用户名: 密码: 验证码:
大型数控滚齿机加工误差及补偿研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
大型数控滚齿机主要应用于航空、船舶、风力发电、重载车辆及工程机械等领域齿轮加工,这些行业所需齿轮结构尺寸大、精度要求高,但加工成本高风险大,故对滚齿机的安全性能与加工质量要求较高,特别对加工精度指标要求很高。
     由于大型数控滚齿机结构尺寸比较大,部件种类与数量多,机床外支架伸出较长,滚刀与工件主轴结构尺寸长,机床各种系统配置多,以及机床滚削结构系统与受力情况均较复杂,故影响齿轮加工精度的因素多而复杂。因此,展开大型数控滚齿机加工误差与性能研究,对提高与改善机床加工精度,减小齿轮加工误差具有十分重要意义。
     为了全面实现大型数控滚齿机高速、高效及高精度的大齿轮加工,本学位论文主要从以下五个方面对滚齿机加工误差的产生机理及补偿技术进行深入研究与探讨工作:
     ①研究大型数控滚齿机滚削力对主轴变形的影响,是减小或控制大型齿轮加工误差的方向之一。本文根据滚齿工艺参数、坐标变换方法及弯曲变形理论推导了滚刀、工件主轴变形及中心距X方向变化量计算公式。针对某具体型号大型数控滚齿机,由实际结构与滚削参数计算出滚削力、主轴变形及中心距变化量数据,获得了滚削力与主轴转速、进刀深度及主轴变形关系曲线,揭示了滚削变形规律。表明该研究可为滚齿机的结构优化、滚齿工艺参数选择、加工误差预测及补偿提供理论依据。
     ②为了掌握滚齿机由滚削动态特性引起主轴及主轴中心距X方向变形量对齿轮加工精度的影响状况。本文从滚齿机结构、滚齿工艺参数、动态特性、动力学原理及Euler-BernouHi梁振动理论出发,建立起滚齿机主要部件及主轴系统的模态、谐响应及振动特性理论相关数学模型。根据理论模型、滚齿工艺参数及振动测试数据,研究与分析了滚刀与工件主轴振动位移响应参数跟滚削工艺参数间的相互关系,揭示了滚齿机由振动引起的滚刀与工件主轴中心距X方向变化规律以及该变形量对齿轮加工精度的影响程度。
     ③系统地对大型数控滚齿机,由热变形引起滚刀与工件主轴中心距X方向位置偏差变化情况进行了研究。针对大型滚齿机结构特点,在金属材料热膨胀原理、构件轴线可伸长理论及温度分布不均匀梁的Euler-Bernoulli和Kirchhoff平截面假定理论基础上,提出一种滚齿机的热变形计算新模型,并提出基于变形微元与隔离体法的滚齿机立柱轴向变形与弯曲变形耦合理论。基于理论研究提出一套滚齿机的热变形与温度测试系统,建立了实验平台,测试与分析滚齿机的热变形位移与温度实验数据,揭示出滚齿机的热变形理论与实际规律,得出滚刀与工件主轴中心距位移偏差与齿轮齿向偏差轨迹曲线。
     ④在大型数控滚齿机振动模态、谐响应及滚削动态特性理论研究基础上,以某具体型号大型滚齿机为对象,建立起滚齿机约束模态及谐响应的动力学有限元仿真模型,提出了滚齿机动力学仿真的边界约束条件。结合滚齿工艺参数与材料特性参数进行了仿真计算。根据振动响应仿真云图与数据曲线,对滚刀与工件主轴中心距变化量及齿轮加工误差的影响进行了分析。仿真研究结果为滚齿机结构优化与装配位置调整提供了理论依据。
     ⑤在大型数控滚齿机热变形理论与实验研究基础上,采用模糊聚类法对滚齿机测试温度变量进行了筛选,利用多元回归法-最小二乘法,建立起滚齿机滚刀与工件主轴中心距热误差-温度的补偿模型。在数控自动编程系统中,对某具体型号的大型数控滚齿机进行了热误差补偿实验。研究结果表明,滚齿机主轴中心距热变形量得到大幅度降低,齿轮各项指标与精度显著提高。所建立的热误差补偿模型精度高,能有效预测和控制滚齿机的热变形及齿轮加工误差,可提高滚齿机加工精度与效率,表明该补偿系统与实验具有较强的实用价值。
     本论文采用理论、实验及有限元研究方法,建立了大型滚齿机滚削变形、动力学振动位移及热变形的理论计算新模型。将齿轮加工工艺与实验测试、数控加工与计算机软件技术相结合,建立了滚齿机主轴中心距变化量的热误差补偿模型,成功地进行了热误差补偿试验研究。结果显示,滚齿机与齿轮加工精度得到极大地提高,表明这些研究为提升大型数控滚齿机高速、高效的加工能力,和全面实现滚齿机高精度的大型齿轮加工技术,奠定了理论基础和提供关键技术支持。
The large-scale numerical control (NC) gear hobbing machine is mainly used insome extremely important fields such as aviation industry, ship industry, wind powergeneration, heavy-duty vehicles and engineering machinery industry, in which thedemanded gears should be of large size with a low risk and cost and high precision.Accordingly, a large-scale NC gear hobbing machines will be needed high safetyperformance and processing quality, especially the machining precision.
     Additionally, some factors such as its large structural size, varieties, largedimension between hob and workpiece spindle of gear hobbing machine, thecomplicated system configuration, also the complicated hobbing system and cuttingforce, have the significant influence upon gear of machining precision. Furthermore, theresearch of machining error and capability on the large-scale NC gear hobbing machinehas become increasingly significant to improve machining precision and decreasemachining error of gear.
     In order to realize the large-scale gears of machining accurately and efficiently, thisthesis has finished some research on the machining error mechanism and correspondingcompensation technique of large-scale gear hobbing machine from the followingaspects:
     ①Research on the effect of spindle deformation which is caused by hobbing forceis an important way to diminish or control the machining tolerance of the large-scalegear. Based on the hobbing gear features, process parameters, the methods of changingcoordinate and theory of beam deflection, several formulae of hobbing and spindledeformation and centre distance variation are established through theoretical analysis.For certain typical gear hobbing machine with particular structure and machiningparameter, its hobbing force and spindle deformation and centre distance variationunder practical hobbing parameter are calculated by adopting the mentioned formulae.Further, the relationship curve of cutting force, spindle rotational speed, hobbing depthand deformation of spindle were obtained, and revealed the law of hobbing and cuttingdeformation. This research provides important basis for optimization design of machinetool structure, processing parameter and machining error prediction and compensationfor gear hobbing machine.
     ②To master the influence of spindle and spindle the centre distance radial deformation caused by dynamical properties of hobbing gear on machining precision forgear hobbing machines. Based on machine tool structure, processing parameter,dynamical properties of the machining gear, dynamical principle and Euler-BernouHibeam vibration theory, the related dynamical mathematical models were established inthis paper. According to the theoretical model, processs parameters and vibrationexperimental datum, this paper focused on the research and analysis of mutual relationbetween the response parameters of vibration displacement and hobbing processparameters for hob and workpiece spindle. By all the above analysis and research, thispaper reveal the radial deformation change law of the centre distance between hob andworkpiece spindle caused by the vibration of hobbing gear, and the influence on whichthe vibration displacement deformation exerts gears’ machining precision.
     ③Research on the deviation of the centre distance between hob and workpiecespindle and this deviation is caused by thermal deformation. Based on the structuralfeatures of large-scale NC gear hobbing machine, the theory of thermal expansiondeformation of metallic materials, the extensional beam theory, non-uniformtemperature distribution of the Euler-Bernoulli beam and Kirchhoff theory ofplane-section assumption, a novel model was proposed in this paper to calculate thebending thermal deformation of lathe bed and upright column of gear hobbing machinetheoretically, then, the research on the axial deformation and bending deformation of theupright column were also carried out by utilizing the deformation theory of thedeformation element and equilibrium element method. According to the theoreticalresearch, the testing system of temperature and thermal deformation for gear hobbingmachines were proposed, further, a experiment platform was established to test andanalyze the temperature and corresponding thermal deformation displacement data,eventually to reveal the theory and practical rule of thermal deformation, and to plot thedeviation curves of the centre distance between hob and workpiece spindle and geartooth trace deviation.
     ④Based on the theoretical research of the vibration mode, harmonic response andhobbing dynamical properties, the finite element of entity simulation model wereestablished about the restriction mode and harmonic response for gear hobbing machine,and proposed the restriction boundary conditions for dynamical simulation. The finitemodel was simulated by adopting the processing and material parameter. According tothe simulation cloud chart and data, the gear machining error and the variation of thecentre distance between hob and workpiece spindle were analyzed. These results of the simulation research provide theoretical basis for the structural optimization design andassembly position adjustment for gear hobbing machine.
     ⑤Based on the research of the thermal deformation theory and experiment, thetesting temperature variables were selected by using the method of fuzzy clustering, thethermal error compensation model of the center distance between hob and workpiecespindle of the Large-scale NC gear hobbing machine was set up by adapting themethods of multi-regressions and the least square regression. Meanwhile, theexperiment of the thermal error compensation for the certain typical Large-scale NCgear hobbing machine was carried out in the numerical control automatic programmingsystem. The result shows that the thermal deformation value of the centre distance ofhob and workpiece spindle reduces substantially and various indexes and precise ofmachining gear improve remarkably. The thermal error compensation model is higherprecision, the method not only upgraded the gear machining accuracy and the efficiencybut also effectively control and forecast the thermal deformation of the large-scale NCgear hobbing machine. Therefore, this compensation system and experiment have greatpractical value.
     These novel calculation models were established about the hobbing deformation,dynamical vibration displacement and thermal deformation of large-scale NC gearhobbing machine abased on the analysis and research of theory, experiment and finiteelement method in this paper. Meanwhile, the thermal error compensation model of thecentre distance between hob and workpiece spindle of gear hobbing machine was set upby combining processing parameters and experimental datum, numerical machining andcomputer software’s technology, which successfully carried out the experiment ofthermal error compensation. the result show that the machining precision of gears aregreatly improved, Above all these researches lay the theoretical basis and provide keytechnological support for promoting the high speed and efficiency of machiningcapability, and for overall realizing the large-scale gear of high precision of machiningtechnology of large-scale NC gear hobbing machine.
引文
[1]张静,杨宏斌,邓效忠,等.我国锥齿轮技术的现状和发展动向[J].河南科技大学学报(自然科学版),2003,24(1):40-43.
    [2]郑江,张宝全,桂志国.现代齿轮技术的发展与我国齿轮制造面临的问题[J].华北工学院学报,1997,18(1):50-54.
    [3]黄强,罗辑,唐其林.高速干式滚齿加工及其关键技术机床与液压[J].2007,3(55):29-32.
    [4]欧阳葆,李钊刚.我国高速齿轮技术的成就及其发展方向[J].机械科学与技术(江苏),1997,26(1):46-47,54.
    [5] Y Z Wang, W Xiong, L Zhang, et al. Tooth surface equations and tooth contact analysis offace gear[J]. Machine Tool&Hydraulics,2007,35(12):7-9.
    [6] P He, G L Liu. Tooth contact analysis of face-gear meshing[J]. Mechanical Science andTechnology for Aero, space Engineering,2008,27(1):92-95.
    [7] W S Wang, Z H Fong. A dual face-hobbing method for the cycloidal crowning of spurgears[J]. Mechanism and Machine Theory,2008,43:1416-1430.
    [8]顾宝康编译.制造高精度齿轮的新方法[M]. WMEM,1996,3:71-72.
    [9]梁桂明,朱象矩,黄希忠.齿轮技术的发展趋势[J].中国机械工程,1995,6(5):25-27.
    [10] C B Tsay, W Y Liu, Y C Chen. Spur gear generation by shaper cutters[J]. J.MaterialsProcessing Technology,2000,104:271-279.
    [11] T Pfeifer, S Kurokawa, S Meyer. Derivation of parameters of global form deviations for3-dimension surfaces in actual manufacturing processes[J]. Measurement,2001,29:179-120.
    [12] N.Amini, B.G.Rosen, H.Westberg. Optimization of gear tooth surfaces[J]. Int.J. Mach.ToolsManufact,1998,38(5-6):425-435.
    [13]刘润爱.零传动滚齿机关键技术研究与应用[D].重庆大学,2006.
    [14]黄强.零传动滚齿机精度控制及颤振抑制技术研究[D].重庆大学,2008,
    [15]商向东等著.齿轮加工精度[M].北京:机械工业出版社,2000.
    [16] Vilmos Simon. The Influence of Gear Hobbing on Worm Gear Characteristics[J]. Journal ofManufacturing Science and Engineering,2007,129:919-925.
    [17]齿轮手册编委会.齿轮手册[M].北京:机械工业出版社,2000.
    [18] Y P Cheng, Teik C. Lim. Dynamics of Hypoid Gear Transmission with NonlinearTime-Varying Mesh Characteristics[J]. Journal of Mechanical Design,2003,125:373-382.
    [19] R H Su, Zhang-Hua Fong. Novel variable-tooth-thickness hob for longitudinal crowning inthe gear-hobbing process[J]. Mechanism and Machine Theory,2011,46:1084-1096.
    [20] C H Wu, Y Z Wang. The Aeronautics Face-gear NC Hobbing Machining Technology[J].Energy Procedia,2011,11:493-500.
    [21]乐美豪.我国齿轮、螺纹、花键机床市场的现状和展望(一).制造技术与机床,1999, l:5-8.
    [22]乐美豪.我国齿轮、螺纹、花键机床市场的现状和展望(二).制造技术与机床,1999,2:5-7.
    [23] C. Claudin, J. Rech. Development of a new rapid characterization method of hob’s wearresistance in gear manufacturing-Application to the evaluation of various cutting edgepreparations in high speed dry gear hobbing[J]. Journal of Materials Processing Technology,2009,209:5152-5160.
    [24]乐美豪.我国齿轮制造业的发展现状及展望(上).制造技术与机床,2000,11:8-9.
    [25]乐美豪.我国齿轮制造业的发展现状及展望(下).制造技术与机床,2000,12:7-9.
    [26]亢再章,唐丛梅.硬齿面齿轮滚切技术.机械传动,1998,22(1):48-50.
    [27]吴焱明.齿轮加工数控技术的研究[D][博士学位论文].合肥:合肥工业大学,2000,10.
    [28]胡赤兵,张季秋.计算机数控齿轮切削加工机床[J].机械研究与应用,1997,3:40-42.
    [29]谭伟明,胡赤兵,阎树田,等.齿轮切削加工CNC系统[J].制造技术与机床,1997,10:13-15.
    [30]李先广,廖绍华,曹华军,等.齿轮加工机床绿色设计与制造策略及实践[J].制造技术与机床,2003,11:18-21.
    [31]李先广.当代先进制齿及制齿机床技术的发展趋势[J].制造技术与机床,2003,2:10-11.
    [32] The ecological and economical benefits of power dry cutting. http://www.gleason.com,2003.3.
    [33] Takahide Tokawa, Yukihisa Nishimura, Yozo Nakamura. High Productivity Dry HobbingSystem. Mitsubishi Heavy Industries[J]. Ltd.Technical Review,2001,38(1):28-32.
    [34]张希康编译.不用切削油的干态高速滚齿[J].机械传动,1999,23(1):42-45.
    [35]赵正书.干式切削及其在齿轮加工中的应用[J].机械工艺师,2000,9:62-63.
    [36] Y Altintas, B Sencer. High speed contouring control strategy for five-axis machine tools[J].CIRP Annals-Manufacturing Technology,2010,59(19):417-420.
    [37] Vilmos V. Simon. Advanced Manufacture of Spiral Bevel Gears on CNC Hypoid GeneratingMachine [J]. Journal of Mechanical Design,2010,132:1-8.
    [38]吴焱明,陶晓杰著.齿轮数控加工技术的研究[M].安徽:合肥工业大学出版社,2005.
    [39]刘润爱,张根宝.滚齿机及滚齿加工技术的发展趋势[J].现代制造工程,2003,11:84-86.
    [40]曾令万.数控高速滚齿机模块化设计及其经济分析[硕士学位论文].重庆大学,2003.
    [41]廖绍华,李先广,曹华军,等.面向绿色制造的滚齿机研究现状分析及发展趋势[J].制造技术与机床,2004,11:47-50.
    [42]罗魁元,邓生明. Y3150E滚齿机的数控改造及应用[J].机床与液压,2004,1:144-145.
    [43]曾世民. YZ3120滚齿机工作台进给油缸改进设计[J].装备维修技术,2000,2:31-34.
    [44] Daisuke Konoa, Thomas Lorenzerb, Sascha Weikertc, et al. Evaluation of modelingapproaches for machine tool design [J]. Precision Engineering,2010,34(3):399-407.
    [45] Y Altintas, C Brecher, M Weck, et al. Virtual machine tool [J]. Annals of the CIRP2005,54(2):115.
    [46] Zaeh MF, Oertli Th, Milberg J. Finite element modelling of ball screw feed drive systems [J].Annals of the CIRP,2004,53(1):289.
    [47] Y Altintas, Y Cao. Virtual design and optimization of machine tool spindles [J]. Annals of theCIRP2005,54(1):379.
    [48] Y Cao, Y Altintas. Modeling of spindle-bearing and machine tool systems for virtualsimulation of milling operations [J]. International Journal of Machine Tools&Manufacture2007,47(9):13-42.
    [49] G M Martinov, L I Martinova. Trends in the Numerical Control of Machine Tool Systems [J].Russian Engineering Research [J],2010,30(10):1041-1045.
    [50] A Pérez Acal, A Sanz Lobera. Virtual reality simulation applied to a numerical control millingmachine [J]. Int J Interact Des Manuf,2007,1:143-154.
    [51]方毅,薛小雯.椭圆齿轮滚齿机的工作原理及齿形方程[J].新技术新工艺,2002,9:20-22.
    [52]黄建龙,胡赤兵,邬再新,等.非圆齿轮数控滚切加工系统结构[J].机械研究与应用,1999,12(1):15-16.
    [53]吴焱明,王纯贤,韩江,等.齿向修形齿轮的数控加工技术[J].制造技术与机床,2000,3:32-34.
    [54]陆燕荪.重大技术装备国产化是振兴装备制造业的重中之重[J].中国机电工业,2003,9:1-4.
    [55]东川隆英等著.蒋修治泽.高效干滚齿加工系统[J],国外金属加工,2001,4:39-43.
    [56] Power dry cutting technical information[Z]. http://www.gleason.com,2003,3.
    [57] Takahide Tokawa, Yukihisa Nishimura, Yozo Nakamura. High Productivity Dry HobbingSystem. Mitsubishi Heavy Industries[C]. Ltd.Technical Review,2001,38(1):28-32.
    [58]李先广.面向绿色制造的高速干式切削滚齿机设计与评价技术研究[D].重庆大学,2003.
    [59] J Rech. Influence of cutting edge preparation on the wear resistance in high speed dry gearhobbing[J]. Wear,2006,261(7):505-512.
    [60] C Lin Chao, Q Guo Qian, H Qiu. Study for simulation and experiment on the model of cuttingforce in high-speed dry gear hobbing[J]. Advanced Manufacturing Technology, InternationalTechnology and Innovation Conference,2006,1:927-932.
    [61] W S Wang, Z H Fong. Undercutting and contact characteristics of longitudinal cycloidal spurgears generated by the dual face-hobbing method[J]. Mechanism and Machine Theory,2011,46:399-411.
    [62] V A Vanin, A N Kolodin. Kinematic Structure of Gear-Cutting Machine Tools Based on aHydraulic Step Drive for the Production of Noncircular Gears[J]. Russian EngineeringResearch,2009,29(3):291-297.
    [63] GiD.Kim, C N Chu. Indirect Cutting Force Measurement Considering Frictional Behaviour ina Machining Centre Using FeedMotor Current[J]. Int J Adv Manuf Technol,1999,15:478-484.
    [64] Y H Mu, N P Hung, K A Ngoi. Monitoring a Sub-Newton Cutting Force forUltra-Precision Machining[J]. Int J Adv Manuf Technol,2000,16:229-232.
    [65] Y W Li, Steven Y, Liang George. Cutting Force Analysis inTransient State MillingProcesses[J]. Int J Adv Manuf Technol,1999,15:785-790.
    [66] W S Yun, D W Cho. An Improved Method for the Determination of3D Cutting ForceCoefficients and Runout Parameters in End Milling[J]. Int J Adv Manuf Technol,2000,16:851-858.
    [67] X Li, P K Venuvinod, M K Chen. Feed Cutting Force Estimationfrom the CurrentMeasurement with Hybrid Learning[J]. Int J Adv Manuf Technol,2000,16:859-862.
    [68] Ali M. Abood, Robert Bicker, Tony Pennell. Cutting Forces in Gear Hobbing[J]. PostgraduateConference,2003.
    [69] X Li. Real-Time Prediction of Workpiece Errors for a CNC Turning Centre, Part3. CuttingForce Estimation Using Current Sensors[J]. Int J Adv Manuf Technol,2001,17:659-664.
    [70] X Li. Real-Time Prediction of Workpiece Errors for a CNC Turning Centre, Part4:Cutting-Force-Induced Errors[J]. Int J Adv Manuf Technol,2001,17:665-669.
    [71] C H Hsiehl, J H Chou, Y J Wu. Optimal Predicted Fuzzy PI Gain Scheduling Controller ofConstant Turning Force Systems with Fixed Metal Removal Rate[J]. Int J Adv ManufTechno1,2002,19:714-721.
    [72] H WU, W Hu, Z Z Lu, et al. The Real-Time Compensation of Cutting Force-Induced Errorson NC Turning Center Based on Particle Swarm Optimization[J]. Journal of ShangHaiJiaoTong University,2007,41(10):1696-1698.
    [73]刘大维,秦世安,张翼.齿轮加工过程中滚削力矩的试验研究[J].山东机械,2004,1:15-17.
    [74] Y B Guo, D W Yen. A FEM study on mechanisms of discontinuous chip formation in hardmachining[J]. Journa lof Materials Processing Technology,2004,155-156:1350-1356.
    [75] K D Bouzakis, O Friderikos, I Tsiafis. FEM-supported simulation of chip formation and flowin gear hobbing of spurand helical gears[J]. CIRP Journal of Manufacturing Science andTechnology,2008,1:18-26.
    [76] M BAKER, J ROSLER, C SIEMERS. A finite element model of high speed metal cuttingwith adiabatic shearing[J]. Computers and Structures,2002,80:495-513.
    [77] L J XIE. Estimation of two-dimension toolwear based on finite element method[D].Karlsruhe:University Karlsruhe,2004.
    [78] Martin Baker, Finite element simulation of high-speed cutting forces[J]. Journal of MaterialsProcessing Technology,2006,176:117-126.
    [79]张维纪.金属切削原理及刀具[M].浙江:浙江大学出版社,2004.
    [80]薛进才.硬齿面的滚切加工[M].北京:机械工业出版社,1987.
    [81]陆剑中,孙家宁.金属切削原理与刀具[M].北京:机械工业出版社,2005.
    [82] A Unuver. Computerized optimisation and design analysis for machine tool spindle[J].Petroleum Division,1996,81:131-136.
    [83]于峻一,吴博达.机械加工振动的诊断、识别与控制[M].北京:清华大学出版社,1995.
    [84] C S Suh, P P Khurjeak, B Yang. Characterization and identification of dynamic instability inmilling operation[J]. Mechanical systems and Signal Processing,2002,16(5):853-872.
    [85] S Smith, W R Winfough, H J Borchers. Power and stability limits in milling[J]. Annals of theCIRP,2000,(49)1:309-312.
    [86] J R Pratt, A H Nayfeh. Design and modeling for chatter control[J]. Nonlinear Dynamics,1999,19(1):49-69.
    [87]肖友谊,彭泽民.高速切削动力学研究[J].应用力学学报,1990,4:77-81.
    [88]杨肃,唐恒龄,廖伯瑜.机床动力学[M].北京:机械工业出版社,1983.
    [89]王贵成.高速加工工具系统[M].北京:国防工业出版社,2005.
    [90]寥伯瑜,周新民,尹志宏.现代机械动力学及其工程应用[M].北京:机械工业出版社,2004.
    [91] C W Lin. High speed effects and dynamic analysis of motorized spindles for high speedendmilling[D]. Purdue University,2001.
    [92]王玉金,赵韩,罗继伟.高速机床主轴支承系统轴承配置分析[J].制造技术与机床,2003,1:44-46.
    [93]黄红武,熊万里,陆名彰.高速大功率精密电主轴中的关键技术[J].湖南大学学报(自然科学版),2002,29(5):49-54.
    [94]钱木,蒋书运.高速磨削用电主轴结构动态优选设计[J].中国机械工程,2005,16(10):864-868.
    [95] E V Bordatchev, P E Orban, et al. Experimental analysis and modeling of thedynamicperformance of machine tool spindle-bearing systems[J]. Proceedings of the SPIE-TheInternational Society for Optical Engineering,2001,4191:92-103.
    [96] B R Jorgensen, Y C Shin. Dynamics of Spindles-Bearing Systems at High Speeds IncludingCutting Load Effects[J]. Journal of Manufacturing Science and Engineering,1998,120:551-560.
    [97] L Zverv, Y S Pyoun, K B Lee. An elastic deformation model of high speed spindles built intoball bearings[J]. Journal of Materials Processing Tech,2005,170(3):570-578.
    [98]王树林,王贵成,梁彦学. HSK工具系统的力学模型及其应用[J].农业机械学报,2003,4:122-124.
    [99]王树林,王贵成,梁彦学.高速加工刀具的动平衡失稳[J].中国机械工程,2003,17:1554-1546.
    [100] S Smith, J Tlusty. Current trends in high speed machining[J]. Journal of ManufacturingScience and Engineering,1997,119:664-666.
    [101] M Tsutsumi. Static and dynamic stiffness of1/10tapered joints for automatic changing[J]. Int.J. Japan Soc.Prec. Eng.,1995,29(4):301-306.
    [102] A G Rehorn, J Jiang, P E Orbaw. Modelling and experimental investigation of spindleandcutter dynamics for a high-precision machining center[J]. Int J Adv Manuf Technol,2004,24:806-815.
    [103] S Smith, T Jacobs, J Halley. The Effect of Drawbar Force on Metal Removal Rate in Milling[J]. Annals of the CIRP,1999,48(1):293-296.
    [104] J Tlusty, S Smith, W Winfough. Techniques for the Use of Long Slender End Mills inHigh-Speed Machining[J]. Annals of the CIRP,1996,45(1):393-396.
    [105] T L Schmitz, M A Daviesl, K Medicos. Improving High-Speed Machining Material RemovalRates by Rapid Dynamic Analysis[J]. Annals of the CIRP,2001,50(1):263-268.
    [106] S C Lin, M F Chang. A study on the effects of vibrations on the surface finish using a surfacetopography simulation model for turning.International Journal of Machine Tools andMnufacture[J].1998,38:763-782.
    [107] M Thomas, Y Beauchamp, A Y Youssef. Effect of tool vibrations on surface roughnessduringlathe dry turning process[J].18th International Conference on Computers and IndustrialEngineering,1996,31(3/4):637-644.
    [108]陈延军,史耀耀.高速机床进给机构及铣削系统振动分析[J].噪声与振动控制,2006,4:42-45.
    [109]杨尧.金属切削加工中的振动分析及控制途径[J].工具技术,2004,3(38):26-27.
    [110] M K Kraishey, C Pezeshki, E Bayoumi. Time Series based analysis for primary chatter inmetal cutting[J]. Journal of sound and vibration,1995,180(1):67-87.
    [111] D E Dimla, P M Lister. On-line cutting tool condition monitoring[J]. I: force and vibrationanlyses, Int. J. Mach. Tools Manufact.2000,40:739-768.
    [112] A Devillez, D Dudzinski. Tool vibration detection with eddy current sensors in machiningprocess and computation of stability lobes using fuzzy classifiers[J]. Surveillance5CETIMSenlis,2004,11-13.
    [113] D E Dimla, P M Lister, On-line metal cutting tool condition monitoring[J]. I: force andvibration analysis, International Journal of Machine Tools and Manufacture,2000,40:739-768.
    [114] H Li, X Li. Modelling and simulation of chatter in milling using a predictive force model[J].International Journal of Machine Tools and Manufacture,2000,40:2047-2071.
    [115] J Tlusty. High-speed machining[J]. Annals of the CIRP,1993,42(2):733-738.
    [116] F W Taylor. On the Art of Cutting Metals, ASME,1907.
    [117] S A Tobias, W Fishwick. A Theory of Regenerative Chatter, The Engineer. London.1958.
    [118] H E Merrit. Theory of self-excited machine tool chatter[J]. Transactions ASME, Journal ofEngineering for Industry,1965,87(4):447-454.
    [119] J Tlusty, W Zaton, R Ismail. Stability Lobes in Milling[J]. Annals of the CIRP,1983,32(1):309-313.
    [120] B Rao, Y C Shin. A comprehensive dynamic cutting force model for chatter prediction inturning[J]. International Journal for Machine Tools and Manufacture,1999,39(10):1631-1654.
    [121] Y Altintas. Manufacturing Automation. Metal Cutting Mechanics[M]. Machine tool Vibrationsand CNC Design, Cambridge University Press,2000.
    [122] J R Baker, K E Rouch. Stability analysis of boring bars with asymmetry[J]. MachiningScience and Technology,2002,6(1):81-95.
    [123]姚家伦,刘克铭,符跃呜. Y3180H滚齿机的SIMO法模态分析[J].上海第二工业大学,1989,1:114-121.
    [124]喻祖铭,鲍二明.高效滚齿机振动状态监测和初步分析[J].中国设备管理,1998,5:25-27.
    [125]刘明辉. YB3180H滚齿机精切硬齿面齿轮的有限元模态分析与动态测试[J].制造技术与机床,2005,4:21-23.
    [126]何亚飞,姚家伦,符跃呜.准实模态理论及其在Y3180H滚齿机动态特性研究中的应用[J].上海第二工业大学,1993,1:33-38.
    [127]朱育权,千学明,林晓萍.1CL50型机床立柱振动模态分析[J].西安工业大学学报,2007,27(3):215-218.
    [128] A. Erturk, H.N. Ozguven, E. Budak. Analytical modeling of spindle-tool dynamics onmachine tools using Timoshenko beam model and receptance coupling for the prediction oftool point FRF[J]. International Journal of Machine Tools&Manufacture,2006,46:1901-1912.
    [129] Y Kang, C W Chang, Y R Huang, et al. Modification of a neural network utilizing hybridfilters for the compensation of thermal deformation in machine tools[J]. International Journalof Machine Tools and Manufacture,2007,47(2):376-387.
    [130] Min Xu, Shu-yun Jiang, Ying Cai. An improved thermal model for machine tool bearings[J].International Journal of Machine Tools and manufacture,2007,47(1):53-62.
    [131] H Wu, H T Zhang, Q J Guo, et al. Thermal error optimization modeling and real-timecompensation on a CNC turning center[J]. Journal of Materials Processing Technology,2008,207(1-3):172-179.
    [132] M A Donmez, M H Hahn, J A Soons. A Novel Cooling System to Reduce Thermally-InducedErrors of Machine Tools[J]. CIRP Annals-Manufacturing Technology,2007,56(1):521-524.
    [133]王时龙,祁鹏,周杰,等.数控滚齿机热变形误差分析与补偿新方法[J].重庆大学学报,2011,34(3):13-17.
    [134] E.Creighton, A. Honegger, A.Tulsian, D. Mukhopadhyay. Analysis of thermal errors in ahigh-speed micro-milling spindle[J]. International Journal of Machine Tools&Manufacture,2010,50:386-393.
    [135] S Eastwood, P Webb. Compensation of thermal deformation of a hybrid parallel kinematicmachine[J]. Robotics and Computer-Integrated Manufacturing,2009,25:81-90.
    [136] D J Chen, M Bonis, F H Zhang. Thermal error of a hydrostatic spindle[J]. PrecisionEngineering,2011,35:512-520.
    [137] Z Z Xu, X J Liu, H K Kim. Thermal error forecast and performance evaluation for anair-cooling ball screw system[J]. International Journal of Machine Tools&Manufacture,2011,51:605-611.
    [138] L Andolfatto, J R R Mayer, S Lavernhe. Adaptive Monte Carlo applied to uncertaintyestimation in five axis machine tool link errors identification with thermal disturbance[J].International Journal of Machine Tools&Manufacture,2011,51:618-627.
    [139]陶晓杰,王治森.滚齿机床热变形对加工精度的影响[J].机械传动,2005,29(3):54-57.
    [140]关耀奇.热变形对精密加工的影响与控制[J].机械研究与应用,2003,14(2):1-3.
    [141]居冰峰,傅建中,陈子辰.复合恒温构件热变形控制技术研究[J].机械工程学报,2000,36(6):59-62.
    [142] J Vyroubal. Compensation of machine tool thermal deformation in spindle axis direction basedon decomposition method[J]. Precision Engineering,2012,36(13):121-127.
    [143] H Wang, Q Huang, H Yang. In-line statistical monitoring of machine tool thermal errorthrough latent variable modeling[J]. Journal of Manufacturing Systems,2006,25(4):279-292.
    [144]郭前建,杨建国,李永祥,等.聚类回归分析在滚齿机热误差建模中的应用[J].上海交通大学学报,2008,42(7):1055-1059.
    [145]杨庆东.神经网络补偿机床热变形误差的机器学习技术[J].机械工程学报,2000,36(1):92-105.
    [146]杨建国,任永强,朱卫斌,等.数控机床热误差补偿模型在线修正方法研究[J].机械工程学报,2003,39(3):81-84.
    [147]林伟青,傅建中,许亚洲,等.基于最小二乘支持向量机的数控机床热误差预测[J].浙江大学学报(工学版),2008,42(6):905-908.
    [148] J G Yang, J X Yuan, J Ni. Thermal error modeanalysis and robust modeling for errorcompensation on a CNC turning center[J]. International Journal of Machine Tools andManufacture,1999,39(3):1367-1381.
    [149]张维纪,戴振松.切削温度实验数据处理装置[J].浙江大学学报(自然科学版),1994,5(28):515-521.
    [150] H T Zhao, J G Yang, J H Shen. Simulation of thermal behavior of a CNC machine toolspindle[J]. International Journal of Machine Tools and manufacture2007,47(6):1003-1010.
    [151] S K Kim, D W Cho. Real time estimation of temperature distribution in a ball-screw system[J], International Journal of Machine Tools and Manufacture,1997.37(4):451-464.
    [152]国家自然科学基金委员会,机械制造科学(冷加工)[M],北京:科学出版社,1994.
    [153] K Okushima, Y Kakino. An analysis of methods used in minimizing thermal deformations ofmachine tools[J].16thMTDR,1975,16:1012-1017.
    [154]商鹏,阮宏慧,张大卫.基于球杆仪的三轴数控机床热误差检测方法[J].天津大学学报,2006,39(10):1336-1340.
    [155] Schafer W.机床的热变形补偿. Ind.-Anz.1990,112(72).
    [156]松尾光荣.通过对加工中心的温度分布测量进行热位移补偿(II).精密工学杂志,1991,57(3).
    [157] Y Kakino, Y Ihara, A Shinohara. Accuracy inspection of nc machine tools by double ball barmethod[M]. Hanser publishers, Munich Vienna NewYork, Hanser/Gardner Publications, Inc.,Cincinnati,1993.
    [158] S C Veldhuis, M A Elbestawi. A Strategy for Compensation of Errors Five-Axis Machining[J].Annals of CIRP,1995,44(1):373-377.
    [159] Y Hatamura, et al. Development of an Intelligent Machining Center Incorporating ActiveCompensation for Thermal Distortion[J]. Annals of CIR1993,42(1):549-552.
    [160] M Weck, et al. Reduction and Compensation of Thermal Error in Machine Tools[J]. Annals ofCIRP,1995,44(2):589-597.
    [161] J Chen. Computer-aided Accuracy Enhancement for Multi-Axis CNC Machine Tool[J].International Journal of Machine Tools and Manufacture,1995,35(4):593-605
    [162] H Yang, J Ni. Dynamic neural network modeling for nonlinear nonstationary machine toolthermally induced error[J], International Journal Machine Tools and Manufacture,2005,45(4-5):455-465.
    [163] S Fraser, M H Attia, M O Osman. Modeling, Identification and Control of ThermalDeformation of Machine Tool Structures[J], Part I: Concept Of Generalized Modeling, ASMEJournal of Manufacturing Science and Enginnering,1998,120(3):623-631.
    [164] S Fraser, M H Attia, M O Osman. Modeling, Identification and Control of ThermalDeformation of Machine Tool Structures[J], Part II: Generalized Transfer Functions, ASMEJournal of Manufacturing Science and Enginnering,1998,120(3):632-639.
    [165] D A Krulewich. Temperature integration model and measurement point selection for thermallyinduced machine tool errors[J]. Mechatronics,1998,8(4):395-412.
    [166] C H Lo, J Yuan, J Ni. Optimal temperature variable selection by grouping approach forthermal error modeling and compensation[J], International Journal Machine Tools andManufacture,1999,39(9):1383-1396.
    [167] M H Attia, S Fraser. A generalized modelling methodology for optimized realtimecompensation of thermal deformation of machine tools and CMM structures[J], InternationalJournal of Machine Tools and Manufacture,1999,39:1001-1016.
    [168] Y C WANG, M C KAO, C P CHANG. Investigation on the spindle thermal displacement andits compensation of precision cutter grinders[J]. Journal of the International MeasurementConfederation,2011,44(6):1183-1187.
    [169] J Vyroubal. Using the spindle cooling temperature as a tool for compensating the thermaldeformation of machines[J]. Acta Polytechnica-Journal of Advanced Engineering,2010,50:19-22.
    [170] S Eastwood, P Webb. Compensation of thermal deformation of a hybrid parallel kinematicmachine[J], Robotics and Computer-Integrated Manufacturing,2009,25:81-90.
    [171] J G Yang, Y Q Ren, Z C Du. Robust model and real-time compensation for the thermal erroron a large number of CNC turning centers[J]. Key Engineering Materials,2004,25(26):756-760.
    [172] H J Pahk, S W Lee. Thermal error measurement and real-time compensation system for theCNC machine tools incorporating the spindle thermal error and the feed axis thermal error[J].International Journal of Advanced Manufacture Technology,2002,20(7):487-494.
    [173]林伟青,傅建中,许亚洲,等.基于在线最小二乘支持向量机的数控机床热误差建模与补偿[J].计算机集成制造系统,2008,14(2):295-299.
    [174] C D Mize, J C Ziegert. Neural network thermal error compensation of a machining center[J],Precision Engineering,2000,24(4):338-346.
    [175]陈子辰,等.热敏感度和热偶合度研究[J].全国机床热误差控制和补偿研究会议论文集.浙江大学出版社会,1992.11.
    [176]张德贤,等.神经网络在数控机床热变形控制中的应用[J].制造技术与机床,1995,1:8-11.
    [177]李书和,等.加工中心热误差补偿研究[J].制造技术与机床,1997,6:16-19.
    [178]张奕群,李书和,等.机床热变形误差的混合输入动态模型[J].航空精密制造技术,1998,34(5):28-31.
    [179]杨建国.数控机床热误差鲁棒建模新方法及实时补偿[J].制造技术与机床,1998,6:8-11.
    [180]杨建国,潘志宏,等.回归正交设计在机床热误差建模中的应用[J].航空精密制造技术,1999,35(5):33-37.
    [181]李永祥,杨建国,等.数控机床热误差的混合预测模型及应用[J].上海交通大学学报,2006,40(12):2030-2033.
    [182]傅龙珠,狄瑞坤,等. BP神经网络补偿热变形误差的研究[J].精密制造与自动化,2002,3:26-28.
    [183]赵大泉,张伯鹏.主轴热误差的自组织补偿原理及其仿真[J].清华大学学报(自然科学版),2004,44(2):209-211.
    [184] R Ramesh, M A Mannan, A N Poo. Error compensation in machine tools. a review part I:geometric, cutting-force induced and fixture-dependent errors[J]. International Journal ofMachine Tools&Manufacture,2000,40:1235-1256.
    [185] Soichi Ibarakia, Masahiro Sawada, Atsushi Matsubara. Machining tests to identify kinematicerrors on five-axis machine tools[J]. Precision Engineering,2010,34(7):387-398.
    [186] W Anotaipaiboon, S S Makhanovb. Minimization of the kinematics error for five-axismachining[J]. Computer-Aided Design,2011,43:1740-1757.
    [187] F Klocke, C Gorgels, A Stuckenberg. Investigations on Surface Defects in Gear Hobbing[J].Procedia Engineering,2011,19:196-202.
    [188] L Andolfatto, S Lavernhe, J R R Mayer. Evaluation of servo, geometric and dynamic errorsources on five-axis high-speed machine tool[J]. International Journal of Machine Tools&Manufacture,2011,51(2):787-796.
    [189] G X Zhang, H Y Zhang, J B Guo, et al. Error compensation of cylindrical coordinatemeasuring machines[J]. CIRP Annals-Manufacturing Technology,2010,59: l501-504.
    [190] Mehrdad VahebiNojedeh, MohsenHabibi, BehroozArezoo. Tool path accuracy enhancementthrough geometrical error compensation[J]. International Journal of Machine Tools&Manufacture,2011,51:471-482.
    [191] M John. Finesa, Arvin Agah. Machine tool positioning error compensation using artificialneural networks[J]. Engineering Applications of Artificial Intelligence,2008,21:1013-1026.
    [192] Mohsen Habibi, BehroozArezoo, Mehrdad Vahebi Nojedeh. Tool deflection and geometricalerror compensation by tool path modification[J]. International Journal of Machine Tools&Manufacture,2011,51:439-449.
    [193] B Robert, Aronson. War against Thermal Expansion[J]. Manufacturing Engineering,1996,116(6):45-50.
    [194] Gheorghe Stan, Romeo Ciobanu, Anton Pal. Balancing-compensation system for the verticallymoving elements of the machine tools with numerical control[J]. Meccanica,2011,46:755–769.
    [195] A C Okafor, M Yalcin Ertekin. Derivation of machine tool error models and errorcompensation procedure for three axes vertical machining center using rigid bodykinematics[J]. International Journal of Machine Tools&Manufacture,2000(40):1199-1213.
    [196] M H Attia, S Fraser. A generalized modeling methodology for optimized realtimecompensation ofthermal deformation of machine tools and CMM structures[J]. InternationalJournal of Machine Tools&Manufacture,1999,39:1001-1016.
    [197] J P Choi, B K Min, S J Lee. Reduction of machining errors of a three-axis machine tool byon-machine measurement and error compensation system[J]. Journal of Materials ProcessingTechnology,2004,155-156:2056-2064.
    [198] P S Huang, J Ni. On-line error compensation of coordinate measureing machines[J].ToolsManufact,1995,35(5):725-738.
    [199] K K Tan, S N Huang, T H Lee. Dynamic S-function for geometrical error compensation basedon neural network approximations[J]. Measurement,2003(34):143-156.
    [200] E L J Bohez. Compensating for systematic errors in5-axis NC Machining[J]. Computer-AidedDesign,2002,34:391-403.
    [201]陈涛,彭芳瑜,周云飞.基于结构误差补偿的多坐标机床后置变换[J].中国制造业信息化,2003,32(2):88-90.
    [202]吴光琳,林建平,李从心,等.基于神经网络的数控加工热误差补偿.机床与液压[J].2000,3:8-9.
    [203] W T Lei, Y Y Hsu. Accuracy enhancement of five-axis CNC machines through realtime errorcompensation[J]. International Journal of Machine Tools&Manufacture,2003,43:871-877.
    [204]袁哲俊.齿轮刀具设计[M].北京:新时代出版社,1983,9.
    [205]杨荣福,董申.金属切削原理与刀具[M].北京:浙江大学出版社,1998,3.
    [206]张厚江,陈五一,陈鼎昌.碳纤维复合材料切削机理的研究[J].航空制造技术,2004,7:57-59.
    [207] N Bhatnagar, N Ramakrishnan, N K Naik, et al. On the maching of fiber reinforced plastic(FRP)composite laminates[M]. Int J Mach Tools Manufact.1995,35(5):701-716.
    [208][日]小野浩二,河村未久,北野昌则,等.理论切削学[M].北京:国防工业出版社,1985
    [209]周哲华.金属切削原理[M].(第2版).上海:上海科学技术出版社,1992.
    [210]陈鹏.基于虚拟设计技术的数控滚齿机设计方法及应用研究[D].重庆大学,2002.
    [211]刘鸿文.材料力学[M].北京:高等教育出版社,1991.
    [212] S R Singiresh. Mechanical vibration[M]. Pearson Education International (Fourth Edition),2004.
    [213]李惠彬.振动理论与工程应用[M].北京:北京理工大学出版社,2006.
    [214] R Stoughton, T Arai. A modified Stewart platform manipulator with improved dexterity[J].IEEE Transactions on Robotics and Automation,1993,9(2):166-173.
    [215] Y Y Wang, Ji S M, D H Wen,et al. Experimental and numerical modal analysis of gearboxcasing in a polishing machinery[J]. Ultra-paecision Machining Technologies,2009(69-70):560-564.
    [216]徐向阳,朱才朝,张晓蓉,等.大功率船用齿轮箱试验模态分析[J].振动与冲击,2011,(7):266-270.
    [217]王杰,蒋建东.可重构小型农业作业机扶手模态特性分析[J].浙江工业大学学报,2009,37(5):563-571.
    [218]欧珠光.工程振动[M].武汉:武汉大学出版社,2008.
    [219]张义民.机械振动[M].北京:清华大学出版社,2007.
    [220] M Shiraishi, E Kume. Suppression of machine tool chatter by state feedback control[C]. Annalof the CIRP,1988,37(1):369-372.
    [221] M Shiraishi, K Yamanaka, H YFujita. Optical control of chatter in turning[J]. Int J MachTools manufact,1991,31(1):31-43.
    [222] D M Alter, Tsao T C. Stability of turning processes with active controlled linear motor feeddrives[J]. ASME Journal of engineering for industry,1994,116:298-307.
    [223]杨辅伦,于骏一.切削颤振预报控制的研究现状[J].吉林工业大学学报,1992,22(1):110-118.
    [224]费仁元,王民.切削颤振在线监控的研究现状及进展[J].中国机械工程,2001,12(9):1075-1079.
    [225]费业泰.机械热变形理论及应用[M].北京:国防工业出版社,2009.
    [226]梁允奇.机械制造中的传热与热变形基础[M].北京:机械工业出版社,1982.
    [227]叶其孝,沈永欢.实用数学手册[M](第二版).北京:科学出版社,2006.
    [228] P J Ossenbruggen, V Aggarwal, C G Culver. Steel column failure under thermal gradients[J].Journal of Structural Division, ASCE,1973,99(ST4):727-739.
    [229] J R Sharples, R J Plank, D A Nethercot. Load temperature deformation behavior of partiallyprotected steel columns in fires[J]. Engineering Structures,1994,16(8):637-643.
    [230] Y C Wang. Post-buckling behavior of axially rest rained and axially loaded steel columnsunder fire conditions[J]. Journal of Structural Engineering, ASCE,2004,130(3):371-380.
    [231]李国强,王培军.轴向约束梁柱在火灾引起温度沿截面不均匀分布条件下的大变形分析[J].力学季刊,2007,28(2):246-255.
    [232]李世荣,程昌钧,周又和.横向非均匀升温下弹性梁的热过屈曲[J].应用数学和力学,2003,24(5):454-460.
    [233] D Mohammada, A S Samirb. A new technique for large deflection analysis of non-prismaticcantilever beams[J]. Mechanics Research Communications,2005,32(6):692-703.
    [234]巨丽,李永堂.对击式液压锤理论与试验模态分析[J].机械工程学报,2009,45(1):273-277.
    [235]郭秀娟,袁月,范小鸥.模糊聚类算法分析与应用[J].吉林建筑工程学院学报,2009,26(4):79-81.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700