相,具有Y2Ti2O7结构。用Fe2O3作为携氧剂制备的纳米结构相强化铁素体钢表现出优异的综合性能。通过计算,该合金的空位生成焓约为1.11eV,明显低于纯铁的空位生成焓,为Y-Ti-O纳米相的形成提供了有利的结构条件。
     (5)双晶尺寸分布晶粒组织能够有效提高纳米特征弥散强化铁素体钢的延性。通过理论计算,具有晶粒尺寸双峰粒度分布的纳米弥散强化铁素体钢的应变值比仅由纳米尺度晶粒组成的14CrODS铁素体钢要超出100%以上,理论计算与实验值符合较好。
     (6)经过加铜微合金化的合金在时效10h时硬度达到峰值,此时合金中形成富铜的强化相,富铜沉淀的平均颗粒尺寸约为9.6nm,体积分数约为1022m-3。加铜微合金化可以进一步平衡合金的韧性与强度,富铜沉淀相经过500℃、300h长时间热暴露未发生明显长大。相对未加铜的双晶尺寸分布铁素体钢而言,加铜微合金化的合金强度得到很大的提高,在室温下,富铜沉淀强化的作用效果适用Orowan绕过机制。
Oxide dispersion strengthened iron-base superalloy is considered as the critical structure materials in the next generation of nuclear fission/fusion reactor, which attract a large number of researchers to carry out extensive research, due to its low-swelling, irradiatio resistance, oxidation resisitance, corrosion resistance and high creep strength. This work was supported by the National Natural Science Foundation of China. The microstructural evolution and mechanical properties of the Fe-(12-14)Cr-3W-(0.3-0.4) Ti-(0.3-0.4) Y2O3-(1Cu)(wt.%) alloy system have been investigated systematically. Firstly, the technology inducing oxygen was systematically studied in this work, as well as the effect of existence and evolution of oxygen on formation of nanoparticles was explained.The relationship between vacancy and Y-Ti-O nanoparticle was described through formation and evolution of vacancy and vacancy formation enthalpy in this alloy system. Secondly, HRTEM, HAADF-STEM, TEM-EDX analysis were used to investigate deeply on Y-Ti-O oxides and copper precipitation with mean particle sizes about5nm. Finally, the microstructures of the alloy system were modified to improve mechanical properties through micro-alloying and powder metallurgy process. Main conclusions as follows:
     (1) Introducing oxygen by gas atomized process, the oxygen content in powders and that in gas atomized atmosphere was a linear growth relationship. Oxygen content in powder increased from the inside in turn. Oxygen in the powder can be part of solution. The oxygen on powder surface was formed prior particle boudary composed of oxides in the hot powder consolidation process. After the thermo-mechanical and heat treatment, crushing the original grain boundaries and oxygen resolution to the matrix occurred to form nanoscale dispersed oxides in the matrix due to the prior particle boundaries crushing. After annealling at1400℃for1h and followed by air-cooled, the room temperature tensile strength and elongation were940MPa,7%, respectively.
     (2) Mixing nano-1wt.%Fe2O3particles in the Fe-Cr-W-Ti-Y pre-alloyed powder, the formation of a variety of composite oxide particles can be promoted in the hot extrusion-hot rolling process. In addition to nano Y2Ti207phase, micron-sized Cr1.3Fe0.7O3,(Cr0.88Ti0,12)203and Y3Fe5012phase were also formed. Formation micron-sized particle was related to agglomeration of Fe2O3powder in the hot extrusion process of and reaction between Fe2O3and strong pro-oxygen atoms (Y, Ti, Cr). Addtion of a small amount of Fe2O3powder can significantly improve microhardness and room temperature, intermediate temperature (550℃) tensile strength of the hot extrusion-hot rolling powder metallurgy iron-based alloy. The room temperature tensile strength of the Fe2O3addtion alloy was1257MPa, compared with the Fe2O3-free alloy that was increased by50.7%, but the elongation decreased from13%to6.5%.
     (3)In the supersaturated ferrite matrix, the incoherence Cr, Ti-rich oxide phases and coherency Y-Ti-O nanoparticle were co-precipitated. Resolution of Cr, Ti elements in the matrix can be occured to by extending the mechanical alloying time, which is conducive to the formation of small uniform dispersion of Y-Ti-O nanoparticles.
     (4) In14YWT and14FWT two kinds of ferritic steels, two different crystallographic orientations at least between the Y-Ti-O nanoparticles with a Y2Ti207lattice structure and the matrix have been found. The nanostructural oxide dispersion strengthened ferritic steel prepared using Fe2O3as an oxygen carrier yield an excellent mechanical properties. The vacancy formation enthalpy of the alloy was about1.11eV by calculating, which was significantly lower than the pure iron vacancy formation enthalpy of the pure iron. That provides a favorable structural conditions to formation of the Y-Ti-O nanoparticle.
     (5) Bimodal grain size distribution structure can effectively improve the ductility of oxide dispersion strengthened ferritic steel. Through theoretical calculation, the ductility of bimodal grain size distribution oxide dispersion strengthened ferritic steel was exceed100%than that of only nanoscale grain14Cr ODS ferritic steel, however theoretical and experimental values was good agreement.
     (6) Adding copper as micro-alloyed element in bimodal grain size alloy, the microhardness reached a peak value after aging10h at500℃. At peak aging condition, copper-rich precipitation has been formed with a mean particle size about9.6nm and volumn fraction1022m-3. The toughness and strength can be further balanced by adding copper as micro-alloyed element. The copper-rich precipitate did not significantly growth up after500℃,300h prolonged hot exposured. Not increase the relative size distribution of double-crystal copper ferrite steel. The strength of copper addtion micro-alloyed alloy has been greatly improved, comparison to that of copper-free alloy. At room temperature, copper-rich precipitation strengthening effect calculated by Orowan bypass mechanism.
引文
[1]W. Hoffelner. Design related aspects in advanced nuclear fission plants. Journal of Nuclear Materials,2011,409(2):112-116.
    [2]S. Ukai, S. Ohtsuka, T. Kaito, et al. High-temperature strength characterization of advanced 9Cr-ODS ferritic steels. Materials Science and Engineering:A, 2009,510-511:115-120.
    [3]J. H. Schneibel, C. T. Liu, M. K. Miller, et al. Ultrafine-grained nanocluster-strengthened alloys with unusually high creep strength. Scripta Materialia,2009,61(8):793-796.
    [4]T. Hayashi, P. M. Sarosi, J. H. Schneibel, et al. Creep response and deformation processes in nanocluster-strengthened ferritic steels. Acta Materialia,2008,56(7):1407-1416.
    [5]V. de Castro, S. Lozano-Perez, E. A. Marquis, et al. Analytical characterisation of oxide dispersion strengthened steels for fusion reactors. Materials Science and Technology,2011,27(4):719-723.
    [6]A. J. O. Zimmermann, H. R. Z. Sandim, A. F. Padilha. The new EUROFER stainless steels for nuclear fusion. Rem-Revista Escola De Minas,2010,63(2): 287-292.
    [7]柳光祖,田耘,单秉权.氧化物弥散强化高温合金.粉末冶金技术,2001,19(1):20-23.
    [8]J. H. Kim, T. S. Byun, D. T. Hoelzer. Tensile fracture characteristics of nanostructured ferritic alloy 14YWT. Journal of Nuclear Materials,2010, 407(3):143-150.
    [9]H. Kishimoto, R. Kasada, O. Hashitomi, et al. Stability of Y-Ti complex oxides in Fe-16Cr-0.1Ti ODS ferritic steel before and after heavy-ion irradiation. Journal of Nuclear Materials,2009,386:533-536.
    [10]H. Hadraba, B. Fournier, L. Stratil, et al. Influence of microstructure on impact properties of 9-18%Cr ODS steels for fusion/fission applications. Journal of Nuclear Materials,2011,411(1-3):112-118.
    [11]M. K. Miller, D. T. Hoelzer, E. A. Kenik, et al. Nanometer scale precipitation in ferritic MA/ODS alloy MA957. Journal of Nuclear Materials,2004,329: 338-341.
    [12]B. Wilshire, T. D. Lieu. Deformation and damage processes during creep of Incoloy MA957. Materials Science and Engineering a-Structural Materials Properties Micro structure and Processing,2004,386(1-2):81-90.
    [13]C. H. Zhang, J. Jang, H. D. Cho, et al. Void swelling in MA956 ODS steel irradiated with 122 MeV Ne-ions at elevated temperatures. Journal of Nuclear Materials,2009,386:457-461.
    [14]J. C. Chen, W. Hoffelner. Irradiation creep of oxide dispersion strengthened (ODS) steels for advanced nuclear applications. Journal of Nuclear Materials, 2009,392(2):360-363.
    [15]R. Rahmanifard, H. Farhangi, A. J. Novinrooz, et al. Investigation of microstructural characteristics of nanocrystalline 12YWT steel during milling and subsequent annealing by X-ray diffraction line profile analysis. Journal of Materials Science,2010,45(23):6498-6504.
    [16]M. K. Miller, D. T. Hoelzer, E. A. Kenik, et al. Stability of ferritic MA/ODS alloys at high temperatures. Intermetallics,2005,13(3-4):387-392.
    [17]S. Ukai, M. Fujiwara. Perspective of ODS alloys application in nuclear environments. Journal of Nuclear Materials,2002,307:749-757.
    [18]V. de Castro, T. Leguey, M. A. Monge, et al. Mechanical dispersion of Y2O3 nanoparticles in steel EUROFER 97:process and optimisation. Journal of Nuclear Materials,2003,322(2-3):228-234.
    [19]C. A. Williams, E. A. Marquis, Alfred Cerezo, et al. Nanoscale characterisation of ODS-Eurofer 97 steel:An atom-probe tomography study. Journal of Nuclear Materials,2010,400(1):37-45.
    [20]M. Ratti, D. Leuvrey, M. H. Mathon, et al. Influence of titanium on nano-cluster (Y, Ti, O) stability in ODS ferritic materials. Journal of Nuclear Materials,2009,386-388:540-543.
    [21]郭建亭.高温合金材料学.2008,北京:科学出版社.
    [22]谢锡善.我国高温材料的应用与发展.机械工程材料,2004,28(1).
    [23]徐强张幸红韩杰才赫晓东.先进高温材料的研究现状和展望.固体火箭技术,2002,25(3):51-55.
    [24]陈国良.高温合金学.1988.5,北京:冶金工业出版社.
    [25]J. S. Benjamin. Dispersion strengthened superalloys by mechanical alloying (Superalloys dispersion strengthening and age hardening by mechanical alloying). Metallurgical and Materials Transactions B,1970,1(10): 2943-2951.
    [26]柳光祖,田耘,单秉权.氧化物弥散强化高温合金.粉末冶金技术,2001,19(1):20-23.
    [27]郑子樵.材料科学基础.2006,长沙:中南大学出版社.
    [28]潘金生仝健民田民波.材料科学基础.1998,北京:清华大学出版社.
    [29]卢光熙译.物理冶金基础.1980,上海:上海科学技术出版社.
    [30]张义文上官永恒.粉末冶金高温合金的研究与发展.粉末冶金工业,2004,14(6):30-43.
    [31]M. S. El-Genk, J. M. Tournier. Mechanically alloyed-oxide dispersion strengthened steels for use in space nuclear power systems, in Space Technology and Applications International Forum-Staif 2004, ElGenk, Editor. 2004:829-841.
    [32]R. Andreani, M. Gasparotto. Overview of fusion nuclear technology in Europe. Fusion Engineering and Design,2002,61-62:27-36.
    [33]M. H. Mathon, V. Klosek, Y. de Carlan, et al. Study of PM2000 microstructure evolution following FSW process. Journal of Nuclear Materials,2009, 386-388:475-478.
    [34]H. Sakasegawa, F. Legendre, L. Boulanger, et al. Stability of non-stoichiometric clusters in the MA957 ODS ferrtic alloy. Journal of Nuclear Materials, In Press, Corrected Proof.
    [35]R. L. Klueh, P. J. Maziasz, I. S. Kim, et al. Tensile and creep properties of an oxide dispersion-strengthened ferritic steel. Journal of Nuclear Materials,2002, 307-311(Part 1):773-777.
    [36]D. A. McClintock, D. T. Hoelzer, M. A. Sokolov, et al. Mechanical properties of neutron irradiated nano structured ferritic alloy 14YWT. Journal of Nuclear Materials,2009,386-388:307-311.
    [37]E. Lucon, R. Chaouadi, M. Decreton. Mechanical properties of the European reference RAFM steel (EUROFER97) before and after irradiation at 300 ℃. Journal of Nuclear Materials,2004,329-333(Part 2):1078-1082.
    [38]M. Brocq, B. Radiguet, S. Poissonnet, et al. Nanoscale characterization and formation mechanism of nanoclusters in an ODS steel elaborated by reactive-inspired ball-milling and annealing. Journal of Nuclear Materials, 2011,409(2):80-85.
    [39]P. Miao, G. R. Odette, T. Yamamoto, et al. Thermal stability of nano-structured ferritic alloy. Journal of Nuclear Materials,2008,377(1):59-64.
    [40]K. Asano, Y. Kohno, A. Kohyama, et al. Microstructural evolution of an oxide dispersion strengthened steel under charged particle irradiation. Journal of Nuclear Materials,1988,155-157, Part 2(0):928-934.
    [41]T. Toukoku T. Oda, et al. Method of liquid-phase sintering ferrous material with iron-titanium alloys.1976:U.S.A Patent.
    [42]J. J. Fischer. Dispersion Strengthened Ferritic Alloy for use in Liquid-Metal Fast Breeder Reactors.1978-02-21:U. S. A.
    [43]M. K. Miller, D. T. Hoelzer, E. A. Kenik, et al. Stability of ferritic MA/ODS alloys at high temperatures. Intermetallics,13(3-4):387-392.
    [44]M. K. Miller, K. F. Russell, D. T. Hoelzer. Characterization of precipitates in MA/ODS ferritic alloys. Journal of Nuclear Materials,2006,351(1-3): 261-268.
    [45]G. R. Odette, M. J. Alinger, B. D. Wirth. Recent developments in irradiation-resistant steels. Annual Review of Materials Research,2008,38: 471-503.
    [46]M. Klimenkov, R. Lindau, A. Moslang. TEM study of internal oxidation in an ODS-Eurofer alloy. Journal of Nuclear Materials,2009,386-388:557-560.
    [47]T. E. Volin, J. S. Benjamin. Mechanism of mechanical alloying. Metallurgical Transactions, JIM,1974,5(8):1929-1934.
    [48]J. S. Benjamin, P. S. Gilman. Mechanical alloying. Annual Review of Materials Science,1983,13:279-300.
    [49]C. Suryanarayana. Mechanical alloying and milling. Progress in Materials Science,2001,46:1-184.
    [50]C. C. Eiselt, M. Klimenkov, R. Lindau, et al. Characteristic results and prospects of the 13Cr-1W-0.3Ti-0.3Y2O3 ODS steel. Journal of Nuclear Materials,2009,386-388:525-528.
    [51]A. Paul, E. Alves, L. C. Alves, et al. Microstructural characterization of Eurofer-ODS RAFM steel in the normalized and tempered condition and after thermal aging in simulated fusion conditions. Fusion Engineering and Design, 2005,75-79:1061-1065.
    [52]E. Lucon. Mechanical tests on two batches of oxide dispersion strengthened RAFM steel (EUROFER97). Fusion Engineering and Design,2002,61-62: 683-689.
    [53]M. K. Miller, E. A. Kenik, K. F. Russell, et al. Atom probe tomography of nanoscale particles in ODS ferritic alloys. Materials Science and Engineering A,2003,353(1-2):140-145.
    [54]S. Ohtsuka, S. Ukai, M. Fujiwara. Nano-mesoscopic structural control in 9CrODS ferritic/martensitic steels. Journal of Nuclear Materials,2006, 351(1-3):241-246.
    [55]S. Ohtsuka, S. Ukai, M. Fujiwara, et al. Improvement of 9Cr-ODS martensitic steel properties by controlling excess oxygen and titanium contents. Journal of Nuclear Materials,2004,329-333(Part 1):372-376.
    [56]M. J. Alinger, G. R. Odette, D. T. Hoelzer. On the role of alloy composition and processing parameters in nanocluster formation and dispersion strengthening in nanostuctured ferritic alloys. Acta Materialia,2009,57(2): 392-406.
    [57]Z. Oksiuta, N. Baluc. Optimization of the chemical composition and manufacturing route for ODS RAF steels for fusion reactor application. Nuclear Fusion,2009,49(5):055003(055009pp).
    [58]S. Yamashita, S. Watanabe, S. Ohnuki, et al. Effect of mechanical alloying parameters on irradiation damage in oxide dispersion strengthened ferritic steels. Journal of Nuclear Materials,2000,283-287(Part 1):647-651.
    [59]H. Kishimoto, M. J. Alinger, G. R. Odette, et al. TEM examination of micro structural evolution during processing of 14CrYWTi nanostructured ferritic alloys. Journal of Nuclear Materials,2004,329:369-371.
    [60]R. Schaublin, A. Ramar, N. Baluc, et al. Microstructural development under irradiation in European ODS ferritic/martensitic steels. Journal of Nuclear Materials,2006,351(1-3):247-260.
    [61]C. Cayron, E. Rath, I. Chu, et al. Microstructural evolution of Y2O3 and MgAl2O4 ODS EUROFER steels during their elaboration by mechanical milling and hot isostatic pressing. Journal of Nuclear Materials,2004,335(1): 83-102.
    [62]V. de Castro, T. Leguey, M. A. Monge, et al. Mechanical dispersion of Y2O3 nanoparticles in steel EUROFER 97:process and optimisation. Journal of Nuclear Materials,2003,322(2-3):228-234.
    [63]A. Ramar, Z. Oksiuta, N. Baluc, et al. Effect of mechanical alloying on the mechanical and microstructural properties of ODS EUROFER 97. Fusion Engineering and Design,2007,82(15-24):2543-2549.
    [64]M. Klimiankou, R. Lindau, A. Moslang. TEM characterization of structure and composition of nanosized ODS particles in reduced activation ferritic-martensitic steels. Journal of Nuclear Materials,2004,329-333(Part 1): 347-351.
    [65]M. Klimiankou, R. Lindau, A. Moslang. Energy-filtered TEM imaging and EELS study of. ODS particles and argon-filled cavities in ferritic-martensitic steels. Micron,2005,36(1):1-8.
    [66]N. Y. Iwata, A. Kimura, M. Fujiwara, et al. Effect of milling on morphological and micro structural properties of powder particles for High-Cr Oxide dispersion strengthened ferritic steels. Journal of Nuclear Materials,2007, 367-370(Part 1):191-195.
    [67]D. K. Mukhopadhyay, F. H. Froes, D. S. Gelles. Development of oxide dispersion strengthened ferritic steels for fusion. Journal of Nuclear Materials, 1998,258-263(Part 2):1209-1215.
    [68]V. de Castro, T. Leguey, A. Munoz, et al. Mechanical and microstructural behaviour of Y2O3 ODS EUROFER 97. Journal of Nuclear Materials,2007, 367-370(Part 1):196-201.
    [69]V. de Castro, T. Leguey, A. Munoz, et al. Microstructural characterization of Y2O3 ODS-Fe-Cr model alloys. Journal of Nuclear Materials,2009,386-388: 449-452.
    [70]Z. Oksiuta, N. Baluc. Micro structure and Charpy impact properties of 12-14Cr oxide dispersion-strengthened ferritic steels. Journal of Nuclear Materials, 2008,374(1-2):178-184.
    [71]M. J. Alinger, G. R. Odette, D. T. Hoelzer. The development and stability of Y-Ti-0 nanoclusters in mechanically alloyed Fe-Cr based ferritic alloys. Journal of Nuclear Materials,2004,329-333(Part 1):382-386.
    [72]H. Sakasegawa, S. Ohtsuka, S. Ukai, et al. Particle size effects in mechanically alloyed 9Cr ODS steel powder. Journal of Nuclear Materials,2007, 367-370(Part 1):185-190.
    [73]S. Ohtsuka, S. Ukai, H. Sakasegawa, et al. Nano-mesoscopic structural characterization of 9Cr-ODS martensitic steel for improving creep strength. Journal of Nuclear Materials,2007,367-370(Part 1):160-165.
    [74]H. G. Read, H. Murakami. Microstructural influences on the decomposition of an Al-containing ferritic stainless steel. Applied Surface Science,1996,94-95: 334-342.
    [75]S. Ukai, S. Ohtsuka. Low cycle fatigue properties of ODS ferritic-martensitic steels at high temperature. Journal of Nuclear Materials,2007,367-370(Part 1): 234-238.
    [76]J. S. Lee, A. Kimura, S. Ukai, et al. Effects of hydrogen on the mechanical properties of oxide dispersion strengthening steels. Journal of Nuclear Materials,2004,329-333(Part 2):1122-1126.
    [77]T. Yoshitake, T. Ohmori, S. Miyakawa. Burst properties of irradiated oxide dispersion strengthened ferritic steel claddings. Journal of Nuclear Materials, 2002,307-311 (Part 1):788-792.
    [78]C. Capdevila, M. K. Miller, K. F. Russell, et al. Phase separation in PM 2000(TM) Fe-base ODS alloy:Experimental study at the atomic level. Materials Science and Engineering:A,2008,490(1-2):277-288.
    [79]R. Schaeublin, T. Leguey, P. Spatig, et al. Microstructure and mechanical properties of two ODS ferritic/martensitic steels. Journal of Nuclear Materials, 2002,307-311 (Part 1):778-782.
    [80]S. Ukai, M. Fujiwara. Perspective of ODS alloys application in nuclear environments. Journal of Nuclear Materials,2002,307-311 (Part 1):749-757.
    [81]Z. Oksiuta, P. Mueller, P. Spatig, et al. Effect of thermo-mechanical treatments on the microstructure and mechanical properties of an ODS ferritic steel. Journal of Nuclear Materials,2011,412(2):221-226.
    [82]Z. Oksiuta, N. Baluc. Optimization of the chemical composition and manufacturing route for ODS RAF steels for fusion reactor application. Nuclear Fusion,2009,49(5).
    [83]R. Lindau, A. Moslang, M. Schirra, et al. Mechanical and microstructural properties of a hipped RAFM ODS-steel. Journal of Nuclear Materials,2002, 307-311 (Part 1):769-772.
    [84]Z. Oksiuta, P. Olier, Y. de Carlan, et al. Development and characterisation of a new ODS ferritic steel for fusion reactor application. Journal of Nuclear Materials,2009,393(1):114-119.
    [85]M. A. Sokolov, D. T. Hoelzer, R. E. Stoller, et al. Fracture toughness and tensile properties of nano-structured ferritic steel 12YWT. Journal of Nuclear Materials,2007,367-370(Part 1):213-216.
    [86]M. J. Alinger, G. R. Odette, G. E. Lucas. Tensile and fracture toughness properties of MA957:implications to the development of nanocomposited ferritic alloys. Journal of Nuclear Materials,2002,307-311(Part 1):484-489.
    [87]R. L. Klueh, J. P. Shingledecker, R. W. Swindeman, et al. Oxide dispersion-strengthened steels:A comparison of some commercial and experimental alloys. Journal of Nuclear Materials,2005,341(2-3):103-114.
    [88]A. Alamo, V. Lambard, X. Averty, et al. Assessment of ODS-14%Cr ferritic alloy for high temperature applications. Journal of Nuclear Materials,2004, 329-333(Part 1):333-337.
    [89]R. Klueh, P. Maziasz. The microstructure of chromium-tungsten steels. metallurgical and Materials Transactions A,1989,20(3):373-382.
    [90]W. J. Yang, G. R. Odette, T. Yamamoto, et al. A critical stress-critical area statistical model of the KJc(T) curve for MA957 in the cleavage transition. Journal of Nuclear Materials,2007,367-370(Part 1):616-620.
    [91]R. W. Siegel, G. E. Fougere. Mechanical properties of nanophase metals. Nanostructured Materials,1995,6(1-4):205-216.
    [92]J. Y. Huang Y. T. Zhu, J. Gubicza, et al. Nanostructures in Ti processed by severe plastic deformation. Journal of materials Research,2003,18: 1908-1917.
    [93]D. A. McClintock, M. A. Sokolov, D. T. Hoelzer, et al. Mechanical properties of irradiated ODS-EUROFER and nanocluster strengthened 14YWT. Journal of Nuclear Materials,2009,392(2):353-359.
    [94]Z. Lu, R. G. Faulkner, N. Riddle, et al. Effect of heat treatment on microstructure and hardness of Eurofer 97, Eurofer ODS and T92 steels. Journal of Nuclear Materials,2009,386-388:445-448.
    [95]M. B. Toloczko, D. S. Gelles, F. A. Garner, et al. Irradiation creep and swelling from 400 to 600 ℃ of the oxide dispersion strengthened ferritic alloy MA957. Journal of Nuclear Materials,2004,329-333(Part 1):352-355.
    [96]J. Saito, T. Suda, S. Yamashita, et al. Void formation and microstructural development in oxide dispersion strengthened ferritic steels during electron-irradiation. Journal of Nuclear Materials,1998,258-263(Part 2): 1264-1268.
    [97]K. Yutani, H. Kishimoto, R. Kasada, et al. Evaluation of Helium effects on swelling behavior of oxide dispersion strengthened ferritic steels under ion irradiation. Journal of Nuclear Materials,2007,367-370(Part 1):423-427.
    [98]H. Kishimoto, K. Yutani, R. Kasada, et al. Heavy-ion irradiation effects on the morphology of complex oxide particles in oxide dispersion strengthened ferritic steels. Journal of Nuclear Materials,2007,367-370(Part 1):179-184.
    [99]T. Yamamoto, G. R. Odette, P. Miao, et al. The transport and fate of helium in nanostructured ferritic alloys at fusion relevant He/dpa ratios and dpa rates. Journal of Nuclear Materials,2007,367-370(Part 1):399-410.
    [100]J. Henry, X. Averty, Y. Dai, et al. Tensile properties of ODS-14%Cr ferritic alloy irradiated in a spallation environment. Journal of Nuclear Materials, 2009,386-388:345-348.
    [101]H. S. Cho, R. Kasada, A. Kimura. Effects of neutron irradiation on the tensile properties of high-Cr oxide dispersion strengthened ferritic steels. Journal of Nuclear Materials,2007,367-370(Part 1):239-243.
    [102]S. Yamashita, K. Oka, S. Ohnuki, et al. Phase stability of oxide dispersion-strengthened ferritic steels in neutron irradiation. Journal of Nuclear Materials,2002,307-311 (Part 1):283-288.
    [103]S. Yamashita, N. Akasaka, S. Ohnuki. Nano-oxide particle stability of 9-12Cr grain morphology modified ODS steels under neutron irradiation. Journal of Nuclear Materials,2004,329-333(Part 1):377-381.
    [104]H. Kishimoto, K. Yutani, R. Kasada, et al. Helium cavity formation research on oxide dispersed strengthening (ODS) ferritic steels utilizing dual-ion irradiation facility. Fusion Engineering and Design,2006,81(8-14): 1045-1049.
    [105]S. Yamashita, N. Akasaka, S. Ukai, et al. Microstructural development of a heavily neutron-irradiated ODS ferritic steel (MA957) at elevated temperature. Journal of Nuclear Materials,2007,367-370(Part 1):202-207.
    [106]A. Alamo, J. L. Bertin, V. K. Shamardin, et al. Mechanical properties of 9Cr martensitic steels and ODS-FeCr alloys after neutron irradiation at 325 ℃ up to 42dpa. Journal of Nuclear Materials,2007,367-370(Part 1):54-59.
    [107]C. Q. Chen, J. G. Sun, Y. C. Xu. Neutron irradiation hardening of ODS alloy tested by miniature disk bend test method. Journal of Nuclear Materials,2000, 283-287(Part 2):1011-1013.
    [108]张崇宏,J. S. Jang,杨义涛,et a1.氧化物粒子弥散强化的合金中界面对高温氦脆的抑制机理研究.科学通报,2008,53(7): 833-837.
    [109]M. A. Pouchon, J. Chen, M. Dobeli, et al. Oxide dispersion strengthened steel irradiation with helium ions. Journal of Nuclear Materials,2006,352(1-3): 57-61.
    [110]Y. P. Zeng, F. R. Wan, W. Y. Chu. Effect of hydrogen ion implantation on the stability of ODS ferritic steel. Journal of Nuclear Materials,1996,228(1): 135-140.
    [111]B. A. Pint, I. G. Wright. Oxidation Behavior of ODS Fe-Cr Alloys. Oxidation of Metals,2005,63(3):193-213.
    [112]D. T. Hoelzer, B. A. Pint, I. G. Wright. A microstructural study of the oxide scale formation on ODS Fe-13Cr steel. Journal of Nuclear Materials,2000, 283-287(Part 2):1306-1310.
    [113]T. Kaito, T. Narita, S. Ukai, et al. High temperature oxidation behavior of ODS steels. Journal of Nuclear Materials,2004,329-333(Part 2):1388-1392.
    [114]Y. Chen, K. Sridharan, T. R. Allen, et al. Microstructural examination of oxide layers formed on an oxide dispersion strengthened ferritic steel exposed to supercritical water. Journal of Nuclear Materials,2006,359(1-2):50-58.
    [115]T. Okuda S. Nomura, S. Shikakura, M. Fujiwara, K. Asabe. Solid State Powder Proceeding TMS,1990,203.
    [116]I. S. Kim, J. D. Hunn, N. Hashimoto, et al. Defect and void evolution in oxide dispersion strengthened ferritic steels under 3.2 MeV Fe+ ion irradiation with simultaneous helium injection. Journal of Nuclear Materials,2000,280(3): 264-274.
    [117]I. S. Kim, B. Y. Choi. Development of Fe-12%Cr mechanical-alloyed nano-sized ODS heat-resistant ferritic alloys. Metals and Materials International,2002,8(3):265-270.
    [118]M. K. Miller, E. A. Kenik, K. F. Russell, et al. Atom probe tomography of nanoscale particles in ODS ferritic alloys. Materials Science and Engineering a-Structural Materials Properties Micro structure and Processing,2003, 353(1-2):140-145.
    [119]I. Monnet, P. Dubuisson, Y. Serruys, et al. Microstructural investigation of the stability under irradiation of oxide dispersion strengthened ferritic steels. Journal of Nuclear Materials,2004,335(3):311-321.
    [120]S. Jitsukawa, A. Kimura, A. Kohyama, et al. Recent results of the reduced activation ferritic/martensitic steel development. Journal of Nuclear Materials, 2004,329-333(Part 1):39-46.
    [121]C. Heintze, F. Bergner, A. Ulbricht, et al. Micro structure of oxide dispersion strengthened Eurofer and iron-chromium alloys investigated by means of small-angle neutron scattering and transmission electron microscopy. Journal of Nuclear Materials, In Press, Corrected Proof.
    [122]P. Pareige, M. K. Miller, R. E. Stoller, et al. Stability of nanometer-sized oxide clusters in mechanically-alloyed steel, under ion-induced displacement cascade damage conditions. Journal of Nuclear Materials,2007,360(2):136-142.
    [123]M. K. Miller, D. T. Hoelzer, E. A. Kenik, et al. Nanometer scale precipitation in ferritic MA/ODS alloy MA957. Journal of Nuclear Materials,2004, 329-333 (Part 1):338-341.
    [124]Y. Motoyashiki, A. Bruckner-Foit, A. Sugeta. Micro structural influence on small fatigue cracks in a ferritic-martensitic steel. Engineering Fracture Mechanics,2008,75 (3-4):768-778.
    [125]S. Ukai, S. Ohtsuka. Nano-mesoscopic structure control in 9Cr-ODS ferritic steels Energy materials,2007,2 (1):26-35.
    [126]S. K. Karak, T. Chudoba, Z. Witczak, et al. Development of ultra high strength nano-Y2O3 dispersed ferritic steel by mechanical alloying and hot isostatic pressing. Materials Science and Engineering:A,2011,528(25-26): 7475-7483.
    [127]Y. D. Ou, W. S. Lai. Vacancy formation and clustering behavior in Y2O3 by first principles. Nuclear Instruments and Methods in Physics Research Section B:Beam Interactions with Materials and Atoms,2011,269(14):1720-1723.
    [128]J. L. Murry T. B. Massalski, et al. Binary Alloy Phase Diagram. ASM International,1987:P822,1118,1124,1126.
    [129]J. H. Schneibel, P. Grahle, J. Rosler. Mechanical alloying of FeAl with Y2O3. Materials Science and Engineering:A,1992,153(1-2):684-690.
    [130]D. Murali, B. K. Panigrahi, M. C. Valsakumar, et al. Diffusion of Y and Ti/Zr in bcc Iron:A first principles study. Journal of Nuclear Materials, In Press, Accepted Manuscript.
    [131]D. Murali, B. K. Panigrahi, M. C. Valsakumar, et al. The role of minor alloying elements on the stability and dispersion of yttria nanoclusters in nano structured ferritic alloys:An ab initio study. Journal of Nuclear Materials, 2010,403(1-3):113-116.
    [132]D. T. Hoelzer, J. Bentley, M. A. Sokolov, et al. Influence of particle dispersions on the high-temperature strength of ferritic alloys. Journal of Nuclear Materials,2007,367-370(Part 1):166-172.
    [133]Y. Ortega, V. de Castro, M. A. Monge, et al. Positron annihilation characteristics of ODS and non-ODS EUROFER isochronally annealed. Journal of Nuclear Materials,2008,376(2):222-228.
    [134]R. R. Qiao, C. H. Yang, M. Y. Gao. Superparamagnetic iron oxide nanoparticles:from preparations to in vivo MRI applications. Journal of Materials Chemistry,2009,19(35):6274-6293.
    [135]M. Miller, C. Fu, M. Krcmar, et al. Vacancies as a constitutive element for the design of nanocluster-strengthened ferritic steels. Frontiers of Materials Science in China,2009,3(1):9-14.
    [136]P. Olier, A. Bougault, A. Alamo, et al. Effects of the forming processes and Y2O3 content on ODS-Eurofer mechanical properties. Journal of Nuclear Materials,2009,386-388:561-563.
    [137]V. A. Shabashov, A. V. Litvinov, A. G. Mukoseev, et al. Phase transformations in iron oxide-metal systems during intensive plastic deformation. Materials Science and Engineering A,2003,361(1-2):136-146.
    [138]V. A. Shabashov, V. V. Sagaradze, A. V. Litvinov, et al. Mechanical synthesis in the iron oxide-metal system. Materials Science and Engineering:A,2005, 392(1-2):62-72.
    [139]P. Ayyub, M. Multani, M. Barma, et al. Size-induced structural phase transitions and hyperfine properties of microcrystalline Fe2O3 Journal of Physics:Condensed Matter,1988,21(11):2229-2238.
    [140]贺毅强,乔斌,王娜,et a1.不同拉伸温度下SiC颗粒增强A1-Fe-V-Si复合材料的断裂行为.中国有色金属学报,2010,20(3):469-475.
    [141]J. H. Ahn, S. Y. Lee, J. S. Jang. Mechanical Alloying and Properties of ODS Ferritic Steels, in Thermec 2006 Supplement:5th International Conference on Processing and Manufacturing of Advanced Materials, Chandra, Editor.2007: 696-701.
    [142]S. Ohtsuka, S. Ukai, M. Fujiwara, et al. Nano-structure control in ODS martensitic steels by means of selecting titanium and oxygen contents. Journal of Physics and Chemistry of Solids,2005,66(2-4):571-575.
    [143]温玉仁,刘咏,刘东华,et al.纳米氧化物弥散强化铁素体合金的制备.粉末冶金材料科学与工程,2010,15(1):74-78.
    [144]Y. R. Wen, Y. Liu, F. Liu, et al. Addition of Fe2O3 as oxygen carrier for preparation of nanometer-sized oxide strengthened steels. Journal of Nuclear Materials,2010,405(2):199-202.
    [145]G. Yu, N. Nita, N. Baluc. Thermal creep behaviour of the EUROFER 97 RAFM steel and two European ODS EUROFER 97 steels. Fusion Engineering and Design,2005,75-79:1037-1041.
    [146]M. Krcmar C. L. Fu, G. S. Painter, X. Q. Chen. Vacancy mechanism of high oxygen solubility and nucleation of stable oxygen-enriched culster in Fe Physical Review Letters,2007,99:225502.
    [147]P. Haasen R. W. Cahn. Physical Metallurgy. Elsevier Science BV,1996:P 1627-1233.
    [148]Z. Lee, D. Witkin, R. Rodriguez, et al. Al-Mg alloy engineered with bimodal grain size for high strength and increased ductility. Scripta Materialia,2003, 49:297-302.
    [149]S. Cheng, Y. M. Wang, Q. M. Wei, et al. Effects of annealing and impurities on tensile properties of electrodeposited nanocrystalline Ni. Scripta Materialia, 2004,51:1023-1028.
    [150]C. C. Eiselt, M. Klimenkov, R. Lindau, et al. High-resolution transmission electron microscopy and electron backscatter diffraction in nanoscaled ferritic and ferritic-martensitic oxide dispersion strengthened-steels. Journal of Nuclear Materials,2009,385(2):231-235.
    [151]G. T. McMchon. Development of economical tough ultrahigh-strength Fe-Cr-C steel. Pro.3rd. Int. Conf. on Strength of Metals and Alloys,1973,20-25: 180.
    [152]T. Leguey, R. Schaeublin, P. Spatig, et al. Microstructure and mechanical properties of two ODS ferritic/martensitic steels. Journal of Nuclear Materials, 2002,307-311:778-782.
    [153]S. Matsuda T. Inoue, Y. Okamura, et al. The fracture of a low carbon tempered martensite. Transactions of JIM,1970,11:36-43.
    [154]F. C. Zhang, T. S. Wang, M. Zhang, et al. A novel process to obtain ultrafine-grained low carbon steel with bimodal grain size distribution for potentially improving ductility. Materials Science and Engineering A,2008, 485:456-460.
    [155]J. G. Sevillano, J. Aldazabal. Ductilization of nanocrystalline materials for structural applications. Scripta Materialia,2004,51 (8):795-800.
    [156]M. C. Zhao, F. X. Yin, T. Hanamura, et al. Relationship between yield strength and grain size for a bimodal structural ultrafine-grained ferrite/cementite steel. Scripta Materialia,2007,57(9):857-860.
    [157]H. Simchi, A. Simchi. Tensile and fatigue fracture of nanometric alumina reinforced copper with bimodal grain size distribution. Materials Science and Engineering:A,2009,507(1-2):200-206.
    [158]M. C. Zhao, T. Hanamura, F. X. Yin, et al. Formation of bimodal-sized structure and its tensile properties in a warm-rolled and annealed ultrafine-grained Ferrite/Cementite steel. Metallurgical and Materials Transactions a-Physical Metallurgy and Materials Science,2008,39A(7): 1691-1701.
    [159]T. W. Lee, S. I. Kim, M. H. Hong, et al. Structural characterization of nano-scale precipitates in Cu bearing extra-low-carbon steels. Journal of Alloys and Compounds,2011,509(Supplement 1):S384-S388.
    [160]C. S. Pande, M. A. Imam. Nucleation and growth kinetics in high strength low carbon ferrous alloys. Materials Science and Engineering:A,2007,457(1-2): 69-76.
    [161]R. Rana, S. B. Singh, O. N. Mohanty. Thermoelectric power studies of copper precipitation in a new interstitial-free steel. Scripta Materialia,2006,55(12): 1107-1110.
    [162]A. Ghosh, D. Samar, S. Chatterjee. Ageing behavior of a Cu-bearing ultrahigh strength steel. Materials Science and Engineering:A,2008,486(1-2): 152-157.
    [163]S. K. Dhua, A. Ray, D. S. Sarma. Effect of tempering temperatures on the mechanical properties and microstructures of HSLA-100 type copper-bearing steels. Materials Science and Engineering A,2001,318(1-2):197-210.
    [164]A. Fatehi, J. Calvo, A. M. Elwazri, et al. Strengthening of HSLA steels by cool deformation. Materials Science and Engineering a-Structural Materials Properties Micro structure and Processing,2010,527(16-17):4233-4240.
    [165]A. V. Barashev, S. I. Golubov, D. J. Bacon, et al. Copper precipitation in Fe-Cu alloys under electron and neutron irradiation. Acta Materialia,2004, 52(4):877-886.
    [166]R. Rana, S. B. Singh, O. N. Mohanty. Effect of composition and pre-deformation on age hardening response in a copper-containing interstitial free steel. Materials Characterization,2008,59(7):969-974.
    [167]M. Militzer, A. Deschamps, J. W. Poole. Precipitation kinetics and strengthening of a Fe-0.8wt%Cu Alloy. ISIJ International,2001,41(2): 196-205.
    [168]X. C. Wu H. M. Geng, H. B. Wang. Effects of copper content on the machinability and corrosion resistance of martensitic stainless steel. Journal of Material Science,2008,43:83-87.
    [169]R. Rana, W. Bleck, S. B. Singh, et al. Age hardening analysis of a hot rolled copper-alloyed interstitial free steel. Materials Letters,2008,62(6-7): 949-952.
    [170]S. Schmauder, P. Binkele. Atomistic computer simulation of the formation of Cu-precipitates in steels. Computational Materials Science,2002,24(1-2): 42-53.
    [171]M. Hattestrand, J. O. Nilsson, K. Stiller, et al. Precipitation hardening in a 12%Cr-9%Ni-4%Mo-2%Cu stainless steel. Acta Materialia,2004,52(4): 1023-1037.
    [172]S. Vaynman, D. Isheim, R. P. Kolli, et al. High-strength low-carbon ferritic steel containing Cu-Fe-Ni-Al-Mn precipitates. Metallurgical and Materials Transactions a-Physical Metallurgy and Materials Science,2008,39A(2): 363-373.
    [173]黄孝瑛.电子显微镜图像分析原理与应用.北京:宇航出版社,1989: 379.
    [174]N. Maruyama, M. Sugiyama, T. Hara, et al. Precipitation and phase transformation of copper particles in low alloy ferritic and martensitic steels. Materials Transactions Jim,1999,40(4):268-277.
    [175]王海燕刘宗昌任慧平.固溶温度对含铜钢时效行为的影响.包头钢铁学院学报,2004(1):41-44.
    [176]刘宗昌.李文学.王海燕.安治国.任慧平.含铜高纯钢中有序结构的高分辨电子显微分析.包头钢铁学院学报,2005,23(2).
    [177]Y. Nagataki, K. Sato, Y. Hosoya. Precipitation Hardening and Mechanical Properties in Cu Added Martensitic Ultra-high Strength Steels. Tetsu to Hagane-Journal of the Iron and Steel Institute of Japan,2008,94(11): 553-561.
    [178]A. Deschamps, M. Militzer, W. J. Poole. Precipitation kinetics and strengthening of a Fe-0.8wt%Cu alloy. Isij International,2001,41(2): 196-205.
    [179]M. E. Fine, D. Isheim. Origin of copper precipitation strengthening in steel revisite. Scripta Materialia,2005,53(1):115-118.
    [180]I. Holzer, E. Kozeschnik. Simulation of copper precipitation in Fe-Cu alloys, in Thermec 2009, Pts 1-4, Chandra, Editor.2010:2579-2584.
    [181]I. Holzer, E. Kozeschnik. Computer simulation of the yield strength evolution in Cu-precipitation strengthened ferritic steel. Materials Science and Engineering a-Structural Materials Properties Microstructure and Processing, 2010,527(15):3546-3551.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700